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Abstract. 

The aim of this theoretical, interdisciplinary article is to extend the work 

initiated in the article, “The Einstein Model of a Solid as a Model of the 

Mental Apparatus from the Economic Perspective of Psychoanalytic 

Theory.”, by T. Aliferis (2023). In this article I referred to equilibrium 

fluctuations of the physical system Einstein Solid (ES). Here, I describe 

the progression of the ES contra the Law of Approach to Equilibrium 

and the Second Law of thermodynamics based on the concept of 

Maxwell’s Demon. I juxtapose with the deviation from equilibrium 

according to psychoanalysis. If this depiction is accomplished, the only 

case which may or may not be left open for further investigation 

involves the progression of the ES towards equilibrium starting from a 

non-equilibrium state. Upon success, we would have established a 

complete correspondence between the physical model and the mental 

apparatus psychoanalytically. This article is technical, and the 

psychoanalytic part is interwoven with the physical. One of the key 

findings is that the ego will be considered as correlated with the 

environment in accordance with the Reality Principle. Moreover, if 

psychoanalytic theory correctly describes psychoses, then Maxwellian 

Demons do exist in nature.  

Keywords: Maxwell’s Demon, Einstein Solid, Psychoanalysis, Ego, 

Reality Principle. 
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Introduction. 

I intend to apply the concept of Maxwell’s Demon, classically, to a one-

dimensional Einstein Solid (ES), in the high-temperature (semiclassical) 

limit, isolated, and “separated” into two, (L)eft or (R)ight compartments. 

The two compartments share 𝑞 energy quanta, and the total number of 

Quantum Harmonic Oscillators (QHOs) is 𝑁. Both 𝑞 and 𝑁 remain 

constant in every configuration, so that the total energy and number of 

particles is conserved.  

Statistical Mechanical Treatment of the Classical and Quantum 

Harmonic Oscillators. 

Some of the treatment can be found at: 
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http://li.mit.edu/Archive/CourseWork/Ju_Li/MITCourses/8.333/1997/solu

tions/sol6.pdf  

The main book of reference is “The Road to Maxwell’s Demon”, by Meir 

Hemmo and Orly R. Shenker, Cambridge University Press (2012), 

henceforth referred as: Hemmo and Shenker (2012). 

The temperature (𝑇) of an ES in the high-temperature limit, is given by 

Eq. (1): 

  

𝑇 =
𝑞

𝑁
 

 

 
(1)  

 

See Aliferis (2023), Eq. (5.1.12). The Configuration Space 

(abbreviation, 𝐶_𝑆) or multiplicity of an ES is given by: 

 
Ω(𝑞,𝑁) =

(𝑞 + 𝑁 − 1)!

𝑞! (𝑁 − 1)!
or in the high − temperature limit:

Ω(𝑞, 𝑁) ≈  (
𝑒𝑞

𝑁
)
𝑁

= (𝑒𝑇)𝑁 , Eq.  (5.3.2)

 

 

 
 
(2)  
  

 

 

𝐶_𝑆(𝑚,𝑟) ≡

{
 
 

 
 Ω(

𝑞

2
± 𝑚,

𝑁

2
± 𝑟) Ω(

𝑞

2
∓ 𝑚,

𝑁

2
∓ 𝑟)

𝑜𝑟

Ω(
𝑞

2
± 𝑚,

𝑁

2
∓ 𝑟)Ω(

𝑞

2
∓ 𝑚,

𝑁

2
± 𝑟)

                         

 

 
 
(3) 

Where for every sign in (3), we have a different value for 𝐶_𝑆(𝑚,𝑟). A total 

of four different values for 𝐶_𝑆(𝑚,𝑟). 

𝐶_𝑆(𝑚,𝑟) expresses all possible cases of division of the configuration 

space into two separate ESs, L or R. Allow me to note here that the 

information that the system is in a specific microstate, belonging to the 

R or L compartment, uniquely determines both the variables (𝑚, 𝑟) and 

the sign of 𝐶_𝑆(𝑚,𝑟).    

𝐶_𝑆(𝑚,𝑟) ∩ 𝐶_𝑆(𝑚′,𝑟′) =  ∅ for every 𝑚 ≠ 𝑚′ or 𝑟 ≠ 𝑟′. The macrostates 

are mutually exclusive.  

Proof. 

http://li.mit.edu/Archive/CourseWork/Ju_Li/MITCourses/8.333/1997/solutions/sol6.pdf
http://li.mit.edu/Archive/CourseWork/Ju_Li/MITCourses/8.333/1997/solutions/sol6.pdf
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If they shared a microstate then it would be that 𝑚 = 𝑚′ and 𝑟 = 𝑟′. 

