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ABSTRACT

This paper analyses the disturbance error coefficients for the active disturbance
rejection control(ADRC) system and proposes a new method to improve the disturbance
rejection performance using the m-th order extended state observer(ESO) in order to
guarantee the high-precision stabilisation performance of control systems. Using the
first order extended state observer in the ADRC system, the disturbance rejection
performance is limited due to the disturbance error coefficients. As well, the m-th order
extended state observer was hardly used for the active disturbance rejection control. In
this paper the relationship between error coefficients and gain coefficients of observer
and the relationship between error coefficients and natural angular frequency of
observer of the ADRC system are analysed for the plant representing in the canonical
form according to the extended state order m, and the disturbance rejection performance
on the constant, ramp, parabolic and harmonic disturbances is analysed comparing with
the results in [32]. The proposed method shows that the constant, ramp and parabolic
disturbances are rejected perfectly according to the increase of extended state order m
while the rejection performance is improved for the harmonic disturbance of the same
frequency by the multiple of m. Taking the merits of principle and method of ADRC
and introducing the m-th order ESO the disturbance rejection performance can be
improved by making the error coefficients to be ‘zero’ according to the extended state
order m.

Keywords: active disturbance rejection control, extended state observer, disturbance
rejection performance, disturbance error coefficients
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1. Introduction

Recently it is of great importance to improve the disturbance rejection performance
according to the increasing requirements on the tracking precision of control systems [1].

In case that the reference signal and disturbances are measurable or observable, the 2-
DOF control would satisfy the requirements of disturbance rejection performance [2].
Robust control and adaptive control are effective for the unstructured internal
uncertainties with the bounded parameter variations [3, 4]. The methods to reject the
disturbances were proposed by using the internal model principle and estimating the
disturbances with observer for the specific structured disturbance model [5]. Recently
the ADRC has attracted the interest of control system developers, which is to reject the
‘total disturbance’. The ADRC method has the robustness on the parameter uncertainties,
total attenuation capability on the external and internal disturbances and the high
adaptive capability on the linear and non-linear plants [6, 7]. A method to represent the
non-linear control plant in the canonical form with the integral chain structure through
some transforms is researched in [7, 8]. Stability was analysed in the frequency-domain
for the ADRC on the non-linear time-varying plant with the uncertain dynamic
characteristics in [9, 10], and the root locus analysis, describing function method and
extended circle criterion were used to analyse the stability of the fast tool servo system
in the frequency-domain in [11]. Stability of ADRC systems was researched using non-
linear ESO including the fal function or sat function in [14, 15] and most of the other
references. Convergence of the (n+1)th order ADRC system for the plant with unknown
dynamics was proven, and the robustness and the effect of natural angular frequency of
observer on the stability and disturbance rejection were analysed in ADRC system with
uncertain parameters in [12]. The ESO-based ADRC was studied for the linear system
with initial errors in [13], and the position vector control system of PMSM was designed
based on the active disturbance rejection controller using the fal function, and the
ADRC and velocity compensation controller for the automatic take-off of unmanned
aerial vehicles under the various wind conditions were designed in [14, 15]. Missile
guidance law using the ADRC was introduced in [15] by focusing on the 3-dimensional
guidance in case that the response of autopilot has delays. In [16] the uncertainties in
plant and sensors were treated using the adaptive extended state observer(AESO)-based
ADRC, and the automatic estimation method was proposed to reduce the estimation
error on the state and measuring noise. The ADRC method was studied for MIMO
systems in [7, 17]. In [18] the ADRC of high precision servo system was designed to
overcome the creeping phenomenon of friction influencing the low velocity
performance, and the axis of MEMS gyroscope was driven to resonate and regulate the
output amplitude of axis by the ADRC method. [19] showed that selecting the
appropriate resonant frequency can reject the sinusoidal disturbances perfectly and
implement the ideal reference signal tracking in steady state. The robust absolute
stability of the interval non-linear active disturbance rejection-based control system was
analysed in [20], and the condition disturbance negation(CDN)-based ADRC was
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proposed to introduce a method to control the velocity and altitude tracking system of
the flexible air-breathing hypersonic flying vehicles in the presence of various
uncertainties and disturbances in [21]. The ADRC method was studied to implement the
practical output tracking in some non-linear systems in the presence of matched and
mismatched uncertainties including the unknown internal systematic dynamic
uncertainties, external disturbances and the uncertainties occurred by the difference
between control parameters and their nominal values in [22]. The boundary stability of
the 1-dimensional instable wave equation influenced by the boundary disturbance was
studied in [23], and the ADRC with the actuators saturation characteristics was proposed
to reduce the load on the wind turbine drive chain under the condition that the wind
speed is slower than the nominal wind speed in [24]. Active control method was
proposed to reject the disturbances in the mixed energy source systems used for the
mixed electric car in [25], and the enhanced ESO-based control method was proposed to
reject the disturbances due to the mismatched uncertainties and external disturbances in
the systems without the integral loop in [26]. The fractional-order ADRC method was
applied for the precise trajectory tracking and position decision control of the newly
designed linear electric motor in [27]. ADRC proposed in [28] has considered the
external disturbance and internal uncertainties as total uncertainties, and designed ESO
to estimate them in real-time. The practical application is more studied than the
theoretical research on the ADRC methods [29-31]. One of the features of ADRC is that
it treats the external disturbance and the uncertainties totally in the plant model, and the
other one is that it depends rarely on the model and doesn’t require the high gain, and it
estimates and compensates the real values of the ‘total disturbances’ using state observer
[6, 7]. The fundamentals in the ADRC structure are the canonical form of cascade
integrator and the state observer, and its core is ESO [7]. However the cybernetic
analysis is not sufficient on the error coefficients in the ADRC system. The differences
between extended state variables and the extended state observation variables were
evaluated in the most references including [7]. Practically the error of system doesn’t
reduce even though the difference between the extended state variable and extended
state observation variable is very small. The stability and error of control system should
meet the required features only by the structure of the system independent of the input
signals and disturbances acting on the system in the analysis and design of it. Hence the
performance analysis and design of the ADRC system should be done on the basis of
structural analysis of the system. However the performance analysis of disturbance
rejection of the ADRC was rarely studied based on the analysis of error coefficients.
Analysing the error coefficients of ADRC is important in raising the performance of
disturbance rejection.

