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Abstract Physical phenomena, sometimes with the exception of gravity, are usually assumed to be described by
Lorentz transformation covariant theories, and the validity of the Lorentz transformation has been empirically verified
to very high accuracy. The Einstein equation of gravity theory, however, has an infinite set of metric solutions, an
infinite subset of which aren’t Lorentz covariant, and one of the latter might be taken as valid, e.g., the Robertson-
Walker metric for cosmology. But if all of nongravitational physics is in fact Lorentz covariant, it would almost
certainly be physically inconsistent for gravity theory not to be Lorentz covariant as well. The solution ambiguity
of the Einstein equation is a consequence of its important symmetry of general coordinate transformation covari-
ance. However the four-vector potential form of electromagnetic theory has an analogous solution ambiguity as a
consequence of its important symmetry of gauge transformation invariance, but in that case it is standard practice
to break this symmetry by imposing the retarded Lorentz gauge condition, the simplest gauge condition which is
Lorentz covariant and causal. Here we show that both gauge transformation invariance in electromagnetic theory
and general coordinate transformation covariance in gravity theory arise spontaneously from fully Lorentz covariant
initial assumptions. These subsidiary dynamic symmetries crucially affect the structure of the equations of their re-
spective theories, but any solutions they happen to admit which aren’t fully Lorentz covariant are ipso facto excluded
by the fully Lorentz covariant initial assumptions.
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1. Lorentz-covariant extension of electrostatic phenomena to dynamic electromagnetism

Electromagnetism is taken to be the result of a conserved scalar entity Q called charge. The four-vector
density-flux of charge Q, i.e., the current density jλ(x), is the source of the four-vector electromagnetic
potential Aµ(x). Local charge conservation implies that,

∂jλ(x)/∂xλ = 0. (1.1)

In the static limit jλ(x) → (cρ(x),0), where ρ(x) is the static charge density, and in that limit A0(x) is
assumed to be the electrostatic potential that follows from ρ(x) by Coulomb’s Law,

−∇2
xA0(x) = 4πρ(x) = 4π(j0(x)/c). (1.2)

The nonrelativistic equation of motion of a test body of mass m and charge e in the electrostatic potential
A0(x) is of course,

md2x/dt2 = −e∇xA0(x), (1.3a)

and the Eq. (1.3a) nonrelativistic equation of motion corresponds to the nonrelativistic Lagrangian,

L(dx/dt, A0(x)) = (m/2)|dx/dt|2 − eA0(x). (1.3b)

Making use of the Lorentz invariance of differential proper time dτ
def
= dt

√
1− |(dx/dt)/c|2, and assuming

the Lorentz covariance of the dynamic electromagnetic four-vector potential Aµ(x), we readily extend the
nonrelativistic Eq. (1.3b) Lagrangian to a Lorentz-invariant Lagrangian, i.e.,

L(dxµ/dτ,Aν(x)) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (e/c)Aν(x)(dxν/dτ), (1.4a)

where ηµν is the Minkowski metric,

η00 = 1, η11 = η22 = η33 = −1 and ηµν = 0 if µ 6= ν. (1.4b)

In the nonrelativistic regime where |dx/dt| � c the Eq. (1.4a) Lorentz-invariant Lagrangian plus the
dynamically-inert constant term (m/2)c2 goes over into the Eq. (1.3b) nonrelativistic Lagrangian. When the
electromagnetic four-vector potential Aµ(x) vanishes, the Eq. (1.4a) Lorentz-invariant Lagrangian of course
becames the Lorentz-invariant Lagrangian for the free mass-m test body, namely,

L(dxµ/dτ) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ). (1.4c)

An unexpected feature of the Eq. (1.4a) Lorentz-invariant Lagrangian L(dxµ/dτ,Aν(x)) is that if Aν(x) is
modified by adding a term of the form ∂χ(x)/∂xν to it, where χ(x) is an arbitrary scalar field, the dynamics
of the mass-m, charge-e test body is unaffected. That is so because,

L(dxµ/dτ,Aν(x) + ∂χ(x)/∂xν) = L(dxµ/dτ,Aν(x))− (e/c)(∂χ(x)/∂xν)(dxν/dτ)

= L(dxµ/dτ,Aν(x)) + d[−(e/c)χ(x)]/dτ , (1.4d)

and any term of a Lagrangian which is a derivative of an entity with respect to τ doesn’t contribute to the
dynamics. The property of dynamic electromagnetism that adding a term of the form ∂χ(x)/∂xµ to Aµ(x)
doesn’t alter its dynamics is called electromagnetic gauge transformation invariance. Since gauge transfor-
mation invariance is a spontaneous subsidiary effect of making dynamic electromagnetism Lorentz covariant,
any further consequences it has ipso facto don’t alter dynamic electromagnetism’s Lorentz covariance.

