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Abstract

This article investigates the two-dimensional Brouwer Fixed-Point Theorem within the context
of a surjective continuous transformation function f(x). This function can be interpreted as
defining a continuous vector field. In this framework, each point in the disk is mapped to another
point via a specific vector associated with the continuous transformation, thereby establishing a
coherent vector field. This function can be interpreted as defining a continuous vector field. In this
framework, the vector field can be decomposed two vector fields. Instead of proving the existence
of fixed point directly, the article aim to focus on prove the vector fields always has intersection
where at this point, the vector fields has opposite directiond and same norm.The paper also provide
the programming experiment which further verifies the proof.

1 Introduction

Let f : D1 → D2 be a surjective mapping on a disk D1, wheref can be represented by a continuous
vector field. Assume this vector field can be decomposed into the sum of a smooth deformation vector
field D⃗(x) and a rotation vector field R⃗(x), where:

1. D⃗(x) is an arbitrary continuous deformation map with boundary values zero,

2. R⃗(x) is a continuous rotation map with a single rotation center.

Then, either:

1. There exists a point in the disk where the vectors D⃗(x) and R⃗(x) have the same magnitude but
opposite directions (resulting in a zero vector), or

2. There exists a point where the vector field is zero, indicating a fixed point.

In the case where the map must be decomposed into a rotation map with two or more centers of
rotation, the disk must contain fixed points due to the differing orientations of the rotation vectors,
which create opposing forces, ensuring the existence of fixed points by symmetry. In the subsequent
sections, Section 2 and Section 3 outline the fundamental properties of the continuous map f . Sections
4 and 5 examine the characteristics of the lines of equal length and the opposite directions of the vectors
D⃗(x) and R⃗(x). Section 6 explores the methods for locating fixed points under various conditions of
the continuous map f . Section 7 presents a summary of the findings. Finally, Section 8 discusses the
experiments conducted using programming to validate the proof.

1.1 Background

The fixed-point theorem is a fundamental result in mathematics that asserts the existence of points
that remain invariant under a given function. One of the most well-known fixed-point theorems is
Brouwer’s Fixed-Point Theorem[2], which states that any continuous function mapping a compact
convex set to itself has at least one fixed point. This theorem is particularly significant in topology
and has applications across various fields, including economics, game theory, and differential equations.
Theorem 1.1 (Brouwer’s Fixed-Point Theorem). Let D be a compact convex subset of Rn. If f :
D → D is a continuous function, then there exists at least one point x ∈ D such that f(x) = x.
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Figure 1: Neighbourhood of x0

Original Proof of Brouwer’s Fixed-Point Theorem: Brouwer’s original proof employs
topological arguments to demonstrate the existence of a fixed point for continuous mappings. The
essence of the proof relies on the assumption that if a continuous mapping f does not have a fixed
point, then a retraction r can be constructed to project the entire disk onto its boundary. However,
it is known that there exists a homotopy f0 in D2 that can be continuously deformed to a constant
loop. If we compose this homotopy with the retraction r, it implies the existence of a homotopy from
S1 (the boundary of the disk) to a constant loop, which is a contradiction in topology. Therefore, the
assumption that f has no fixed point must be false, confirming that at least one fixed point exists
within the disk.

2 Continuous Vector Field Map

This section will prove the case when the vector field map has only one rotation center.

Lemma 2.1. Let D1 and D2 be two 2D disks in metric spaces. If f : D1 → D2 is a surjective
continuous mapping, then the boundary points on ∂D1 are mapped to the boundary points on ∂D2.

Proof. Let D1 be a closed disk in R2 and D2 be another closed disk. Since f is a continuous surjective
mapping, it is possible to construct a homotopy ht : D1 → D2 for t ∈ [0, 1] such that:

h0(x) = x for x ∈ D1,

and
h1(D1) = D2.

This homotopy represents a continuous deformation from the disk D1 to the disk D2.
For any point x0 ∈ ∂D1, let f(x0) = p0 ∈ D2. By the continuity of the mapping f , there exists a

point y0 ∈ D1 close to x0 such that h∆t(y0) maps to x0 as ∆t → 0. This implies the existence of a
neighborhood Br(x0) such that:

∀x0 ∈ ∂D1,∃y0 ∈ D1 ∩Br(x0).