In this paper, the disturbance rejection performance of the ADRC system is analysed
with respect to the disturbance error coefficients and the method is studied to improve
the disturbance rejection performance.

Firstly, it is shown that the canonical (n+1)th order ADRC system becomes the system
of the 1st order astatism with respect to the disturbance error while the canonical



(n+m)th order ADRC system becomes the system of the m-th order astatism with
respect to the disturbance error.

Secondly, it is shown that the error coefficients are inversely proportional to the 2m-th
power of the natural angular frequency of observer according to the increase of m in the
canonical (n+m)th order ADRC system.

Thirdly, it is shown that the harmonic disturbance error is proportional to the m-th
power of the ratio of the harmonic disturbance frequency to the square of the natural
angular frequency of observer when the natural angular frequency of observer is greater
than the harmonic disturbance frequency.

The paper consists of the following sections.

Section 2 makes the error model of the (n+m)th order ADRC system, and section 3
studies the relationship between the disturbance error coefficients and the gain
coefficients of observer for the (n+m)th ADRC system. Section 4 analyses the effect of
frequency in the (n+m)th linear ADRC system. Section 5 studies the stability of ADRC
system using the m-th ESO. Section 6 compares and evaluates the errors on the constant,
ramp, parabolic and harmonic disturbances according to the extended state order m with
the results of [32]. Section 7 provides the corresponding conclusion.

Results show that the disturbance rejection performance is improved greatly in the
(n+m)th order linear active disturbance rejection control(LADRC) than in the preceding
LADRC.

2. Disturbance error model in the (n+m)th order active disturbance rejection
control system

To consider the problem simply while preserving the generality the model proposed in
[7] is adopted.