Upon applying the Lagrangian equation of motion d[∂L/∂(dxλ/dτ)]/dτ = ∂L/∂xλ to the Eq. (1.4a) L =
−(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (e/c)Aν(x)(dxν/dτ), we obtain the Lorentz covariant dynamical equation,

mηλν(d2xν/dτ2) = (e/c)[(∂Aν(x)/∂xλ)− (∂Aλ(x)/∂xν)](dxν/dτ), (1.5a)

a gauge transformation invariant result. In the normal form for Lorentzian dynamics Eq. (1.5a) reads,

m(d2xµ/dτ2) = (e/c)ηµλ[(∂Aν(x)/∂xλ)− (∂Aλ(x)/∂xν)](dxν/dτ), (1.5b)

where ηµλ is the matrix inverse of the Minkowski metric ηλν defined by Eq. (1.4b); in fact, of course,
ηµλ = ηµλ. Eq. (1.5b) is the well-known gauge-invariant Lorentz Force Law of dynamic electromagnetism.

We next search for a Lorentz-covariant and gauge-invariant field equation whose static limit implies the
Coulomb’s Law equation −∇2

xA0(x) = 4π(j0(x)/c). In this regard we note that the µ = 0 component of
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the four-vector field entity ηαβ(∂2Aµ(x)/∂xα∂xβ) reduces to −∇2
xA0(x) in the static limit, and that the

µ = 0 component of its complementary four-vector field entity ηαβ(∂2Aα(x)/∂xµ∂xβ) vanishes in the static
limit. Thus −∇2

xA0(x) = 4π(j0(x)/c) is implied by the static limit of the µ = 0 component of the following
four-vector field equation,

ηαβ(∂2Aµ(x)/∂xα∂xβ) +K ηαβ(∂2Aα(x)/∂xµ∂xβ) = (4π/c) ηµν j
ν(x), (1.6a)

where K is an arbitrary constant. To make Eq. (1.6a) gauge invariant, however, K must be chosen to be −1.
Thus a Lorentz-covariant and gauge-invariant four-vector field equation whose µ = 0 component implies the
Coulonb’s Law equation −∇2

xA0(x) = 4π(j0(x)/c) in the static limit is,

ηαβ(∂2Aµ(x)/∂xα∂xβ)− ηαβ(∂2Aα(x)/∂xµ∂xβ) = (4π/c) ηµν j
ν(x). (1.6b)

We now multiply Eq. (1.6b) through by the operator (∂/∂xλ)ηλµ and sum over the index µ. Since when the
expression ηλµηµν is summed over the index µ, the result is δλν , and since ηλµ = ηµλ, the upshot of so doing
is to turn Eq. (1.6b) into,

ηαβηµλ(∂3Aµ(x)/∂xλ∂xα∂xβ)− ηλµηαβ(∂3Aα(x)/∂xβ∂xλ∂xµ) = (4π/c) δλν (∂jν(x)/∂xλ), (1.6c)

which in turn implies that,

0 = ∂jλ(x)/∂xλ. (1.6d)

Thus the gauge-invariant Eq. (1.6b) four-vector field equation for Aµ(x) compels the Eq. (1.1) local charge
conservation. The Eq. (1.6d) result is a particular instance of the fact that imposing the subsidiary dynamic
symmetry of gauge invariance produces locally conserved currents; e.g., the imposition of gauge-invariance
symmetry on the structure of the coupling of the electromagnetic four-potential Aµ(x) to a charged particle’s
quantum wave function ψ(x) ensures the existence of a locally conserved current constructed from ψ(x).