That is because the common microstate belongs to both 𝐶_𝑆(𝑚,𝑟) and 

𝐶_𝑆(𝑚′,𝑟′) so it uniquely determines both (𝑚, 𝑟) and their signs. We 

observe though that there are two different states of 𝐶_𝑆(𝑚,𝑟) for each 

(𝑚, 𝑟) given their signs. It follows that the L compartment of a 𝐶_𝑆(𝑚,𝑟) 

could have a common microstate with the R compartment of another  

𝐶_𝑆(𝑚,𝑟). However, the L and R compartments are distinguishable. 

Consequently, we have reached an impossibility. That means that we 

have proved the claim that 𝐶_𝑆(𝑚,𝑟) ∩ 𝐶_𝑆(𝑚′,𝑟′) =  ∅ for every 𝑚 ≠ 𝑚′ or 

𝑟 ≠ 𝑟′. 

The general equation that expresses the total number of microstates for 

each configuration determined by the number of energy quanta and 

QHOs (constraints 𝑚, 𝑟, respectively), between L, R, compartments, 

called 𝐶_𝑆(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦), is: 

 

 
𝐶_𝑆(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦) = Ω(

𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
− 𝑚,

𝑁

2
−  𝑟) +

Ω (
𝑞

2
− 𝑚,

𝑁

2
− 𝑟)Ω (

𝑞

2
+ 𝑚,

𝑁

2
+ 𝑟) +

Ω(
𝑞

2
 + 𝑚,

𝑁

2
− 𝑟)Ω (

𝑞

2
− 𝑚,

𝑁

2
+  𝑟) +

Ω (
𝑞

2
− 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
+ 𝑚,

𝑁

2
−  𝑟) =

=  2 × Ω (
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
− 𝑚,

𝑁

2
− 𝑟) +

+ 2 × Ω(
𝑞

2
 + 𝑚,

𝑁

2
− 𝑟) Ω(

𝑞

2
− 𝑚,

𝑁

2
+  𝑟) .  

0 ≤ 𝑚 ≤
𝑞

2
, 0 ≤ 𝑟 ≤

𝑁

2
, 𝑚, 𝑟 ∈ ℕ

 

 
 
 
 
 
 
 
(4) 

 

Proof:  

a. The configuration space is comprised of four addends, each 

represented by a product of two factors, such that all possible 

combinations of the signs of 𝑚, 𝑟, are covered. The compartments are 

distinguishable, L or R, so the possible addends are four and not two. 

b. In each product, e.g., Ω(
𝑞

2
 ± 𝑚,

𝑁

2
± 𝑟)Ω(

𝑞

2
∓ 𝑘,

𝑁

2
∓ 𝑙), 𝛮, 𝑞, must be 

conserved, so that for 𝑚, 𝑟, 𝑘, 𝑙, it must be: 𝑚 = 𝑘, 𝑟 = 𝑙. 
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c. If we assume that we necessarily need additional variables 𝑚′, 𝑟′ 

independent of 𝑚, 𝑟, so that all possible microstates are covered, then, 

e.g.: 

 𝐶_𝑆(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦) = 2 × Ω(
𝑞

2
 + 𝑚′,

𝑁

2
+ 𝑟′) Ω (

𝑞

2
−𝑚′,

𝑁

2
− 𝑟′) 

+ 2 × Ω (
𝑞

2
 + 𝑚,

𝑁

2
− 𝑟)Ω(

𝑞

2
−𝑚,

𝑁

2
+  𝑟) 

 
(5) 

  

Assuming that:   

 −
𝑞

2
≤ 𝑚′, 𝑚 ≤

𝑞

2
,

−
𝑁

2
≤ 𝑟′, 𝑟 ≤

𝑁

2

}              

(6) 

 

And in order for all the possible cases to be covered, it must be that: 

0 ≥ 𝑚 +𝑚′ ≥ −𝑞 και 0 ≥ 𝑟′ − 𝑟 ≥ −𝛮 
𝑞≥(𝑚+𝑚′)≥0 ^ 0≥𝑟−𝑟′≥−𝛮
⇒                   0 ≥ 𝑚′ +

𝑚 ≥ 0 και 0 ≥ 𝑟 − 𝑟′ ≥ 0⇒𝑚′ = −𝑚,  𝑟′ = 𝑟. So 𝑚′,𝑚 and  𝑟′, 𝑟, are 

dependent. 

From now on we will be considering 𝑚, 𝑟 ≥ 0.  That is allowed and 

necessary because  𝐶_𝑆(𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦) is symmetric under the exchange of 

signs of 𝑚, 𝑟 and we must also avoid a double counting of the same 

occurrences.   