X () =x.,(); (i=1n-1) >t

%, (1) = F(x,(8), %, (), X, ©) +bu®) +d®)]

y(t) = x, (1) (1)
X (0) =0

Where X(t)(X(t) =[X,X%,,---X,]" €R") is the state vector, y(t)(y(t)eR) is the
observable output signal, u(t)(u(t) e R) is the control input and u(t)(u(t) e R) is the
undefined non-linear function. Here the disturbance error coefficients are discussed in
the problem where output signal y(t) tracks the reference signal r(t).

Assumption 1. The nominal value of b is by, and b is uncertain parameter satisfying
b>0, beb,,,0,.]-

Assumption 2. Eq.(1) is represented as the canonical form of the linear chain of
integrators from [7].

Assumption 3. m is the extended order of system.

Assumption 4. Eq.(1) is controllable by the feedback control.



Assumption 5. External disturbance d(t) is introduced from [19] and can be

considered to the extended order as follows.
d(t) =d,(t) +d,(t)

d, = i at™ |d ) <dy; (2)
i=1

d, = Asinw,t; |d, (1) <d2

Where d,(t) is aperiodic disturbance, ¢, , is maximum of derivative of d, (t) , the m-th
order derivative of d,(t) is zero.
d,(t) is harmonic disturbance, and A(A/<A) and w,(w, <wq) are amplitude and

angular frequency of d,(t). «;,, A and @, are uncertain quantities.

Assumption 6. In Eqg.(1) considering the Assumption 1 and Assumption 2, lump
disturbance

w(F,d,b,t) = F(x,(t), X, (t),---x, (t)) +d (t) + (b(t) — by )u (3)
reflecting the internal uncertainties and external disturbances satisfies Lipschitz
condition.
Assumption 7. To analyse the error coefficients and evaluate the disturbance rejection
performance for the active disturbance rejection control system, the reference signal is
assumed as follows: r(t) =0

From Egs.(3) and (1) can be written as
. (1) =x_,(); (i=1.n-1

XI() X|+1() (I n ) tZtO
X, (t) =w(F,d,b,t) +b,u(t)

y(t) =x,(t) (4)
X;(0)=0
In Eq.(4), denoting the extended state variable X,,.,(t) as

Xny1(t) = W(F,b,d,t) = h(t) (5)

and differentiating Eq.(5) m times, and then substituting into Eq.(4), it can be
represented as the canonical m-th order extended state model.

X (t)=x_,(t);i=1L,n-1
Xn (t) = Xn+1 (t) + bOU;
Xn+j(t):Xn+j+1(t); J =1m-1; (6)
Xom (1) = ™ (1) )
y(t) = x, (1)




Where m is the extended state order and h™ is the m-th order derivative of h(t).
The m-th order extended state observer on Eq.(6) can be represented as

% () = %, (0 + B () - J(1); (i=1n-1)
%, (1) = R, () + bou(t) + A, (y(t) - 9 (1)) (1
%0 O = R0 ja O+ fo (YO - 9O (j=1m-D[ (7)
Xsm (8) = Brum (YO = I(1))
y(t) =%, (1)

Where X, (t) is the state vector of observer, y(t) is the output signal of observer and g,

n+m

is the gain coefficients of observer whose characteristic polynomial s™™ +Z Bsmm
=1

satisfies the Hurwitz criterion. If the disturbance on the control plant can be observed
from the ESO the control law is represented as

% (t
u(t)=—%()+uref (t) (8)

0
Where X, (t) is the observation value of X, (t).

In Eq.(8), let’s denote the control law u . as follows.