However, the very fact that Eq. (1.6b) is gauge invariant implies that it has an infinite number of
solutions: given any solution for Aµ(x) and any scalar function χ(x) whatsoever, Aµ(x) + ∂χ(x)/∂xµ is also
a solution that is by no means guaranteed to be Lorentz covariant when, for example, χ(x) is independent of
x0. But since gauge invariance is a spontaneous subsidiary consequence of making dynamic electromagnetism
fully Lorentz covariant, any further consequences that gauge invariance itself happens to have ipso facto don’t
alter the fully Lorentz covariant nature of dynamic electromagnetism. Therefore the gauge invariance of
Eq. (1.6b) is necessarily broken in a way which ensures that Aµ(x) is Lorentz covariant. The simplest way
to ensure that Aµ(x) is Lorentz covariant is to impose the Lorentz condition,

ηαβ(∂Aα(x)/∂xβ) = 0, (1.7a)

on Aµ(x), which reduces Eq. (1.6b) to,

ηαβ(∂2Aµ(x)/∂xα∂xβ) = (4π/c) ηµν j
ν(x). (1.7b)

Although the operator ηαβ(∂2/∂xα∂xβ) doesn’t have a unique inverse, only its retarded inverse is physically
appropriate to the causality of Aµ(x) with respect to jν(x). That together with Eq. (1.7b) implies that,

Aµ(x) = (4π/c) [ηγδ(∂2/∂xγ∂xδ)]−1
ret (ηµν j

ν(x)). (1.7c)

The Eq. (1.7c) causal and Lorentz covariant result for the dynamic electromagnetic potential Aµ(x) is the
consequence of breaking the gauge transformation invariance of Eq. (1.6b) by applying the retarded Lorentz
gauge condition [1] to it. The Eq. (1.7c) result for Aµ(x) is readily shown to be consistent with the Eq. (1.7a)
Lorentz condition because jλ(x) satisfies the local charge conservation condition ∂jλ(x)/∂xλ = 0.

2. Lorentz-covariant extension of weak static Newtonian gravity to dynamic metric gravity

Gravity is taken to be the result of conserved energy-momentum, a four-vector Pµ. The second-rank
symmetric-tensor density-flux of energy-momentum Pµ, i.e., the energy-momentum tensor Tµν(x), is the
source of the second-rank symmetric-tensor gravitational potential φµν(x). Gravity itself, however, also con-
tributes to the total conserved energy-momentum, a nonlinear effect that can be neglected in the weak-gravity
static limit, where it is assumed that the static energy density T 00(x) divided by c2 is an effective mass
density which acts as the source of the weak-gravity static gravitational potential component φ00(x), where
|φ00(x)| � c2, in accord with the weak-gravity static differential Newtonian Law of Gravity,

∇2
xφ00(x) = 4πG (T 00(x)/c2). (2.1)
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The nonrelativistic equation of motion of a test body of mass m in the weak-gravity static Newtonian
gravitational potential φ00(x), where |φ00(x)| � c2, is of course,

md2x/dt2 = −m∇x φ00(x). (2.2a)

The Eq. (2.2a) nonrelativistic equation of motion corresponds to the nonrelativistic Lagrangian,

L(dx/dt, φ00(x)) = (m/2)|dx/dt|2 −mφ00(x), (2.2b)

which, exactly as the Eq. (1.3b) nonrelativistic Lagrangian leads to its corresponding Eq. (1.4a) Lorentz-
invariant Lagrangian, leads to the following corresponding Lorentz-invariant Lagrangian,

L(dxµ/dτ, φµν(x)) = −(m/2)ηµν(dxµ/dτ)(dxν/dτ)− (m/c2)φµν(x)(dxµ/dτ)(dxν/dτ), (2.3a)

that can be reexpressed in the astonishingly simple dynamic gravitational metric form,

L(dxµ/dτ, gµν(x)) = −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ), (2.3b)

where,

gµν(x)
def
= ηµν + (2/c2)φµν(x). (2.3c)

The Eq. (2.3b) Lorentz-invariant Lagrangian −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ) for a test body in the Lorentz-
covariant dynamic gravitational metric gµν(x) merely swaps the Minkowski metric ηµν in the Eq. (1.4c)
Lorentz-invariant Lagrangian −(m/2)ηµν(dxµ/dτ)(dxν/dτ) of a free test body for the Lorentz-covariant
dynamic gravitational metric gµν(x). Thus gravity is very simply and precisely characterized as a Lorentz-
covariant distortion of the Minkowski metric of space-time.

The Eq. (2.3b) Lagrangian −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ), in addition to being Lorentz-invariant has
the form of an invariant under general coordinate transformations when it is assumed that gµν(x) transforms
as a covariant second-rank symmetric tensor under general coordinate transformations. Thus, just as gauge
invariance is a spontaneous subsidiary consequence of making dynamic electromagnetism Lorentz covariant,
general coordinate transformation covariance is a spontaneous subsidiary consequence of making dynamic
gravitation Lorentz covariant.