As ∆t → 0, the mappings are given by:

h∆t(x0) = p0, h∆t(y0) = x0.

The velocity at x0 is defined as:

V (x0) = lim
∆t→0

p0 − x0

∆t
.

Similarly, the velocity at y0 is:

V (y0) = lim
∆t→0

x0 − y0
∆t

.

Since the velocity is continuous in the neighborhood of x0, it follows that:
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V
(
lim
r→0

D1 ∩Br(x0)
)
= V (x0).

Given y0 ∈ D1 ∩Br(x0), it can be stated that:

V (y0) = lim
∆t→0

x0 − y0
∆t

= V
(
lim
r→0

D1 ∩Br(x0)
)
= V (x0) = lim

∆t→0

p0 − x0

∆t
.

Thus, it can be concluded that:

lim
∆t→0

x0 − y0
∆t

= lim
∆t→0

p0 − x0

∆t
.

From this, the relationship holds:

y0 = 2x0 − p0.

By considering x0 as the origin, it is evident that y0 must lie in the opposite direction of p0 and
outside the boundary. Therefore, there must exist some x0 for which no corresponding y0 exists under
h∆t, leading to a contradiction.

This contradiction implies that the initial assumption—that boundary points of D1 do not map to
the boundary points of D2—must be false. Hence, it is concluded that boundary points on ∂D1 are
indeed mapped to boundary points on ∂D2 under the continuous surjective mapping f .

3 Composition of Vector Fields

Lemma 3.1. Let f : D1 → D2 be a surjective mapping from a disk D1 to a disk D2. Then, f
can be expressed as a composition of a continuous deformation vector field D⃗(x), which is zero at the

boundary, and multiple rotation center vector fields R⃗(x).

Proof. By Lemma 2.1, the boundary points must be mapped to other boundary points under the
continuous mapping f . Additionally, the interior points are transformed to other interior points by
some continuous transformation. The composition of these transformations can be expressed as:

h∆t(x0) = x0 + D⃗∆t(x0) + R⃗∆t(x0), t ∈ [0, 1],

where D⃗∆t(x0) and R⃗∆t(x0) are vectors pointing from x0 to the final position h∆t(x0) at time ∆t. To
clarify, it holds that h0(x0) = x0 and h1(x0) = f(x0), which maps x0 ∈ D1 to D2 (see Figure 2). If
f(x0) is a fixed point, then:

f(x0) = x0 = h1(x0),

leading to:
D⃗∆t=1(x0) = −R⃗∆t=1(x0).

This relationship implies that the magnitudes of the vectors are equal and they point in opposite
directions, effectively canceling out any movement within D1, thereby ensuring that the points remain
fixed during the transformation.

Alternatively, using projections in polar coordinates may not yield valid deformations, particularly
if the deformation vectors are always perpendicular to the rotation vectors. Such a configuration would
introduce discontinuities at the center of the disk. Under this composition, the center point remains
stationary because its neighborhood contains deformation vectors directed in all possible orientations.

For conciseness, the parameter ∆t can be eliminated by considering only the final positions after
the transformation, since the functions are valid for any arbitrary time. Let the deformation and
rotation vector fields be denoted as D⃗(x0) and R⃗(x0), respectively.
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Figure 2: R⃗(x0) and D⃗(x0)

4 Contours of equal Norm

Theorem 4.1. In every direction there must be exists one or more points that at these points the
norm of D⃗(x0) are equal to its norm of R⃗(x0) .

|D⃗(x0)| = |R⃗(x0)|

Proof. The article will first address the case of a single center of rotation. The more general case
involving multiple centers will be discussed later.

Given a fixed direction, we use it as an axis and define the norms of the deformation vector |D⃗(x0)|
and the rotation vector |R⃗(x0)| as continuous functions along a section of that direction. These
functions are expressed as follows:

|D⃗θ(r)| =


0, if r = −R,

uθ(r), if 0 ≤ uθ(r) < 2R,

0, if r = R,

|R⃗θ(r)| =



b1, if r = −R, b1 ≥ 0,

vθ;1(r), if −R < r < 0, vθ;1(r) ≥ 0,

0, if r = 0,

vθ;2(r), if 0 < r < R, vθ;2(r) ≥ 0,

b2, if r = R, b2 ≥ 0,

where the norms |D⃗(x0)| and |R⃗(x0)| depend on the variables r and θ, with |D⃗θ(r)| representing
the magnitude of the deformation vector in a given direction θ, and r representing the distance from
the center of the disk. Here, θ is the angle between the specified direction and the horizontal axis,
measured counterclockwise. The parameter r ∈ [−R,R], where R is the radius of the disk.