“In thermodynamics, recall that equilibrium is a state in which the 

thermodynamic magnitudes are constant over time, and the laws and 

magnitudes of standard classical thermodynamics are defined for such 

states only.” Hemmo and Shenker (2012), Section 7.4, p. 159. For the 

chemical potential 𝜇 we obtained in Aliferis (2023), Eq. (5.1.13), that  

𝜇 =  −𝑘𝑇ln(𝑇). Since the chemical potential depends solely on 

temperature it follows that the system is in equilibrium if and only if 𝑇𝐿 =

𝑇𝑅.  

Ι refer to the term: Ω(
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
−𝑚,

𝑁

2
−  𝑟). We have that: 

 

𝑇𝐿 ≡
𝑞𝐿
𝑁𝐿
=

𝑞
2
+𝑚

𝑁
2
+ 𝑟

= 𝛵𝑅 ≡
𝑞𝑅
𝑁𝑅
 =

𝑞
2
− 𝑚

𝑁
2
− 𝑟

 ⇔ 

⇔(
𝑞

2
+𝑚) =

(
𝑞
2
− 𝑚) (

𝑁
2
+ 𝑟)

𝑁
2
− 𝑟

⇔(1 +  𝛼)𝑚 =
𝑞

2
(𝑎 − 1)⇔ 

 
 
 
 
 
 
 
(7) 
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⇔  𝑚 =

𝑞
2
(𝑎 − 1)

𝑎 + 1
=
𝑞

𝑁
× 𝑟  

𝑎 =  (
𝑁

2
+ 𝑟)/(

𝑁

2
− 𝑟) ≥ 1 

 
Eq. (7) is valid for 𝑚 = (𝛥𝑞) ^ 𝑟 = (𝛥𝑁), see Eq. (18). 

For the values of 𝑚, 𝑟 given from Eq. (7) it follows that: 

 𝑇𝐿 = 𝑇𝑅 = 
𝑞

𝑁
 (8) 

Remember that I referred to the term  Ω (
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
−𝑚,

𝑁

2
−  𝑟). 

For the second term Ω(
𝑞

2
 + 𝑚,

𝑁

2
− 𝑟)Ω (

𝑞

2
−𝑚,

𝑁

2
+  𝑟), (8) is also valid, 

since it follows from the first by changing the sign of variable 𝑟: 

 
𝑚 =

𝑞

𝑁
(−𝑟) ⇒ −

𝑞

2
≤ 𝑚 ≤ 0 

 

 

Since we exclude negative values for 𝑚, 𝑟 we have for the second term 

that: 

  𝑇𝐿 = 𝑇𝑅 =
𝑞

𝑁
 ^ 𝑚 = 𝑟 = 0 (9) 

 

Consequently, the maximum value of the configuration space of the 

system, 𝐶_𝑆(𝑚ax), is given by Eq. (21), 𝑚 = 𝑟 = 0. 

Ι refer to the term: Ω(
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
−𝑚,

𝑁

2
−  𝑟).   

From Eq. (7), we have that for a given 𝑟′ there is a unique 𝑚′ so that  

𝑇𝐿 = 𝑇𝑅(=
𝑞

𝑁
). Consequently, between two consecutive equilibrium 

points (𝑇𝐿 = 𝑇𝑅), we have that the value of the entropy, 𝑆 = 𝑆𝐿 + 𝑆𝑅, 

decreases (or increases) by an increasing (or decreasing, respectively) 

|𝛥𝛵| = |𝑇𝐿 − 𝑇𝑅|. This means that before (or beyond) a maximum value 

of |𝛥𝑇| the entropy of the combined system, L, R, increases and finally 

reaches a maximum of 𝑘 ln(Ω𝑚𝑎𝑥 ), see Eq. (16).  

From Figure 1, (Wolfram Mathematica) and Eq. (7), it is obvious that 

there are two equal maximum values of |𝛥𝛵| between any two 

consecutive equilibrium points, i.e., to the corresponding values of 𝑚 for 

𝑟 ∈ {𝑟, 𝑟 + 1}, (or 𝑟 ∈ {𝑟 − 1, 𝑟}). Allow me to clarify that 𝑚, 𝑟, are 

considered strictly as integers. 

According to Eq. (7), (12), (16), entropy reaches its maximum value for 

𝑇𝐿 = 𝑇𝑅. This implies that between two consecutive equilibrium points 
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the entropy decreases, reaches one minimum value and then increases 

up to thermal equilibrium.  We can infer that there are two equal 

minimum values for the entropy of the system between two consecutive 

equilibrium points and that each corresponds to each of the two equal 

maximum values of |𝛥𝑇|. See Figure 1, Eq. (16). 