We note that Eq. (2.3c) implies that φµν(x) = (c2/2)(gµν(x)− ηµν), which permits the Eq. (2.1) weak-
gravity static differential Newtonian Law of Gravity to be reexpressed entirely in terms of g00(x) and T00(x),

∇2
xg00(x) = (8π/c4)GT 00(x). (2.4)

Applying the Lagrangian equation of motion d[∂L/∂(dxλ/dτ)]/dτ = ∂L/∂xλ to the Eq. (2.3b) gravita-
tional metric Lagrangian L = −(m/2)gµν(x)(dxµ/dτ)(dxν/dτ) yields the following Lorentz covariant result,

mgλν(x)
(
d2xν/dτ2

)
= −(m/2)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
(dxµ/dτ) (dxν/dτ). (2.5a)

Because of the matrix metric factor gλν(x) on its left side, Eq. (2.5a) isn’t in the normal form for Lorentzian
dynamics. However, if for all x the metric gλν(x) has the matrix inverse gκλ(x) such that, when summed
over the index λ, the product gκλ(x)gλν(x) yields δκν , then Eq. (2.5a) can be put into the following normal
form for Lorentzian dynamics,

m
(
d2xκ/dτ2

)
= −(m/2) gκλ(x)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
(dxµ/dτ) (dxν/dτ), (2.5b)

which is the gravitational geodesic equation for the motion of a test body in the metric gµν(x). The Eq. (2.5b)
gravitational geodesic equation’s usual presentation [2] is,

d2xκ/dτ2 + Γκ
µν(x) (dxµ/dτ) (dxν/dτ) = 0, (2.5c)

where the affine connection Γκ
µν(x) [3] is defined as,

Γκ
µν(x)

def
= (1/2) gκλ(x)

[
∂gλµ(x)/∂xν + ∂gλν(x)/∂xµ − ∂gµν(x)/∂xλ

]
. (2.5d)

We’ve noted that when the metric gµν(x) transforms as a a second-rank symmetric covariant tensor under
general coordinate transformations, the Eq. (2.3b) Lagrangian which yields the gravitational geodesic equa-
tion is a general invariant. Therefore it isn’t at all surprising that under those circumstances the gravitational
geodesic equation itself of Eq. (2.5b) (or Eq. (2.5c)) transforms as a generally contravariant vector [4].
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Just as in electromagnetic theory the Eq. (1.2) static Coulomb’s Law is parlayed into the Eq. (1.6b)
gauge-invariant equation for the four-vector potential Aµ(x), so in gravity theory the Eq. (2.4) weak-gravity
static differential Newtonian Law of Gravity is parlayed into the general coordinate transformation covariant
Einstein equation for the metric gµν(x). Since the Einstein equation must imply the Eq. (2.4) differential
Newtonian Law of Gravity in the weak-gravity static limit, its left side necessarily involves second derivatives
with respect to space-time. Also, its left side is a second-rank symmetric tensor in order to match that
property of its energy-momentum source. These requirements, along with general coordinate transformation
covariance, pretty much pin down the left side of the Einstein equation as a linear combination of the
product of the curvature scalar with the metric and the Ricci curvature tensor, both of which are nonlinear
in the metric. The final details of the Einstein equation arise from the vanishing of the generally covariant
divergence of its left side in order to match that property of its energy-momentum source, and of course also
from the requirement that the Einstein equation implies Eq. (2.4) in the weak-gravity static limit.

Because the Einstein equation is generally covariant, every general coordinate transformation of any of
its metric solutions is also a metric solution, so it appears to present a daunting solution ambiguity. However,
we have seen that its general covariance is a spontaneous subsidiary effect of the search for a Lorentz covari-
ant theory of gravity, just as the gauge invariance of four-vector potential electromagnetism is a spontaneous
subsidiary effect of the search for a Lorentz covariant four-vector potential theory of electromagnetism.
Therefore we ipso facto only need to consider Lorentz covariant solutions of the Einstein equation. Fur-
thermore, the Riemann and Ricci curvature tensors and the curvature scalar are all constructed from the
affine connection and its first derivatives with respect to space-time, but the affine connection isn’t well
defined unless the metric has a matrix inverse for all values of x (see Eq. (2.5d)). Thus we must require that
det(gµν(x)) 6= 0 for all values of x. It turns out that this requirement can be combined with an affirmation of
the Lorentz covariance of the metric gµν(x) in an astonishingly simple way by requiring that det(gµν(x)) = C
for all values of x, where C is a fixed nonzero constant. But because det(ηµν) = −1, the only value that the
fixed nonzero constant C can have is −1.