U et (t):_z f.e, (9
i1

Where f, is the state feedback coefficient, and e, (t) =r, (t) — x, (t) is the i-th state error
of the system. Considering the Assumption 7, Eq.(9) is represented as follows.

uref(t)zznlfixi (10)
Considering Eq.(10) in Eq.(8), it is denotedlzés follows.
u(t)=—%—ifixi(t) (11)
Substituting Eq.(11) into Eq.(4), 0 -
% (t) = X, (t); (i=1n-1) }t ot
X, () =w(F,d,b,t) -, (t)—Db, f,x; (t) (12)

yt) =% (), x(0)=0

Substituting Eq.(11) into Eq.(7),



% (1) = %2 (0 + 8, (y©) - 9(©)); (i=1n-1)
%, (1) = B, (y(©) = 9(0)) = b, fx, ()

. ) ) _ t>t, (13)
Xn+j (t) = Xn+j+1(t) + an+j (y(t) - y(t))v (J =1lm _l)
X () = B (YO = I0))
y(t) =X, (t)
Using Laplace transformation of Eq.(12), E(S) can be found as
E(S)Z xn+1(s) —W(S) (14)

(s” +bOZn: f SilJ
i=1

Where E(s),W(s) and X, are the Laplace transformations of e(t),w(t) and X,.,.

Let’s represent the observer error as
e(t) = y(t) - y(t) = r(t) —e(t) - y(t) (15)
Using the Laplace transformations of Egs.(13) and (15) the observer error can be
written as

—(s"+by, > fis™HE(s)
E(s) = o (16)
s"+ > Bs™
i=1
On one hand, from the Laplace transformation of the (n+1)th order term to the (n+m)th
order term for Eq.(13), the extended state value X_(s) can be found as

[Z ﬁn+jsij
’le—mE(s) (17)

>2n+l(s) =
Substituting Eq.(16) into Eq.(17),
—(s" + boi f.s"™ME(s)
X...(s) = — (18)
s"(s"+ ). Bs")
i=1

On the other hand, substituting Eq.(18) into Eq.(14) the error model of LADRC system
can be found as follows using the m-th order extended state observer.




AN (19)
(Sn"'Zﬂisnl)W(s)

3. Analysis of disturbance error coefficients in the (n+m)th order linear active
disturbance rejection control system

From Eq.(19) the error transfer function from the lump disturbance to the error is as
follows.

D, (8) =

sm(s“ +Zn:,8,s“ 'Is +bozn: fis‘1j+

[s“+zn:ﬁs” '}/\/(s)
J{Zﬁnﬂ.smjj(s” +boz fis”]

Where @, ,(s) is the error transfer function on the disturbance.

The error coefficients in Eq.(20) are represented as follows.

0 . —
Ci :£¢W—e(s)8:0; I=0,m (21)

(20)

Where C; is the error coefficients and @, (s) is the transfer function from disturbance

to error.

The following results can be found from Eq.(21).

Remark 1. The canonical (n+1)th order ADRC system becomes the system of the 1st
order astatism with respect to the disturbance error when m=1, and the system can’t
make the disturbance error to be ‘zero’ on the other disturbances besides the constant
disturbance theoretically. Let’s analyse the disturbance error coefficients for several
systems.

1) For n=3, m=1

The disturbance error transfer function of ADRC system from Eq.(20) is as follows.

By ()= : (s“s+ C3534+ C2523+ Cls)2 (22)
S"+AS +AST+AS +AST+AS +HASHA

Where
A; :ﬂl +bo f3’
AS :ﬂz +:B1bof3 +bofz’



A =By + Boby s+ By T, + by £,

A =B+ Bty + Bb f, + By £y,

A, = By f3+ Biby f, + Boby i,

A =B f, + by £,

A, =by .44,

C,=1 C,=p, C,=5, C,=p,
2)For n=2, m=1
The disturbance error transfer function of ADRC system from Eq.(20) is as follows.

(C,s®+C,s° +C;5) (23)

S +AS +AST+AST+HASHA,

¢d—e (S) =

Where
A, =B +byf,,
A =5, +ﬂ1bo f, +bo f,
A, = f; +132b0 f, + ﬁlbo fi
A = Bby f, + B,b 1y,
A= ﬂ3bo f.,
C, =1 C, =4, C =5
3) For n=1 m=1
The disturbance error transfer function of ADRC system from Eq.(20) is

(C,s*+C,s) (24)
s +AS +HAS+HA,

@d e (S) =

Where
A =pitbf, A= +bf8, A =bf.p,
C,=1 C=5
From EQs.(22)-(24) the disturbance error coefficients using Eq.(21) can be found as in
table 1.

tablel. Error coefficients according to the plant order in LADRC

Plant
order n=1 m=1 n=2 m=1 n=3 m=1
Error
Coefficients
Cod 0 0 0
C IBI /82 ﬂ3
1 f.05, f.5, A
C2d #0 #0 %0

Remark 2. Canonical (n+m)th order LADRC system becomes the system of astatism
of the m-th order with respect to the disturbance according to the extended state order m.




