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Abstract

This article present a constructive proof by analyzing decompositions of continuous vector field.
The original proof of Brouwer’s theorem relies on a contradiction argument, which, while effective,
does not offer a constructive method for locating the fixed point. Through projecting arbitrary
vector field the basis of the vector field, it can be proved there exists zero points on both of the
basis. The article will also generalize the proof from 2D to 3D dimensions. The method is also
valid under surjective and scaling map.

1 Introduction

This article provides a direct proof of Brouwer’s Fixed-Point Theorem by decomposing the vector
field into n components in Dn (for dimensions n = 2 and n = 3). This article explains why a fixed
point must exist by using the theory of intersections of surfaces and lines. The proof is valid for any
continuous map that maps a compact convex set to itself. Additionally, the article includes a series of
code experiments that verify the proof through numerical results.

2 Background

The fixed-point theorem is a fundamental result in mathematics that asserts the existence of points
that remain invariant under a given function. One of the most well-known fixed-point theorems is
Brouwer’s Fixed-Point Theorem[2], which states that any continuous function mapping a compact
convex set to itself has at least one fixed point. This theorem is particularly significant in topology
and has applications across various fields, including economics, game theory, and differential equations.

Theorem 2.1 (Brouwer’s Fixed-Point Theorem). Let D be a compact convex subset of Rn. If f :
D → D is a continuous function, then there exists at least one point x ∈ D such that f(x) = x.

Original Proof of Brouwer’s Fixed-Point Theorem: Brouwer’s original proof employs
topological arguments to demonstrate the existence of a fixed point for continuous mappings. The
essence of the proof relies on the assumption that if a continuous mapping f does not have a fixed
point, then a retraction r can be constructed to project the entire disk onto its boundary. However,
it is known that there exists a homotopy f0 in D2 that can be continuously deformed to a constant
loop. If we compose this homotopy with the retraction r, it implies the existence of a homotopy from
S1 (the boundary of the disk) to a constant loop, which is a contradiction in topology. Therefore, the
assumption that f has no fixed point must be false, confirming that at least one fixed point exists
within the disk.

3 Continuous Vector fields representation

For any continuous map f mapping Dn → Dn , X is a set of points in Dn, f can be identified by a
continuous vector field F⃗ (X). The vector field has the following relations:

F⃗ (X) = f(X)−X
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,for a single point positions p in X,
F⃗ (p) = f(p)− p

,F⃗ (p) represent the vector pointing from the original position p to where f(p) has send p.

4 Basis of Projection

In this section, we explore how a continuous vector field on a disk can be represented in terms of its
components along the coordinate axes. By examining the projection of the vector field onto each axis,
we can better understand the conditions under which the vector field has a fixed point, i.e., where the
vector field vanishes.

Let p be a point on the disk Dn (a disk of dimension n). The continuous mapping F⃗ (p) can be
expressed as a linear combination of the standard basis vectors ê1, ê2, . . . , ên, where ai(p) represents
the real-valued function corresponding to the i-th component of the vector field at point p. Thus, we
can write:

F⃗ (p) =

n∑
i=1

ai(p)êi

In two dimensions, this simplifies to:

F⃗ (p) = a1(p)ê1 + a2(p)ê2

The projection function Pi is a map that sends a vector in Rn to R, extracting the coefficient of
the i-th basis vector. That is:

Pi

(
F⃗ (p)

)
= ai(p)

By projecting the vector field F⃗ (p) onto each coordinate axis using the function Pi, we isolate the
i-th component of the vector. This allows us to reduce the problem of finding a fixed point (where the
entire vector vanishes) to finding where all the components of the vector field are zero.

If a fixed point of the vector field exists, it means the vector field must vanish at some point p. In
other words, for every i = 1, . . . , n, the projection of the vector field onto the i-th axis must be zero:

Pi

(
F⃗ (p)

)
= ai(p) = 0 for all i = 1, . . . , n.

This implies that the vector field itself is zero at p, i.e., F⃗ (p) = 0.

In the specific case where n = 2, the vector field F⃗ (p) is simply composed of two components, and
the projection function extracts either the x or y component. Therefore, the condition for a fixed point
simplifies to both the x and y components being zero:

a1(p) = 0 and a2(p) = 0.