 

 

Figure 1 |𝛥𝑇| = |𝑇𝐿 − 𝑇𝑅| 

 

We have the right to consider that entropy can decrease since Hemmo 

and Shenker (2012), Chapter 13, and the fact that our model satisfies 

all the requirements that lead to this conclusion as I further examine in 

the Section “Deviation from Thermal Equilibrium”. 

Gaussian Distribution of the Multiplicity Ω. 

According to the First Law of Thermodynamics and particularly in the 

case of the ES, we obtain: 

 𝑑𝑈 = 𝑇𝑑𝑆 + 𝜇𝑑𝑁 (10) 

 

For the chemical potential 𝜇 we have obtained Eq. (5.1.13), Aliferis 

(2023), 𝜇 =  −𝑘𝑇ln(𝑇). This equation was derived from the Boltzmann 

entropy since it follows from the equation 𝜇 =  −𝑇 (
𝜕𝑆

𝜕𝑁
)
𝑈

. From the 

equipartition theorem (derived using statistical mechanics) we get:  

 

 
𝑈 = 𝑁𝑘𝑇 ⇒ 𝑑𝑈 = 𝑘𝑇𝑑𝑁 + 𝑘𝑁𝑑𝑇 ⇒

𝑑𝑈

𝑇
= 𝑘𝑑𝑁 + 𝑘𝑁

𝑑𝑇

𝑇
 

 

(11) 
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 𝑑𝑄

𝑘𝑇
=
𝑑𝑆

𝑘
=  
𝑑𝑈

𝑘𝑇
−
𝜇

𝑘𝛵
𝑑𝑁 =

𝑑𝑈

𝑘𝑇
+ (ln𝑇)𝑑𝑁

(11)
⇒   

 
 
(12) 

 
⇒
𝑑𝑆

𝑘
=  𝑑𝑁 + 𝑁

𝑑𝑇

𝑇
+ (ln𝑇)𝑑𝑁 = 𝑑𝑁 + 𝑑[𝑁ln𝑇] =

𝑑[𝑁ln(𝑒𝑇)] = 𝑑[ln(𝑒𝑇)𝑁]= 𝑑[ln(Ω)] 

 

   
Where Ω is given by Eq. (2) and not Eq. (14). This is because Eq. (12) 

refers separately to each of the weakly interacting L, R, compartments. 

I have just proven that, in the case that I examine, the thermodynamic 

entropy is equivalent to the statistical mechanical entropy. This 

derivation was based on the First Law, the thermodynamic definition of 

entropy and principles and theorems of statistical mechanics. 

For the total variation of the entropy of the system we have: 

  

 
𝛥𝑆𝐿 + 𝛥𝑆𝑅

𝑘
= (
𝑁

2
+ (𝛥𝛮)) ln(𝑒 ×

𝑞
2
+ (𝛥𝑞)

𝑁
2
+ (𝛥𝛮)

) 

+ (
𝑁

2
− (𝛥𝛮)) ln(𝑒 ×

𝑞
2
− (𝛥𝑞)

𝑁
2
− (𝛥𝛮)

)⇒ 

⇒ 
𝛥𝑆

𝑘
=  −2(

(𝛥𝛮)

√𝑁
−
√𝑁(𝛥𝑞)

𝑞
)

2

= −2𝑁 (
(𝛥𝛮)

𝑁
−
(𝛥𝑞)

𝑞
)
2

,
2(𝛥𝛮)

𝑁
≪ 1,

2(𝛥𝑞)

𝑞
≪ 1 

 

(13) 

Alternative derivation: 

We have that:  

 
Ω = (

𝑒𝑞𝐴

𝑁𝐴
)
𝑁𝐴
× (

𝑒𝑞𝐵

𝑁𝐵
)
𝑁𝐵

=(
𝑒𝑞𝐴

𝑁𝐴
)
𝑁𝐴
× (

𝑒(𝑞−𝑞𝐴)

𝑁−𝑁𝐴
)
(𝑁−𝑁𝐴)

 

 
 

(14) 

Setting:  

 𝑁𝐴 =
𝛮

2
+ 𝑦, 𝑞𝐴 =

𝑞

2
+ 𝑥,

2𝑦

𝑁
≪ 1,

2𝑥

𝑞
≪ 1 

 

(15) 

We get: 
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Ω = (
𝑒(
𝑞

2
+𝑥)

𝛮

2
+𝑦
)

(
𝛮

2
+𝑦)

× (
𝑒(
𝑞

2
−𝑥)

𝛮

2
−𝑦
)

(
𝛮

2
−𝑦)

= 

=(
𝑒2(

𝑞2

4
−𝑥2)

𝑁2

4
−𝑦2

)

(
𝛮

2
)