In this formulation, uθ(r) is a continuous function that vanishes at the boundary of the disk. The
function vθ;1(r) starts from an initial value b1 and decreases to zero at r = 0, where the rotation ceases.
Meanwhile, vθ;2(r) begins at zero and increases to b2 as r approaches R, where the magnitude of the
rotation vector is determined by the rotation function.

There are three distinct cases in which |D⃗(x0)| = |R⃗(x0)|.

Case 1: Solutions occur exactly at the boundary or center when |D⃗θ(r)| = |R⃗θ(r)| = 0. In this
case, fixed points are immediately obtained at θ = θ and r = 0,−R, or R. Notably, if the solution
occurs at the center, then for every direction, there will be a zero point at the center.

Example: This situation arises when uθ(r) = 0, while vθ;1(r) ̸= 0 and vθ;2(r) ̸= 0.
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Figure 3: norm of |D⃗θ(r)| and|R⃗θ(r)| in direction θ

Case 2: There are two non-zero solutions. This occurs when uθ(r) ̸= 0 and there are no zero
points at r = 0.

Proof: By the Intermediate Value Theorem ,[1] in the interval [−R, 0],

|D⃗θ(r)| − |R⃗θ(r)| < 0, at r = −R,

|D⃗θ(r)| − |R⃗θ(r)| > 0, at r = 0.

Thus, there must exist an intersection point c1 where the two functions are equal. Similarly, there is
another solution c2 in the interval [0, R], where

|D⃗θ(c1)| = |R⃗θ(c1)|.

This is illustrated visually in Figure 3.

Case 3: There are more than two or infinitely many solutions. This can occur when there are
multiple loops, with at least one loop around the center.

Corollary 4.2. Because the vectors field map |D⃗θ(r)| and |R⃗θ(r)|are all continuous on θ and r, the
two intersection points must form a closed loop C around the center.

5 Contours of direction

Lemma 5.1. If R⃗(x) is only zero at the center and D⃗(x) does not have any zero vectors, then the
solutions are non-trivial. In this scenario, there exists a line L that extends from the zero point. On
this line, the deformation vector D⃗(P) and the rotation vector R⃗(P) point in opposite directions. This
relationship can be expressed mathematically as:

Θ(D⃗(P)) + π = Θ(R⃗(P)),

or equivalently,
D⃗(P) · R⃗(P) = −1,

indicating that the two vectors have opposite direction.
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Figure 4: Closed loop C

Proof. There are some special situations that can be discussed initially. If D⃗(0) = 0 at the center,
then a fixed point exists at the center.

Next, we will prove the existence of a point in the opposite direction near the center. If |D⃗(0)| ≠ 0

and |D⃗(x)| is continuous at zero, then there exists a ball Bϵ(0) with radius ϵ. For all δ > 0, the function
measuring the change in the deformation vector around the boundary ∂Bϵ(0) satisfies:

−δ < ∆Θ(D⃗(x0)) < δ,

for all x0 ∈ ∂Bϵ(0). Here, ∆Θ(D⃗(x0)) measures the relative angle of D⃗(x0) with respect to R⃗(x0)
at any base point θ0 chosen on Bϵ(0).

Additionally, since Θ(R⃗(x0)) is a surjective continuous function on ∂Bϵ(0) for all ϵ > 0, map-

ping onto [0, 2π], there must exist an intersection point P between the two functions Θ(R⃗(x0)) and

Θ(D⃗(x0)). It is important to note that R⃗(x0) is a monotonically increasing function, as the points can
only rotate along the loop without returning.