1) For n=1,m=1

From Eq.(20) the disturbance error transfer function of system is same as Eq.(24).

2) For n=1,m=2

From Eq.(20) the disturbance error transfer function of system is represented as

3 2
By () =+ Ca%) (25)
ST+AST+AS +AS+HA,
Where
A =p+by i,
A, =B, +b T8y,
A =By +bo .8,
Ay =Dy T, s,
G, =1 C,=5
3) For n=1,m=3
From Eq.(20) the disturbance error model of system is as follows.
4 3
By .(8) = : (C453+C3s 2) (26)
S+ AS " +AS +AS +ASHA,
where
A, = B, +bf,,
Ay =B, +bf B,
A, =, +Dbf S,
A =B, +bf,py,
A, =bf, B,
C,=1 C,=4,
From EQs.(24)-(26) the disturbance error coefficients using Eq.(21) can be found as in
table 2.
table 2. Error coefficients according to the extended state order m in
LADRC
Plant
Error n=1m=1 n=lm=2 n=1m=3
Coefficien
Coo 0 0 0
T
Cuq #0 % 0
Cyy 20 #0 ?5;4

Corollary. Canonical (n+m)th order ADRC system can make the disturbance errors up
to the m-th order to be ‘zero’ theoretically.



4. Analysis of frequency effect in the (n+m)th order LADRC system

4.1. Analysis of Effect of Natural Angular Frequency in the (n+m)th Order
LADRC System.

Remark 3. Error coefficients of the canonical (n+m)th order LADRC system are
inversely proportional to the 2m-th power of the natural angular frequency of observer.

To explain the Remark 3 the error dynamics of the system can be found from Egs.(6)
and (7) as follows.

X, (0) = X gy ) = BiXa (07 (=1 -1),
Xen (1) =%, gy (1) = B X (V) (27)
Xeno iy (0) = Xegae 1y ©) = B X (07 §=Lm =1,
Xe(nemy (1) = 0™ (1)
8(t) = X, (1)
Where x,, (t)(x.;(t) =X (t)+ X (t)) is the error state variable of observer.
The characteristic equation of Eq.(27) is expressed as

n+m

DC (S) — sn+m + Z ﬂismm—i (28)

Where D_(s) is the characteristic equation of observer.
From the Hurwitz criterion characteristic polynomial

Doc (s) =(s+ )™ (29)
the gain coefficients of observer can be written as
B = (30)

Where ¢, is binomial coefficient and «, is the natural angular frequency of observer.
The characteristic equation of Eqg.(12) can be written as

D(s):s”+boifi st (31)
i=1
From Hurwitz criterion characteristic polynomial
Dy (s) = (s + )" (32)
the coefficients of controller can be written as
f, =1, (33)

Where 4, is the binomial coefficient and «, is the natural angular frequency of

controller.
Let’s set the relationship between the natural angular frequencies of controller and
observer as

@, =K., (34)
Where k. is a scale factor and given by the designer.



Applying the results of Egs.(30), (33) and (34) to table 2 gives the following table.

table 3. Error coefficients according to the natural
angular frequency in the (n+m)th order LADRC

Plant
Erro m=1 m=2 m=3
Coefficie
Cod 0 0 0
2k
C <, 0 0
1d a)é
k2
C 0 3 0
2d * a)é
12k,
ng #0 #0 5
WOc

4.2. Analysis of the Harmonic Disturbance Rejection Performance in the (n+m)th
Order LADRC System.

Remark 4. The maximum value of error on the harmonic disturbance is proportional to

[kc “’g} for ws <, in the canonical (n+m)th order LADRC system.

