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Abstract

This document proves that the Collatz Conjecture is true for the
Natural numbers excluding zero. Use is made of the probability
distribution of even and odd numbers in supposed diverging Collatz
sequences to establish that Collatz sequences do not diverge, have a
finite number of terms and are bounded. Finally proof by
contradiction, the pigeon hole principle and proof by induction are
used to prove that the Collatz Conjecture is true via two theorems.

Keywords Collatz Conjecture, Syracuse Conjecture, 3x+ 1 Conjecture,
Ulam conjecture, Hailstone sequence or Hailstone numbers.

1 Introduction

The Collatz Conjecture is named after the mathematician Lothar Collatz

who introduced it in 1937. Current and past research is presented in [1], [2],

[3]. The solution has proved elusive and the famous mathematician P.

Erdos remarked that ”Mathematics may not be ready for such
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2 DEFINITIONS

problems.”[4] By 2020, the conjecture had been verified by computer for all

starting values up to 268.[5] However a mathematical proof that would

prove that the conjecture is true for all Natural numbers greater than zero

has yet to be proven.

2 Definitions

Definition 2.1 (Natural Numbers) The symbol N+ denotes the Natural

numbers not including 0.

Definition 2.2 (Collatz function) The Collatz function,

C : N+ → N+, n ∈ N+ is shown in Equation 2.1.

C(n) =


n/2, if 2 | n.

3n+ 1, otherwise.

(2.1)

Definition 2.3 (generates) The phrase n generates denotes the Collatz

sequence of numbers iteratively calculated with a starting value of n where

the next term in the sequence is obtained by using the Collatz function on

the proceeding one.

Definition 2.4 (Collatz Conjecture) The Collatz Conjecture asserts

that Collatz sequences generated from the set of Natural numbers has a term
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

equal to 1 or phrased differently reaches 1. A Collatz sequence as defined

herein is deemed terminated upon reaching 1.

Definition 2.5 (The kth generated term of a Collatz sequence)

Ck(n) where k, n ∈ N+ is defined as the kth generated term of a sequence

starting from n. Note it is the (k + 1)th term of that sequence.

Definition 2.6 (cycling) A Collatz sequence which repeats one of the

numbers in the sequence will cycle through numbers already in the sequence

and is defined as cycling.

As an example Equation 2.2 shows that C2(7) = 11 which is the 3rd term

of that sequence and the number 7 generates a Collatz sequence that

reaches 1. Because it reaches 1 then 7 is a number that is in accord with

the Collatz Conjecture.

(7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1) (2.2)

3 Probability that the Parity of C∞(n) is

Even

Lemma 3.1 If n ∈ 2N+ is randomly chosen then P{n/2 ∈ 2N+} is 1
2
.

Proof
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Consider the set of even numbers, {2, 4, 6, 8..}. Upon dividing the elements

of this set by 2 the result is {1, 2, 3, 4, ...}. Note that half of the terms are

even and half are odd. Thus for a randomly selected even number n, this

implies that the probability that n
2
is even or odd is 1

2
. □

Theorem 3.2 is developed from [6] and thus the author entirely deserves

credit for it.

Theorem 3.2 P{C∞(n) ∈ 2N+} is 2
3
.

Proof

The top portion of Figure 1 shows a probability tree for even and odd

terms that are generated from a random starting number n in a Collatz

sequence. P{C(n) ∈ 2N} is the probability that C(n) is even. This will be

written simply as P{C(n)}. This implies the probability of an odd C(n) is

1− P{C(n)}. Also note that P{C(n)} = 1
2
by lemma 3.1.

The next level of the tree represents C2(n).
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Fig 1. Probability Tree of the Parity of terms in a Collatz sequence.

P{C2(n) ∈ 2N+} which will be written simply as P{C2(n)} is calculated as

P{C2(n)} = (1− P{C(n)}).1 + 1

2
.P{C(n)}

= 1− 1

2
P{C(n)}

(3.1)
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Or in general, from observation of the lower portion of Figure 1,

P{Ck(n)} = 1− 1

2
P{Ck−1(n)} (3.2)

where again it is understood that the probability being calculated is for an

even number. Applying Equation 3.2 in a recursive manner,

P{Ck(n)} = 1− 1

2
(1− 1

2
P{Ck−2(n)})

= 1− 1

2
+

1

4
− 1

8
+ ...+ (−1)k

P{C(n)}
2k−1

= 1− 1

2
+

1

4
− 1

8
+ ...+ (−1)k

1
2

2k−1

= 1− 1

2
+

1

4
− 1

8
+ ...+ (−1

2
)k

(3.3)

Taking the limit as k approaches infinity,

lim
k→∞

P{Ck(n)} = lim
k→∞

[
1− 1

2
+

1

4
− 1

8
+ ...+ (−1

2
)k
]

(3.4)

Noting that the last term disappears and that the remaining rhs terms form

a geometric series with a = 1 and r = −1
2
.
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