In 1915 Einstein also arrived at this coordinate condition det(gµν(x)) = −1 for all x, but via a temporary
foray into the idea that physics is covariant under linear coordinate transformations of unit determinant [5]

in place of his 1913 “general relativity” idée fixe that all of physics is covariant under general coordinate
transformations. Because of his very different mode of arrival at the coordinate condition det(gµν(x)) = −1
for all x, Einstein apparently was oblivious to the twin facts that it crucially guarantees the existence of
the matrix inverse of the metric gµν(x) and is consistent with the Lorentz covariance of gµν(x). Regardless,
Einstein’s application of the coordinate condition det(gµν(x)) = −1 for all x in his landmark November
18, 1915 paper produced the correct values for both Mercury’s remnant perihelion shift and the deflection of
starlight by the sun’s gravity [5], but before he adopted the coordinate condition det(gµν(x)) = −1 for all x,
Einstein had spent approximately two years struggling with results for Mercury’s remnant perihelion shift
which were substantially too small [5]. Furthermore, the correct result for the deflection of starlight by the
sun’s gravity which results from application of the coordinate condition det(gµν(x)) = −1 for all x is twice
a previous result firmly predicted by Einstein’s highly-touted Principle of Equivalence!

In spite of these hard facts, Einstein in a closely-subsequent November 1915 paper renewed his com-
mitment to his 1913 “general relativity” idée fixe that all of physics is generally covariant, which caused
him to deny the physical importance of the coordinate condition det(gµν(x)) = −1 for all x. Consequently
the coordinate condition det(gµν(x)) = −1 for all x, which is central to the tremendous achievements of
Einstein’s landmark November 18, 1915 paper, goes unmentioned in virtually all gravity textbooks!

Einstein’s denial of the physical importance of his highly successful November 18, 1915 coordinate
condition det(gµν(x)) = −1 for all x paved the way for Alexandre Friedmann’s 1922 promotion of his Galilean-
relativity-consistent coordinate condition g00(x) = 1 for all x, which cannot accommodate the empirically
well-established phenomenon of gravitational time dilation because that effect is given by [6],

[(the tick rate of a clock at x2)/(the tick rate of a clock at x1)] =
√
g00(x2)/g00(x1) . (2.6)

In spite of so unphysical a consequence, Friedmann’s Galilean-relativity-consistent coordinate condition
g00(x) = 1 for all x was, without any compelling argument for doing so, incorporated into the standard
Robertson-Walker metric form which is almost universally used in cosmology, i.e.,

(c dτ)2 = (c dt)2 − (R(t))2{(1/(1− kr2))(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}. (2.7a)
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The Galilean-relativity-consistent character of the Eq. (2.7a) Robertson-Walker metric form unsurprisingly
imposes Newtonian gravity on cosmological models [7], a consequence of which is a Big Bang singularity
wherein R(t) was equal to zero at a past finite time t [8]. At that past finite time t when R(t) was equal to
zero, the matrix inverse of the Eq. (2.7a) metric form was obviously undefined, so at that past finite time t
the affine connection (the gravitational field) was undefined, as were the curvature tensors!

The Newtonian-gravity albatross which the Galilean-relativity-consistent character of the Eq. (2.7a)
Robertson-Walker metric form imposes on cosmological models is, however, completely unnecessary. For
example, the particular Eq. (2.7a) Robertson-Walker metric form that has k = 0, namely,

(c dτ)2 = (c dt)2 − (R(t))2{(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}, (2.7b)

is very easily coordinate-transformed to the metric form,

(c dτ)2 = (1/S(t))6 (c dt)2 − (S(t))2{(dr)2 + r2[(dθ)2 + (sin θ dφ)2]}, (2.7c)

which satisfies Einstein’s November 18, 1915 Lorentz-covariant coordinate condition det(gµν(x)) = −1 for
all x instead of satisfying Friedmann’s Galilean-relativity-consistent coordinate condition g00(x) = 1 for all
x, and therefore doesn’t permit either Newtonian gravity or a Big Bang singularity.

The very simplest expanding-dust-sphere cosmological model has recently been studied in detail both in
Galilean-relativity-consistent Friedmann coordinates, wherein g00(x) = 1 for all x, and in Lorentz-covariant
Einstein coordinates, wherein det(gµν(x)) = −1 for all x [9]. The deceleration of cosmic expansion in Fried-
mann coordinates is changed to its acceleration in Einstein coordinates, and the Friedmann-coordinate Big
Bang is swapped for a peak in this Einstein-coordinate inflation.
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