Figure 5: neighbourhood of x0 = 0

To be simple,set R⃗(x0) at θ0 equals 0, and denoted the point return to θ0 after it finished a loop

as θ′0 , noted that Θ(R⃗(θ′0)) must equal to 2kπ for k = 1, 2, 3, because of continuity.Also,

0 ≤ Θ(D⃗(θ0)) ≤ 2π,Θ(D⃗(θ0)) = 0 ⇒ Θ(D⃗(θ0))−Θ(R⃗(θ0)) ≤ 0

Because
Θ(R⃗(θ′0)) ≥ 2π +Θ(R⃗(θ0)),
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Θ(D⃗(θ′0))−Θ(R⃗(θ′0)) ≤ Θ(D⃗(θ0)) + δ −Θ(R⃗(θ′0))

≤ Θ(D⃗(θ0)) + δ − (2π +Θ(R⃗(θ0)))

= Θ(D⃗(θ0))−Θ(R⃗(θ0))− 2π + δ ≤ 0 + δ

for all δ > 0. When the equality holds, it is evident that there is an intersection point. If the
equality does not hold, then, according to the Intermediate Value Theorem, there must exist another
intersection point P. To illustrate this concept, a figure follows.

Figure 6: Θ(D⃗(x0)) andΘ(R⃗(x0))

At this point, we have Θ(D⃗(P)) = Θ(R⃗(P)). Similarly, Θ(D⃗(P))+π represents a parallel transport
of the curve upward, and at θ′0, this can be extended further because θ′0 and θ0 are connected. Thus,

we can conclude that there exists a point x0 ∈ ∂Bϵ(0) such that Θ(D⃗(P)) = Θ(R⃗(P)).

Lemma 5.2. The lines L where Θ(D⃗(P)) + π = Θ(R⃗(P)) and Θ(D⃗(P)) = Θ(R⃗(P)) do not vanish
unless either of the vector fields has a zero vector.

Proof. When the point x0 is identified, there exists a ball Bϵ(x0) such that y0 ∈ ∂Bϵ(x0) and

Θ(D⃗(y0)) = Θ(R⃗(y0)).
This can be shown as follows: For any given δ > 0, there exists a ball Bϵ(x0) where y0 ∈ ∂Bϵ(x0)

satisfies

−δ < Θ(D⃗(y0))−Θ(D⃗(x0)) < δ.

This indicates that Θ(D⃗(y0)) is bounded and centered at Θ(D⃗(x0)). However, for any Bϵ(x0), it

follows that ∆Θ(R⃗(y0)) > 0. Therefore, for any c > 0, a Bϵ(x0) can be identified such that δ < c and

∆Θ(D⃗(y0)) < ∆Θ(R⃗(y0)).

Proving the same direction is generally more concise than proving the opposite direction. For the
proof regarding the opposite direction, one can simply replace Θ(D⃗(p)) with Θ(D⃗(p))+π throughout.

Since R⃗(y0) also has a point on ∂Bϵ(x0) where Θ(R⃗(y0)) = Θ(D⃗(x0)) = Θ(R⃗(x0)), the two functions
must intersect at some point P.

The next step involves applying the Intermediate Value Theorem once more. Let c be a positive
constant and θ0 be a base point, such that

Θ(R⃗(θ′0))−Θ(R⃗(x0)) ≥ c,

and
Θ(D⃗(θ′0))−Θ(D⃗(x0)) ≤ δ.

From these inequalities, the following can be deduced:
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Θ(R⃗(θ′0)) ≥ Θ(R⃗(x0)) + c,

Θ(D⃗(θ′0)) ≤ Θ(D⃗(x0)) + δ.

Additionally, since c > δ and Θ(R⃗(x0)) = Θ(D⃗(x0)), it follows that:

Θ(R⃗(θ′0))−Θ(D⃗(θ′0)) ≥ Θ(R⃗(x0)) + c−Θ(D⃗(x0))− δ > 0.

Similarly, it can be concluded that:

Θ(R⃗(θ0))−Θ(D⃗(θ0)) < 0.

This result can also be visualized in the following figure.

Figure 7: Right: y0 in ∂Bϵ(x0); Left: It is a plot of functions Θ(D⃗(y0)) and Θ(R⃗(y0)) along ∂Bϵ(x0)

with base point θ0 . The two functions must have intersections because in a convex set ∆Θ(R⃗(y0)) > 0

everywhere but lim
ϵ→0

∆Θ(D⃗(y0)) = 0.

6 Analysis of Fixed Points

This chapter aims to prove the existence of fixed points under different situations.

6.1 Non-Zero Vectors on Both Maps

Corollary 6.1. When |D⃗(x0)| ≠ 0, |∂D⃗(x0)| = 0, |R⃗(x0)| ≠ 0, and |R⃗(0)| = 0, the lines of opposite
directions L and lines of equal length C must have at least one intersection, and the intersections are
fixed points.