× (
𝑞

2
+𝑥
𝑞

2
−𝑥
)
𝑦

× (
𝑁

2
−𝑦

𝛮

2
+𝑦
)

𝑦

≈ 

≈ (
𝑒2 (

𝑞2

4
− 𝑥2)

𝑁2

4
− 𝑦2

)

(
𝛮
2
)

× 𝑒
4𝑥𝑦
𝑞 × 𝑒

−4𝑦2

𝑁 ⇒ 

⇒ lnΩ ≈ (
𝛮

2
) × ln

(

 
 
𝑒2 (

𝑞2

4
(1 −

4
𝑞2
𝑥2))

(
𝑁2

4
(1 −

4
𝑁2
𝑦2))

)

 
 
+
4𝑥𝑦

𝑞
−
4𝑦2

𝑁
≈ 

≈ 𝑁 ln 𝑒𝑇−2(
𝑦

√𝑁
−
√𝑁𝑥

𝑞
)

2

⇒ 

⇒  Ω ≈ (𝑒𝑇)𝑁 × 𝑒
−2(

𝑦

√𝑁
−
√𝑁𝑥
𝑞
)

2

= 

= Ω𝑚𝑎𝑥 × 𝑒
−2(

𝑦

√𝑁
−
√𝑁𝑥
𝑞
)

2

𝑦≡𝑟,𝑥≡𝑚 
⇒       

𝐶_𝑆(𝑚,𝑟) = Ω = Ω𝑚𝑎𝑥 × 𝑒
−2N(

𝑟

𝑁
−
𝑚

𝑞
)
2

, 
2𝑟

𝑁
≪ 1,

2𝑚

𝑞
≪ 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(16) 

 

Consequently: 
𝐶_𝑆(𝑚,𝑟) = Ω𝑚𝑎𝑥  ⇔ 𝑚 =

𝑞

𝑁
× 𝑟

(18)
⇔ (𝛥𝑞)

=
𝑞

𝑁
× (𝛥𝛮) 

(17) 

 

A result that is equivalent to Eq. (7).  

𝐶_𝑆(𝑚,𝑟) is defined in (3).  

In the proof of (13), (16) I used the approximation:   

ln(1 + 𝑥) ≈ 𝑥, |𝑥| ≪ 1 

Let me notice that from Eq. (18), in the thermodynamic limit 𝑁 →∞ we 

conclude that: 
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When two large Einstein solids are in thermal equilibrium, any random 

fluctuations away from the most likely macrostate will be utterly 

unmeasurable. 

In Eq. (14) the multiplicity Ω, of the system of the weakly interacting 

ESs, is defined according to statistical mechanics, Boltzmann entropy, 

Eq. (2). Multiplicity Ω, reaches its maximum value according to the 

equations (7), (17). In this case the system is, by definition, in [𝑀𝑒𝑞]. 

From what we can infer from Eq. (17), and when it is satisfied, then  

𝑇𝐿 = 𝑇𝑅 = 
𝑞

𝑁
 and vice versa. Consequently, I proved that equilibrium 

according to statistical mechanics (𝑑𝑆 = 0) is equivalent to the 

thermodynamical perspective (system is considered as being always in 

equilibrium, i.e., uniform temperature and chemical potential throughout 

the system). The introduction of the constraints (𝑚, 𝑟) in Boltzmann 

entropy, is performed in Eq. (16). 

Furthermore and from Eq. (12) I concluded that entropy variation 

according to the thermodynamic viewpoint (𝑑𝑆 =
𝑑𝑄

𝑇
) is equivalent to the 

expression for entropy variation in statistical mechanics (𝑑𝑆 =

 𝑑[ln(Ω)]), where Ω is given by Eq. (2). This result has been derived by 

proving the equipartition theorem in the grand canonical ensemble, see 

expression for the average energy (𝑈, �̅�), Aliferis (2023), Eq. (5.4.9). 

Obviously, this result is also valid for an ES divided into two weakly 

interacting L, R compartments, exchanging particles (QHOs) and 

energy. See Eq. (13). 

The standard deviation is given by: 

 
𝜎𝑁 ≡ √(𝛥𝛮)

2̅̅ ̅̅ ̅̅ ̅̅ ≡ (𝛥𝛮) =
√𝑁

2
  ^  𝜎𝑞 ≡ √(𝛥𝑞)

2̅̅ ̅̅ ̅̅ ̅̅ ≡ (𝛥𝑞) =
𝑞

2√𝑁
 

(18) 

 

Minimum - Maximum Configuration Space. 