@c

From Assumption 2 and EQ.(2), the maximum value of the harmonic disturbance
according to m is written as
dZi_max:‘N‘a}d‘(lil) (35)
Where i(i=1,m) is the order of the derivative on the disturbance d,.
From Eqgs.(35) and (21) the maximum value of error on the disturbance d, can be
written as

‘edZ—e ‘max = Zcidzi_max = ZCi (@, @ )W‘a’d ‘(i_l) (36)
i1 =

From Table 3 and Eq.(36) the maximum harmonic disturbance error according to the
increase of m is illustrated in table 4.

table 4. Maximum value of the harmonic disturbance error according to the order m
m m=1 m=2 m=3

— _ 2 3
@d @d @d
\e d—e\max 2A[kc ng GA[kC a)g] 12A[kc wzj
C

5. Stability of LADRC system using the m-th order ESO




The dynamics of ADRC system depends on F(x,,x,,---,x,,t), where the m-th order ESO

is combined with the plant with unknown dynamics.
Combining Egs.(12) and (13) into simultaneous equations

Where

X (t) = AX () + By, W(E) (37)
y=CX(t)

X(t):[XN’XN+M]T eR™,
Xy (@®) =[x, %, %, ]" eR™,
)ZN(t):[)A(u)A(Z!"'I)A(n]T € RnXl:

Xy () =[R0 Ry % T €R™,

AN - BN FN 0(n x n) BN FM
A=| -B\Cy Ay - ByFy = ByCy O(mxm) ER(mm)X(mm)'
_ﬁMCM 0(n><n) AM
Bw
BWW: 0 ER(n+m)x1’
0
c=[c, 0]eR™™ ",
(0 1 0
_ | g
A=lo o 1
10 0 0
[0
B _| g
N 0 €
_bO
FN:[fl f, fn]ERlxn
0
B, - 0 cR™E
1
[0 1 0
A,\/I: O 0 eRm m
10 0
[
By =] |eR"?
L Bn
_ﬂml
ﬂM: ERmX1,
| Bn
Fo=F1 0,...JerR™ ",



System of Eq.(37) will be stable provided that the gain coefficients f, = sq Of
controller satisfying Eqs.(30)~(33) for w(t)=0 and the gain coefficients g —q . of
observer are determined. For w) =0 the proof on the stability can be referred from [7, 12,
32] if w(t) satisfies the Lipschitz condition.

6. Simulation results

6.1 Simulation on the Disturbance Error Feature according to the Extended
Order.

For simulation and analysis the model of the control plant is given as

X=u-+d
} (38)
y=X

Disturbance d contains the constant, ramp, parabolic and harmonic disturbances from

Eq.(2). s
=T+ 15

fo=f,+ ft+ ft2+f t™D (39)
fs = Asin(ao,t)

For x, =d and m=3, the m-th order extended state model is as follows.

X, =Uu+ X,

X1+j = X1-¢—j+1 ; le’m_l (40)
—dqm

X1+m _d

y=x

The ESO is as follows.
X =u+ %, + A0y~ 9)
Ry =Reja =By (y=9)i j=Im-1 (A1)
o = Bram (Y= )
= )?l

x>

>

The ADRC law and control law of regulator are designed by the proposed design
method and can be written as

U=—Xx, +U, (42)
Uy =k (r—y)+k,r



Where r=0 is reference signal, and k, and k, are the transfer coefficients of
controller, and k, =100, k, =1.

Values of s according to the extended state order are given in table 5.

table 5. g, according to the extended state order and the angular velocity.

m Values of #i for @c =301/s
ﬁl :82 ﬂ3 ,84
! 2-30 302
2 3-30 3-30° 30°
3 4-30 6-30?2 4.30° 30°
5
4 5.30 10-302 10.30° — 30

ol
O]

*B%
ml

Stept

L A 4

L gfu

Figurel. Block diagram of the system designed by the proposed method.

The transient and tracking features of the system are as follows.