Proof. Assume that the line L does not exit the area enclosed by C. However, if it does, the lines will
always intersect.

Since L will not vanish until it reaches a zero vector (as per Lemma 5.2), and given that |D⃗(x0)| ≠ 0

and |∂D⃗(x0)| = 0, in the region enclosed by C, L can either remain non-vanishing or terminate at zero.
However, when ϵ → 0, ∂Bϵ(0) has only one solution. Therefore, the line will not turn back to zero,

which results in the following relation for any point P in the closed area enclosed by C:

Θ(D⃗(P)) + π = Θ(R⃗(P)).
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Figure 8: ηt(M, D⃗(x0))

It is also known that there exists a line L′ where Θ(D⃗(P)) = Θ(R⃗(P)) and a rotation zero vector at
0. Therefore, the assumption that L does not exit the region was incorrect. Hence, L must intersect
C, leading to the existence of fixed points at these intersections.

6.2 Zero vectors on the Deformation map only:

In this case,it is much easier to prove that there exists fixed points. The process is very similar to
Collorary 6.1.

Claim 6.2. If |R⃗(x0)| ≠ 0, |R⃗(0)| = 0 , there exists fixed points if |D⃗(y0)| = 0 for some D⃗(y0), y0 ∈ D.

Proof. If |D⃗(0)| = 0 , it is obvious that the fixed point are at 0. If |D⃗(0)| ≠ 0, then using Intermediate

Value Theorem again, |D⃗θ(0)| − |R⃗θ(0)| > 0, x0 ∈ (0, R], |D⃗θ(x0)| − |R⃗θ(x0)| < 0, so clearly there are
still intersections in the interval(0, R]. Therefore, the singularity point always are outside the loop.
Using the same approach as Collorary 6.1,the prove can be done.

6.3 Zero vectors on both maps

If |D⃗(x0)| = 0 , and simultaneously|R⃗(x0)| = 0 , then solutions of x0 are the fixed points.

6.4 Zero vectors on the Rotation map only

There are two cases: First case is rotation map have zero areas in the center.

|R⃗(A)| = 0

In this case, If the rotation map’s zero boundary forms an closed area for deformation map, which
means, on ∂R⃗(A) , D⃗(x0) always points into this area.

According to Poincaré-Bendixson Theorem[3] ,If a continuous vector field is defined on a two-
dimensional manifold, and if a trajectory (solution) is either closed or infinite and remains in a compact
region (i.e., its flow is bounded), then the limit set of this trajectory must be either a periodic orbit
or a fixed point.

D⃗(x0) satisfied this situations—it is closed for it always points into this closed area and never leaves,
even if it is a folding map with some points stretching further and overlap another points outside the
map.

Imagine the overlap part is lifted up a little bit into a 3D spaces, the vector D⃗(x0) are projected

onto the lifted manifold, noted
˜

D⃗(x0). Then this new two-dimensional manifold is homotopic to a
scaled 2D manifold of the original area shape. The detail are presented here.

Define a homotopy ht(M, D⃗(x0)) which sends the overlapped manifold to a lift up manifold M̃
and a lift up

˜
D⃗(x0)on M̃.

ht(M, D⃗(x0)) = M̃,
˜

D⃗(x0), t ∈ [0, 1]

The deformation vector are projected like following illustrations.
Define another homotopy ηt, which deforms the lifted-up part of M̃ back until no overlapping

points remain when projected onto the original area A. The projected homotopy ηt(
˜

D⃗(x0)), denoted

as p(ηt(
˜

D⃗(x0))), is homotopic to D⃗(x0) under pηh , while maintaining the condition that zero vectors
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Figure 9: flow out of a section of ∂A, two points on the boundary

remain zero throughout the deformation. In this new region, by the Poincaré-Bendixson Theorem,
there must exist a fixed point, since there are no closed loops. Similarly, it can also be shown that
when D⃗(x0) always points outward along the boundary, the vector field forms a closed region outside
the boundary.

Claim 6.3. If D⃗(x0) is not closed at the boundary of zero rotation area A when A covers the rotation

center , there exists a line L expanded from the boundary point of A , denoted as ∂A, where Θ(D⃗(P))+

π = Θ(R⃗(P)).