I examine the case where the configuration space (of the total system) 

takes its minimum value (see Eq. (4), setting 𝑚 =
𝑞

2
 και 𝑟 =

𝑁

2
− 1): 

 𝐶_𝑆(𝑚𝑖𝑛) ≈ 2 × Ω(𝑞,𝑁) (19) 

    

The limit of the least Lebesgue measure is for 
2𝑚

𝑞
 → 1 and  

2𝑟

𝑁
→ 1. In 

this limit the term 2 × Ω (
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟)Ω (

𝑞

2
−𝑚,

𝑁

2
−  𝑟) dominates and 

particularly:  
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Ω(
𝑞

2
 + 𝑚,

𝑁

2
+ 𝑟) ≫ Ω(

𝑞

2
− 𝑚,

𝑁

2
−  𝑟) → 1. 

 

(20) 

Comment: The systems involved must be macroscopical, condition that 

I neglect at this point. I must also prove that we can neglect terms with 

small multiplicity. 

The configuration space reaches its maximum value: 

 𝐶_𝑆(𝑚ax) = 4 × Ω(𝑞/2, 𝑁/2)Ω(𝑞/2, 𝑁/2)  = 

= 4 × Ω2(𝑞/2, 𝑁/2) = 4 × Ω(𝑞, 𝑁)
 

 

(21) 

Eq. (21) is derived from (4), setting 𝑚 =  𝑟 = 0. In the last step Eq. (22) 

has been used: 

 

Ω2(𝑞/2, 𝑁/2) = (𝑒 ×

𝑞
2
𝑁
2

)

𝑁
2
×2

= Ω(𝑞, 𝑁) 

 
(22) 

 

The product of the multiplicities (Ω(𝑞/2, 𝑁/2)) of two identical 

compartments is equal to Ω(𝑞,𝑁). More generally this result is also valid 

when the compartments have the same temperature. Referring to 

equations (1), (2), we get: 

 Ω =  Ω𝐿Ω𝑅 = (𝑒 × 𝑇)
𝑁𝐿(𝑒 × 𝑇)𝑁𝑅 = (𝑒 × 𝑇)𝑁𝐿+𝑁𝑅 =

(𝑒 × 𝑇)𝑁 = Ω(𝑞,𝑁) 
(23) 

 

From (19) and (21) we notice that: 𝐶_𝑆(𝑚ax) ≈ 2 × 𝐶_𝑆(𝑚in). 

Principle of Detailed Balance. 

See Schroeder, Daniel V, (1999). “Introduction to thermal physics”, pp. 

57-58: “What we're assuming is that the microstates that do occur, over 

"long" but not unthinkably long time scales, constitute a representative 

sample. We assume that the transitions are "random", in the sense that 

they have no pattern that we could possibly care about”. From 

“Stochastic Processes in Physics and Chemistry”, Kampen, Elsevier 

(2007), p. 109: “Equation (4.1) merely states the obvious fact that in 

equilibrium the sum of all transitions per unit time into any state n must 

be balanced by the sum of all transitions from n into other states n'. 

Detailed balance is the stronger assertion that for each pair n, n' 

separately the transitions must balance”, Eq. (4.2): 

      𝑊𝑛n′𝑝n′
𝑒 = 𝑊n′n𝑝𝑛

𝑒                     

 

(24) 
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Where 𝑝𝑛
𝑒 is the equilibrium distribution 𝑝𝑛

𝑒 =𝑝n′
𝑒  = 

1

Ω
, and 𝑊𝑛n′ is the 

transition probability per unit time from n′ to n.  

If the number of energy quanta of a QHO increases or decreases by a 

small amount this variation can be reversed equiprobably. So, 𝑊𝑛n′ =

𝑊n′𝑛 and Eq. (24) is valid.   

Virial Theorem. 

According to the Virial Theorem, quantum mechanically:  

 
2〈𝑇〉 =∑〈𝑋𝑛

𝑑𝑉

𝑑𝑋𝑛
〉

𝑛

 
(25) 

 

Where 〈𝑇〉 is the average kinetic energy, 〈𝑉〉 is the average potential 

energy and 𝑋𝑛 is the position operator.  

In the case of a one-dimensional Einstein solid,     

 
𝑉 =∑

1

2
𝑘𝑋𝑛

2
𝑉𝑛=𝑓(𝑋𝑛)
⇒      

𝑛

𝑑𝑉

𝑑𝑋𝑛
=
𝑑𝑉𝑛
𝑑𝑋𝑛

= 𝑘𝑋𝑛 ⇒𝑋𝑛
𝑑𝑉

𝑑𝑋𝑛
= 𝑘𝑋𝑛

2

= 2𝑉𝑛⇒∑〈𝑋𝑛
𝑑𝑉

𝑑𝑋𝑛
〉

𝑛

=∑〈2𝑉𝑛〉

𝑛

=  2〈𝑉〉
(25)
⇒  2〈𝑇〉 = 2〈𝑉〉 ⇒ 〈𝑇〉 = 〈𝑉〉 =

𝛮𝑘𝑇

2
 

(26) 

In the last step I used Eq. (5.4.8), (5.4.9), proved in Aliferis (2023) and 

the Eq. �̅� = 〈𝑇〉 + 〈𝑉〉. Additionally, 𝑉𝑛 =
1

2
𝑘𝑋𝑛

2 = 𝑓(𝑋𝑛), where 𝑓 is a 

function of one variable. (This means that 𝑉𝑛 is a function of one 

variable). 