14 . : . . 0o
003
003
0025 -
o0z
0015}
o
0006

af-..
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Figure 2. Features of the proposed system(transient feature on left, velocity tracking
feature on the right)
In Eq.(39) the simulation conditions on the disturbances are f, =1, f =101/s,

0 i i i L L i i i L
0 0o 002 003 004 005 006 007 008 008 01

f, =10 1/s*, A=1, w, =10 1/s.
(1) Constant disturbance rejection feature according to m



Figure 3. Constant disturbance rejection feature according to m .
Fig 3 shows ESO is astatic on the disturbances.

(2) Constant ramp disturbance rejection feature according to m

Figure 4. Constant ramp disturbance rejection feature according to m .
Fig 4 shows the 1st order ESO is 1st order astatic on the disturbances.

(3) Constant parabolic disturbance rejection feature according to m

Figure 5. Constant parabolic disturbance rejection feature accordingto m .
Fig 5 shows the 2nd order ESO is 2nd order astatic on the disturbances.

(4) Harmonic disturbance rejection feature according to m
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Figure 6. Harmonic disturbance rejection feature according to m .
Fig 6 shows the harmonic disturbance rejection performance of the m-th order ESO is
getting better according to the increase of m .

6.2 Comparison of the Proposed Design Method with the Preceding ADRC
System.

The design and simulation data in [32] are used to compare and evaluate the feature of
the proposed design method.

The system model in [32] is as follows.

%, () = X, (1)
X, (t) =—a,x, (t) +a, X, (t) +bu+d (t)}
y(t) =%, (t) (43)

x,(0)=0, x,(0)=0, y(0)=0
Where |4t <1, [d®)|<05, [a]<2 i=12 b/b, €[053} b, =1-
For e(t) =r(t)- y(t), the controller can be written as

u(t) = —€3 - kléz - kzgl (44)

The controller parameters are , -4 and k, =4.
From [32] the parameter uncertainty and disturbance conditions are given in table 6.

table 6. Parameter uncertainties and disturbances for comparison.

No Item a a, b ¢ d(t)
1 Cc1-1 -0.1 2 0.5 30 sin(0.087 t)
2 c2-2 0.6 -0.8 1.3 30 sin(0.1z t)

3 c3-4 -1.6 -0.5 2.1 30 1




The (n+m)th order ADRC system can be designed for the (43) are compared with the
(n+1)th order and (n+2)th order ADRC as follows.
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Figure 7. Feature comparison for C1-1(1-for n+1, 2-for n+2).
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Figure 8. Feature comparison for C2-2 (1-for n+1, 2-for n+2).
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Figure 9. Feature comparison for C3-4,

Comparing with the results in [32] the disturbance rejection performance for m=2 is
given in table 7.
table 7. Comparison with [32] for m=2.

Item c1-1 c2-2 C3-4
Ratio of
Disturbance .34'7 5.8'82 -
L times times
Rejection

Fig 7 and Fig 8 show that the disturbance rejection performance has been improved
further for m=2 than for m=1.



Fig 9 shows that uncertainties independent of time change and the constant
disturbances can be removed totally by the active disturbance rejection performance.

7. Conclusion

In this paper, the error coefficients of the ADRC system were analysed using the m-¢A
order ESO to guarantee the high-precision tracking performance of the control system
and a method is proposed to improve the disturbance rejection performance.
Corresponding analysis has evaluated the relationship between the error coefficients and
the gain coefficients of observer, the relationship between the error coefficients and the
natural angular frequency of observer and the relationship between the error coefficients
and the frequency of harmonic disturbance. Results show that the proposed method has
overcome the limitation of the first order ESO that the disturbance rejection depends
only on the increase of natural angular frequency of observer by using the m-th order
ESO and the disturbance rejection performance can be raised by changing the natural
angular frequency of observer and the error coefficients simultaneously according to m.
The disturbance rejection capability of the system using the m-#4 order ESO has been
confirmed through the simulation and comparison. It has been verified that using the m-
th order ESO is an advanced method to raise the disturbance rejection capability of the
system in the ADRC system.
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