Proof. This proof follows a similar argument to Lemma 5.1. Since D⃗(x0) is not closed, there must
exist a vector tangent to ∂A at some points.

If at this point P, we have the relation Θ(D⃗(P)) + π = Θ(R⃗(P)), then the claim is immediately
correct, as it implies an opposite direction between the two vector fields, guaranteeing the existence of
a fixed point.

Now, suppose that on ∂A, there is only one vector tangent to P such that Θ(D⃗(P)) = Θ(R⃗(P)).
We know that in the neighborhood of P, the following condition holds:

∀y0 ∈ D1 ∩ Br(P), as r → 0, Θ(D⃗(y0)) = Θ(D⃗(P)).

Since the region is not closed and contains no loops, the limit set of all trajectories starting from
∂A must ”flow” out of the area through the tangent points on ∂A. This leads to a contradiction with
the earlier statement that the only vector tangent at P satisfies Θ(D⃗(P)) = Θ(R⃗(P)), because there
always exist interior points in Br(P) whose direction points exactly towards P.

Thus, this contradiction leaves us with two possible explanations: 1.The point P is the zero vector,
and therefore it is a fixed point. 2.The flow will exit through a section of ∂A. Furthermore, consider
another boundary point on this section of ∂A. If Θ(D⃗(P)) = Θ(R⃗(P)) holds at this boundary point
as well, the same reasoning applies: there must exist interior points with directions pointing towards
P that have nearly opposite values of Θ(D⃗(P)), which again leads to the conclusion that P must be
a fixed point. (Figure 9)

Therefore, at the boundary of the section of ∂A, one point satisfies Θ(D⃗(y0)) = Θ(R⃗(P)) and

another point satisfies Θ(D⃗(y0)) + π = Θ(R⃗(P)).
Once these points are found, there exist two lines, denoted L, extended from these two points

according to Lemma 5.2. By applying a similar argument as in Claim 6.2, the loop will lie outside
the area A.

Furthermore, by the proof of Corollary 6.1, the line L must extend beyond the loop C, since it
cannot remain within a closed area. This extension ensures that the lines do not form a closed region,
thereby reinforcing the existence of a fixed point at the intersection.

Other case is the rotation map have zero areas. Under this case, because the Θ(R⃗(x0)) = 0 on ∂A,
it would still be continuous to construct a new deformation map in this area thus

D⃗(x0) =
˜

D⃗(x0) + ⃗̃R(x0)

where ⃗̃R(x0) ̸= 0 but very small. Then because only on ∂A , ⃗̃R(x0) = 0, there still ∃Bϵ(x0) ,y0 ∈
∂Bϵ(x0),Θ(D⃗(y0)) = Θ(R⃗(y0)). The line ↕ still can be extended.
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Figure 10: Rotation map have zero areas.

Figure 11: Rotation map have zero areas.

6.5 Inversed rotation area

First of all, it is evident that if there are fixed points on the boundary ∂D where the rotation has
changed direction, it becomes necessary to explore the scenario where rotation only changes direction
within a specific area.

In this case, if the rotation changes direction, there must be a region bounded by vectors with zero
rotation. By employing a similar approach as in Claim 6.3, we can construct a modified vector field˜
D⃗(x0):

D⃗(x0) =
˜

D⃗(x0) + ⃗̃R(x0),

which yields a non-inverted rotation map.

6.6 Multiple Rotation Centers

When a rotation map has two centers of rotation, it must contain fixed points. This is because there
will always be a point where the rotation vectors have different directions at the intersection line of
the two rotation vector fields, and on the boundary ∂D, the rotation vector must be zero.

6.7 The Proof is Invalid for Non-Convex Areas

If the shape is non-convex, the second part regarding opposite directions fails. There will not exist a
Bϵ(x0) such that for y0 ∈ ∂Bϵ(x0), Θ(D⃗(y0)) = Θ(R⃗(y0)). This is because there may be a straight line
in the loop where the rotation vector remains unchanged.

6.8 Summary

This sections discusses the proof of the 2D Brouwer Fixed-Point Theorem under the mentioned con-
ditions before.
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7 Experiments

Figure 12: D⃗(x0) has no non zero vector

Figure 13: D⃗(x0) has single zero point
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