This means that a vector is zero if and only if both its components are zero.
The argument generalizes naturally to higher dimensions. In n-dimensions, the vector field has n

components, and the condition for a fixed point is that all n components must simultaneously vanish.
This means:

a1(p) = a2(p) = · · · = an(p) = 0 at the fixed point.

5 Analyze the zero components on basis

This chapter will start discussing the situations of using 2D disks first,then in next chapter it can be
generalized to higher dimension.

Lemma 5.1. Let F⃗ be a continuous vector field on a disk Dn, mapping Dn → Dn, and let Pi(F⃗ (p))

denote the projection of the vector field F⃗ (p) onto the i-th axis. Then for each i ∈ {1, . . . , n}, there
exist at least one point where Pi(F⃗ (p)) = 0 on a path lie in Dn which the boundary is two intersection
points of Dn and the i-th axis.

2



Proof. We begin by considering the two-dimensional case, i.e., a disk D ⊂ R2, where the vector field
F⃗ is continuous. The basis choose for two dimension disk is simply in cartesian coordinate, êx,êy. Let
p ∈ ∂D be a point on the boundary of the disk. We represent p in polar coordinates as p(θ), where
θ ∈ [0, 2π] parameterizes the boundary ∂D.

Consider the projection of F⃗ (p) onto the x-axis, Px(F⃗ (p)). By the boundary condition and con-
tinuity of the map f , we know that at the rightmost point of the boundary ,denoted as x0, (θ = 0)

where the vector field F⃗ (p) must point inward or remain stable, implying

Px(F⃗ (x0)) ≤ 0

. Similarly, at the leftmost point x′
0, (θ = π)

Px(F⃗ (x′
0)) ≥ 0

Since Px(F⃗ (p)) is a continuous function on any path C start from the point x0 and end with x′
0,

and the sign of the function changes between them, by the Intermediate Value Theorem (IVT) [1],

there exists a point x ∈ C where Px(F⃗ (x)) = 0.

Next, consider the projection onto the y-axis, Py(F⃗ (p)). At the top of the disk θ = π
2 , the vector

field F⃗ (p) must again point inward or remain stable, implying Py(F⃗ (π2 )) ≤ 0, and at the bottom

θ = 3π
2 , we have Py(F⃗ ( 3π2 )) ≥ 0.

By the IVT, there exists a point y ∈ C where Py(F⃗ (y)) = 0 for every path C start from θ = π
2 to

θ = 3π
2 .

For higher dimensions, consider a disk Dn, where a continuous map f and its corresponding vector
field F⃗ can be decomposed into components along the standard basis vectors. If we denote the points
where the i-th axis intersects the boundary of the disk as θi and θ′i, with θi representing the point on
the positive side of the i-th axis and θ′i on the negative side, the following relation holds:

On the loop passing through θi and θ′i of D
n, we have:

Pi

(
F⃗ (θi)

)
≤ 0 and Pi

(
F⃗ (θ′i)

)
≥ 0,

where Pi(F⃗ (p)) is the projection of the vector field F⃗ (p) onto the i-th coordinate axis. By the Inter-

mediate Value Theorem, there must exist at least one point θ ∈ [θi, θ
′
i] where Pi

(
F⃗ (θ)

)
= 0. Since

this argument holds for each axis, there are at least two distinct points on ∂Dn where the projection

function Pi

(
F⃗ (p)

)
vanishes, i.e., Pi

(
F⃗ (p)

)
= 0.

Lemma 5.2. In two dimensions, the set of points where Pi

(
F⃗ (p)

)
= 0 forms a line that extends from

one point on the boundary of the disk to another point on the boundary.

Proof. From Lemma 5.1, we know that for the vector field F⃗ , there exist at least two points on the
boundary ∂D2, which is a circle in two dimensions, where the projection function Pi(F⃗ (p)) = 0. Let
these points be denoted as pi and p′i. We also denote the rightmost point on the disk as x0 and x′

0

, which in polar coordinate, indicated that θ = 0,and θ = π. The goal is to show that the set of
points where Pi(F⃗ (p)) = 0 forms a continuous curve (a line) that extends from pi to p′i. Firstly, when
i indicates the index of x-axis, the proof can be done like follows: Start from x0 and end with x′

0 , a
path C can be constructed on the disk. The set of paths can cover the whole disks.There are totally
two paths can be constructed if the path lie on the boundary. Denotes the paths as A,B.