In classical statistical mechanics, Eq. (26) is proved in the Section 

“Statistical treatment of the Classical and Quantum Harmonic 

Oscillators”. 

Loschmidt reversal. 

Loschmidt reversal is compatible with the classical harmonic oscillator 

(CHO) and consequently with an isolated, thermodynamic system of 

one-dimensional, non-interacting, identical, distinguishable, CHOs. That 

is because: 

The force 𝐹 acting on a CHO obeys Hooke’s Law, Eq. (28):  

𝐹 = �̇� = −
𝜕𝛨

𝜕𝑥
= −𝑘𝑥 
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And as such it is conservative. 

The equations of motion are symmetric with respect to time and velocity 

reversal. 

The degrees of freedom of the system are finite. 

“Notice that, in a sense, Zermelo’s objection to the H-theorem is weaker 

than Loschmidt’s objection. Loschmidt’s argument means that to every 

trajectory segment that evolves from a lower-entropy macrostate to a 

higher-entropy macrostate corresponds a segment that decreases 

entropy; whereas the Poincare´ recurrence theorem means that every 

trajectory includes entropy-decreasing segments, without saying that 

the number of entropy-decreasing segments is equal to or larger than 

the entropy-increasing segments.” Hemmo and Shenker (2012), Section 

7.10, p. 171.  

Liouville’s Theorem. 

Liouville's theorem states that the phase space distribution function, 𝜆, 

remains constant along the trajectories of the system in phase space. 

I will apply Liouville’s theorem for 𝛮 identical CHOs in the classical 

phase space. For the Hamiltonian of the system, we have: 

 
𝐻 =∑(

1

2
𝑘𝑥𝑖

2 +
1

2

𝑝𝑖
2

𝑚
)  = 𝐸 

 

 
(27) 

 

 
𝑥�̇� =

𝜕𝛨

𝜕𝑝𝑖
=
𝑝𝑖
𝑚
⇔ 𝑝𝑖 = 𝑚𝑥�̇� 

�̇� = −
𝜕𝛨

𝜕𝑥𝑖
= −𝑘𝑥𝑖 , 𝐻𝑜𝑜𝑘𝑒

′𝑠 𝐿𝑎𝑤. 

 

 
(28) 

 

The phase space current vector 𝑱 can be written as: 

 
𝑱 = (

𝜕𝐻

𝜕𝑝1
, −
𝜕𝐻

𝜕𝑥1
, … ,

𝜕𝐻

𝜕𝑝𝑁
, −
𝜕𝐻

𝜕𝑥𝑁
) 

 

(29) 

The evolution of the distribution function 𝜆 in phase space is governed 

by the continuity equation: 

 𝜕𝜆

𝜕𝑡
 + ∇(𝜆 ⋅ 𝑱) = 0 

 

(30) 
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In a Hamiltonian system, the divergence of the phase space current 𝑱 is 

zero: 

 
∇𝑱 =∑

𝜕𝑥�̇�
𝜕𝑥𝑖

+
𝜕𝑝�̇�
𝜕𝑝𝑖

𝑖

= 0 

 

(31) 

Additionally: 

 (∇𝜆)𝑱 =

= 0⇔ (
𝜕𝜆

𝜕𝑥1
,
𝜕𝜆

𝜕𝑝1
, … ,

𝜕𝜆

𝜕𝑥𝑁
,
𝜕𝜆

𝜕𝑝𝑁
) (
𝜕𝐻

𝜕𝑝1
,
𝜕𝐻

𝜕𝑥1
, … ,

𝜕𝐻

𝜕𝑝𝑁
,
𝜕𝐻

𝜕𝑥𝑁
) = 

= 0 ⇔
𝑝𝑖
𝑚

𝜕𝜆

𝜕𝑥𝑖
= 𝑘𝑥𝑖

𝜕𝜆

𝜕𝑝𝑖
 

 

 
 
 
(32) 

To solve the partial differential equation (PDE), (32) I start by 

recognizing that this is a first-order PDE involving the function 𝜆 of the 

variables 𝑥𝑖 and 𝑝𝑖. One approach to solving this is by using the method 

of characteristics.  