P{C∞(n)} =
a

1− r

=
1

1− {−1
2
}

=
1

1 + 1
2

=
1
3
2

=
2

3

(3.5)

Therefore, P{C∞(n) ∈ 2N+} is 2
3
. □

The program listed in Figure 3 was written in Google Sheets scripting

language which generated 100,000 different Collatz sequences from distinct

random starting numbers. The probability of each of the first 10 terms

being even was calculated, and the results are shown in Figure 4. The same

calculations are also plotted using Equation 3.3. The script code-calculated

values are in agreement with the theoretical values as

.6671 = P{C10(n)} ≈ P{C∞(n)} = 2
3
.
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

function collatzProb(nseqs=1000000,termnum=10) {

// nseqs is the number of Collatz sequences

// termnum is the number of the term being considered

let n = 0;

let even = 0;

let total=nseqs;

while (nseqs !== 0) {

n = n + Math.floor(Math.random()*1000)

j=termnum;

while (j !== 0) {

if (n % 2 === 0) {

n /= 2;

} else {

n = n * 3 + 1;

}

j--;}

if (n % 2 === 0) {

even++; }

nseqs--;

}

return even/total;

}

Fig 3. Code to calculate that each of C1(n)...C10(n) is even.

8



3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Fig 4. Probability that a term is even.
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Corollary 3.3 In an infinitely long Collatz sequence, assuming it exists, 2
3

of the terms are even and 1
3
are odd. The probability of a term being even

far from n is 2/3 and thus 2/3 of the sample space must be even in an

infinitely long sequence and approximately so in a finite one. This presumes

that there are no powers of 2 encountered; otherwise, the sequence does not

have an infinite number of terms. This distinction must be noted as any

powers of 2 result in all successive terms being even and thus the

probabilities would not be applicable.

To numerically confirm this result for long sequences, a program was

written in the Pari/GP programming language [7]. This program is shown

below.

ColEven(n) = {

my(even=0,total=1,pof2=0);

if(n%2==0, even=1,0);

while (n != 1,pof2=log(n)/log(2);

if (truncate(pof2)==pof2,if(total==1,return(1),

return(even/total*1.0000001,total)));

if (n%2 == 0,n /= 2;even=even+1,n = n * 3 + 1);

total=total+1);}

Fig 5. Code to calculate the ratio of even terms to the total number of

terms in a long sequence before a power of 2 is encountered.
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3 PROBABILITY THAT THE PARITY OF C∞(n) IS EVEN

Fig 6. Percent of even terms before a power of 2 is encountered as a

function of sequence length.
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

The data in Figure 6 was generated using the single Pari/GP command

for (i=220,240,ColEven(i!))

Figure 6 agrees with the theoretical result. The long sequences examined

have a percentage of even terms close to 2/3 and the trend shows that the

result becomes closer to 2/3 for larger sequences. This check has not

invalidated what was proven and provides some confidence that a mistake

was not made in the theoretical calculations above.

4 Proof that the Collatz Conjecture is True

∀ n ∈ N+

Theorem 4.1 If the numbers from 1 to n generate Collatz sequences that

reach 1, this implies that n+1 generates a sequence that reaches 1.

Proof

Assumption 4.1 All of the numbers from 1 to n generate Collatz

sequences that reach 1.

Remark 4.1 If the numbers from 1 to n can be shown to generate Collatz

sequences that reach 1 then if any number larger than n in the course of the

generation of the sequence results in a term that is between 1 to n then it

will continue along an already established Collatz sequence and will reach 1.
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

There are 4 possibilities with regard to a Collatz sequence generated from

n+1:

(1) The sequence generated from n+1 diverges.

(2) The sequence generated from n+1 does not diverge but cycles at a

number greater than n such that no term in the sequence is below n+1.

(3) The sequence generated from n+1 does not diverge and does not cycle

above n but does not reach 1.

(4) The sequence reaches 1.

Remark 4.2 If (1) , (2) and (3) are false then the only option left is (d),

and thus Theorem 4.1 is true.

Proposition 4.2 The sequence generated from n+1 diverges.

Proof

If a Collatz sequence diverges then it is infinitely long. This implies in such

a sequence, if it exists, there are no numbers that are a power of 2,

otherwise on encountering this term the sequence would proceed directly to

1 and thus not be divergent. Encountering a power of 2 would upset the

probabilities that were calcuated in Theorem 3.2 therefore it is important

to point out that this situation does not exist in the case of an infinite

sequence.

Consider a Collatz sequence where α is the fraction of the terms that are

odd and 1-α is the fraction of those that are even. Each odd term increases
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

the first number in the sequence by approximately 3 and each even term

decreases the initial term by 2. Assume that the odd terms instead of

increasing the first term by approximately 3, instead increases it by 3.9

without the addition of 1. This simplifies the algebra and allows an upper

bound to be calculated. Note that for n > 1 (trivial Collatz sequence)

3.9n > 3n+ 1. An upper bound for the kth term can then be formulated.