Now, consider a homotopy ht, t ∈ [0, 1], which continuously deforms this path C from A to B . At
each time t, C expands and deforms and the paths shouldn’t intersects with each other.

Since the function Pi(F⃗ (p)) is continuous and Pi(F⃗ (x0)), Pi(F⃗ (x′
0)) always have different sign, by

the Intermediate Value Theorem[1], there must exist at least one point where Pi(F⃗ (p)) = 0 that
extends from pi to p′i on each C.

Under the continuous homotopy ht, the points which has Pi(F⃗ (p)) = 0 must also be continuous,
forming a continuous line connecting the two boundary points pi and p′i .The proof was the same as
on the y-axis Therefore, the line of zero projection values extends from one point on the boundary to
another, completing the proof. picture:
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Claim 5.3. In two dimensions, the two points on the boundary ∂D2 where Py

(
F⃗ (p)

)
= 0 must lie

within the different section of ∂D2 that has points where Px

(
F⃗ (p)

)
= 0 as its boundary.

Proof. Let p1 and p′1 be the points on the boundary ∂D2 where Px

(
F⃗ (p)

)
= 0, which are guaranteed

to exist by Claim 4.1. These points must lie on opposite sides of the x-axis, meaning p1 is on the upper
semicircle of ∂D2 and p′1 is on the lower semicircle, since Px changes sign between these two points.

At p1, because p1 lies on the upper half of the boundary, the vector field F⃗ (p1) must point inward or

along the boundary. Thus, Py

(
F⃗ (p1)

)
≤ 0, as the y-component cannot point outward from the disk.

Similarly, at p2, which lies on the lower half of ∂D2, the vector field F⃗ (p′1) must also point inward or

along the boundary. Therefore, Py

(
F⃗ (p′1)

)
≥ 0. Now, consider the continuous function Py

(
F⃗ (p)

)
on

the boundary ∂D2. Since Py is continuous, by the Intermediate Value Theorem (IVT), there must be

at least one point between p1 and p2 where Py

(
F⃗ (p)

)
= 0.

Therefore, the points where Py

(
F⃗ (p)

)
= 0 either coincide with p1 and p′1 or lie strictly between

them on the boundary section between p1 and p′1. This completes the proof.

Theorem 5.4. In a two dimension disk, the lines Py

(
F⃗ (p)

)
= 0 and Px

(
F⃗ (p)

)
= 0 must have at

least one intersection corresponds to the point where F⃗ (p) = 0 .

Proof. it is know that there are four points on boundary of the disk given by claim 4.1. The pair of
points ,denoted by p1, p

′
1, p2, p

′
2 ,with the following properties:

Px

(
F⃗ (p1)

)
= 0, Py

(
F⃗ (p1)

)
≤ 0

Px

(
F⃗ (p′1)

)
= 0, Py

(
F⃗ (p′1)

)
≥ 0

Py

(
F⃗ (p2)

)
= 0, Px

(
F⃗ (p2)

)
≥ 0

Py

(
F⃗ (p′2)

)
= 0, Px

(
F⃗ (p′2)

)
≤ 0

Then, consider the function Py

(
F⃗ (pi)

)
, Py

(
F⃗ (p′i)

)
has different signs , for p on the lines bounded

by p1, p
′
1,and p2, p

′
2, by the Intermediate Value Theorem (IVT), must always has zero points, which

means that the line Px

(
F⃗ (pi)

)
= 0 = Py

(
F⃗ (pi)

)
has intersections by IVT. Thus, the lines where

Px

(
F⃗ (p)

)
= 0 and Py

(
F⃗ (p)

)
= 0 must intersect, and this intersection corresponds to the fixed point

of the vector field.

6 Fixed point Theorem on D3

This chapter proves the fixed point theorem in three dimensions, specifically in the 3-ball D3. The
proof is similar to the two-dimensional case (D2) but involves more complexity due to the additional
dimension.

Lemma 6.1. In three dimensions, the set of points where Pi

(
F⃗ (p)

)
= 0 forms a surface,and on ∂D3,

form a loop.

Proof. We will consider the case where the i-th axis corresponds to the y-axis. Once the proof is
established for the y-axis, it generalizes to the other axes.

Let y0 and y′0 denote the rightmost and leftmost points on the boundary ∂D3. In spherical coor-
dinates, these correspond to ϕ = π

2 and ϕ = 3π
2 , respectively. By Lemma 5.1, every path through

these boundary points must have at least one zero point for the function Py(F⃗ (p)).
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Figure 1: intersection of two lines

Since Pi(F⃗ (p)) is continuous, we can apply a homotopy ht that deforms paths continuously across

the interior of the sphere. As these paths are deformed, the zero points of Pi(F⃗ (p)) also move contin-
uously. Hence, the set of zero points traces out a continuous surface between the boundary points y0
and y′0.

Therefore, the set of points where Pi(F⃗ (p)) = 0 forms a surface in D3, and on the boundary ∂D3,
it forms a loop.

Figure 2: intersection of three surface on D3

Theorem 6.2. In three dimensions,there at least one exist intersection point of Pi

(
F⃗ (p)

)
= 0 for

each i = x, y, z.

Proof. By Lemma 5.1, for any path starting from z0 to z
′
0 on ∂D3, there exists at least one point where

Pz

(
F⃗ (p)

)
= 0. Similarly, for any path starting from y0 to y′0, there is a point where Py

(
F⃗ (p)

)
= 0.

Now, take a path lying in the section between y0 and y′0, which, in spherical coordinates, corresponds
to the arc ϕ ∈ [0, π

2 ]∪ [ 3π2 , 2π] and θ = 0. By Lemma 5.1, there must exist a point y1 on this arc where

Py

(
F⃗ (p)

)
= 0, and this point belongs to ∂D3.

On this path, because ϕ ∈ [0, π
2 ] ∪ [ 3π2 , 2π] , y1 always lies on the upper half of the sphere, we can

construct y′1 in the lower half of the sphere use the same way. A path can be constructed like follows:
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Start from z0, then connected with y1 ,then extend it within the surface Py

(
F⃗ (p)

)
= 0 to y′1, finally

go to z′0. The path C
C = z0 → y1 → y′1 → z′0

can be represented by
z0y1 ◦ y1y′1 ◦ y′1z′0

A homotopy again can be constructed from y1 to y
′
1 within the surface Py

(
F⃗ (p)

)
= 0. Let A denote

the portion of the path on the hemisphere with positive x-coordinates, and B denote the portion on
the another hemisphere (negative x-coordinates). As the path deforms and sweeps across the surface,

by Lemma 5.1 again, there must be points where Pz

(
F⃗ (p)

)
= 0 between y1 and y′1. And due to

continuity, the zero points of Pz

(
F⃗ (p)

)
= 0 form a line. Also, because path C also lies on the surface

Py

(
F⃗ (p)

)
= 0, we have this line L with x, y components of its vector field all zero.

Next is to prove that there always an intersection on this L where Px

(
F⃗ (p)

)
= 0. Denote the points

on A and B where Pz

(
F⃗ (p)

)
= 0 as z1 and z′1, respectively .Since z1 ∈ A has positive x-coordinates

and z′1 ∈ B has negative x-coordinates, a path C′ can be constructed:

C′ = x0 → z1 → L → z′1 → x′
0

which is equivalently
x0z1 ◦ L ◦ z′1x′

0

By Lemma 5.1, there must exist a point on this path where Px

(
F⃗ (p)

)
= 0. Therefore, an intersection

point can be found on L where Px

(
F⃗ (p)

)
= 0, and at this point, the vector field satisfies Px

(
F⃗ (p)

)
=

Py

(
F⃗ (p)

)
= Pz

(
F⃗ (p)

)
= 0, which proves the existence of a fixed point.

7 Fixed point Theorem on D4 and higher dimensions Dn

In four dimension,the coordinates are respectively w, z, y, x. As the same, For every path pass from
w0,w

′
0, like in three dimensions, For every pair of x, y, z collections

Claim
for every pair(w,z,(x,y))

8 Experiment

Figure 3: sinusoidal field U, V =< sin(5x) + 0.4(x− 0.3), cos(5y)− 0.4(y + 0.2) >
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Figure 4: Rotation field add shrink field
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