As there are k terms, (n+1) is multiplied by 3.9 αk times and divided by

two (1− α)k times. This can be written as

Ck(n+ 1) < (n+ 1)× 3.9α·k

2(1−α)·k (4.1)

Taking limits as k approaches infinity and noting by Theorem 3.2 that α

the proportion of odd terms approaches 1− 2
3
= 1

3
.

lim
k→∞

Ck (n+ 1) < lim
k→∞

(n+ 1)× 3.9
1
3
·k

2
2
3
·k

= (n+ 1)× lim
k→∞

(
3.9

4

) 1
3
·k

= (n+ 1)× 0 = 0 where k, n ∈ N+

(4.2)

This is a contradiction. The term at infinity is /∈ N+. Therefore the reverse

of what was assumed is true. A Collatz sequence has a finite number of

terms. It also implies that Collatz sequences are bounded. Without loss of

generality assume the number of terms are even. Odd terms are always

followed by even terms so at most k/2 terms can be odd. Each odd even
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

pair has the net effect of increasing the starting number n+1 by 3/2

approximately. Therefore certainly (n+ 1)2k/2 exceeds any term in the

sequence and is therefore an upper bound. If the number of terms are odd

then (n+ 1)2(k+1)/2 can be used as an upper bound.

We can conclude that a Collatz sequence does not diverge, has a finite

number of terms, and is bounded.

Therefore proposition 4.2 is false. □

Proposition 4.3 The sequence generated from n+1 does not diverge but

cycles at a number greater than n such that no term in the sequence is

below n+1.

Proof

If n+1 is even then upon dividing by 2 the next term in the sequence is less

than n+1 which implies the sequence reaches 1 proving for even n+1 the

sequence does not cycle above n.

Consider odd n+1. Note Figure 2 where it is seen that C(n+1) = 3n+4 as

n+1 is odd. The next term is (3n+4)/2 as the preceeding term is even.

Then there are two possibilities: (3n+4)/4 and the term (9n+14)/2. This

implies that odd n+1 generates terms of the form

αn+ β

2δ
where α, β, δ, n ∈ N+ (4.3)
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

For proposition 4.2 to be true

Ck(n+ 1) = Cj(n+ 1) where j, k, n ∈ N+ and j > k > 2 (4.4)

Fig 2. Tree structure showing terms that n+1 may generate

Say Ck(n+ 1) = p and s cycles later produces p again.

Ck(n+ 1) = p = Ck+s where k, n, p, s ∈ N (4.5)

From observation of equations 5,6 and 7
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

p =
αp+ β

2δ
where p, α, β, δ ∈ N+ (4.6)

Comparing terms from Equation 8

1 =
α

2δ
(4.7)

0 =
β

2δ
(4.8)

The only solution which satisfies equations 9 and 10 is when β = 0 and α is

a power of 2, which implies p is a power of 2 which generates subsequent

terms that monotonically decrease to 1 contradicting proposition 4.3.

Therefore proposition 4.3 is false. □

Proposition 4.4 The sequence does not diverge and does not cycle above n

but does not reach 1.

Proof It has been proven that Collatz sequences are bounded. Assume t

equals the number of Natural numbers greater than n but less than an

upper bound M and let any number in this range be equal to q. Then

generate q to term t+1. Because no number repeats above n, as there is no

cycling, in a worst case scenario where all the t numbers in the range were

exhausted then by the pigeonhole principle term t+1 has to be in the range
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4 PROOF THAT THE COLLATZ CONJECTURE IS TRUE ∀ n ∈ N+

from 1 to n which, from remark 4.1 implies that the sequence reaches 1.

This is in contradiction to Proposition 4.4 which is then false. □

As propositions 4.2 ,4.3 and 4.4 are false then the only conclusion that can

be reached is that Theorem 4.1 is true. □

Theorem 4.5 Collatz sequences which are generated from the Natural

numbers reach 1.

Proof

The Collatz sequence for a starting value of 1 is as follows

(1) (4.9)

As n = 1 generates a Collatz sequences that reaches 1, by Theorem 4.2 this

implies that n+1 = 2 also generates a Collatz sequence that reaches 1.

Continuing in this manner then by induction n generates a Collatz sequence

that reaches 1 ∀ n ∈ N+. Therefore Theorem 4.5 is true. □

Corollary 4.6 There are no repeated numbers in a Collatz sequence

otherwise there would be a cycle and the sequence would never reach 1.

Corollary 4.7 At some point in a Collatz sequence a term is encountered

for the first time such that

Ck(n) = 2j where j, n, k ∈ N+ (4.10)
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5 CONCLUSION

In other words eventually a term in a generated sequence is a power of 2.

This is the only way that the sequence could eventually reach 1.

5 Conclusion

(a) Collatz sequences reach 1 for all starting values n ∈ N+.

(b) Collatz sequences do not diverge, have a finite number of terms and are

bounded.

(c) Collatz sequences have distinct terms.

(d) Collatz sequences eventually reach a term that is a power of 2.
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