The method of characteristics involves solving the following ordinary 

differential equation (ODE):  

1

𝑚

𝑑𝑝𝑖
(−𝑥𝑖)

= 𝑘
𝑑𝑥𝑖
𝑝𝑖
⇒ 𝑘∑∫𝑥𝑖𝑑𝑥𝑖

𝑖

= −
1

𝑚
∑∫𝑝𝑖𝑑𝑝𝑖⇔

𝑖

 

 
⇔∑(

1

2
𝑘𝑥𝑖

2 +
1

2𝑚
𝑝𝑖
2)

𝑖

= 𝐶 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(33) 

Eq. (33) is valid, for 𝐶 ≡ 𝐻. 

So, we get that: 𝜆 = 𝑔 (∑ (
1

2
𝑘𝑥𝑖

2 +
1

2

𝑝𝑖
2

𝑚
)) = 𝑔(𝐻), for any 𝑔, arbitrary, 

differentiable function. We can infer that Eq. (32) is validated and 

additionally that  
∂λ

∂t
= 0. Consequently, from Eq. (30): 

 𝑑𝜆

𝑑𝑡
= 0⇔ 𝜆(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 

 

(34) 

We have that:  

  

𝜆 = 𝑔 (∑(
1

2
𝑘𝑥𝑖

2 +
1

2

𝑝𝑖
2

𝑚
)) = 𝑔(𝐻) ≡

≡
𝛼

ℎ𝑁
∬  𝑑𝑥1𝑑𝑝1…  𝑑𝑥𝑁𝑑𝑝𝑁 ≈ 𝛼Ω(𝑞,𝑁)
𝐸≤𝐻

, 

  

 
 
 
 
(35) 
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𝐻 = 𝑞ℎ𝑓 (ES, high − temperature limit)  
 
 

Function 𝑔 is differentiable so it can be defined as an integral. I defined 

𝜆 to express the volume of a hypersphere Ω(𝑞,𝑁) multiplied by an 

arbitrary positive constant 𝛼. I chose 1 ≥ 𝛼 > 0. From Eq. (30) every 𝛼𝜆 

is an acceptable distribution function. For the derivation of Eq. (35) see 

the Section “Statistical treatment of the Classical and Quantum 

Harmonic Oscillators”.  

The Liouville equation reflects that 𝜆 is conserved along the trajectories 

of the system in phase space and is constant over time.  

Probability Rule, measure 𝜌. 

Based on Hemmo and Shenker (2012), p. 132, footnotes: 
 
A measure 𝜌 (referred as “𝜇” in Hemmo and Shenker (2012)) on a set 𝑋 

is a map 𝜌: 𝐴 → [0,∞] on a 𝜎 −algebra 𝐴 of 𝑋 such that:  

(a)  𝜌(Ø) = 0; 

(b) If {𝐴𝑖|𝑖 ∈  ℕ} is a countable family of mutually disjoint sets in 𝐴, 

meaning that 𝐴𝑖 ∩ 𝐴𝑗 =  ∅ for 𝑖 ≠ 𝑗, then:  

 
𝜌 (⋃𝐴𝑖

𝑖

) =∑𝜌(𝐴𝑖)

𝑖

 

 

(36) 

(Lebesgue measure ≡ ‖ ‖). I will make the assumption, which is 

necessary from the clinical data, that 𝑃′: 

 𝑃′([𝑀1], 𝑡 | [𝑀0], 𝑡) ≡
𝜌(‖[𝑀1]‖,𝑡)

𝜌(‖[𝑀0]‖,𝑡)
=
‖[𝑀1]‖

‖[𝑀0]‖
, 

 
[𝑀1], [𝑀0]:  𝐵(𝑡) ∩ [𝑀𝑗] ≠ ∅, 𝑗 ∈ {0,1} 

 

(37)  

expresses the relative probability of the dynamical blob collapsing to 

[𝑀1] at time 𝑡, instead of collapsing to [𝑀0], at the same point in time. 

According to the above we end up to one of the possible definitions of 

the Transition Probability 𝑃 and measure 𝜌:  

 
𝑃([𝑀1], 𝑡3|[𝑀0], 𝑡1) ≡ 𝜌([𝑀1], 𝑡3) ≡

‖[𝑀1]‖

∑ ‖[𝑀𝑖]‖𝑖

,  

[𝑀𝑖]:  𝐵(𝑡3) ∩ [𝑀𝑖] ≠ ∅, ∀𝑖  
 

(38)  
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Eq. (38) expresses also the observed Relative Frequency of succession 

of macrostates, see the Section “Relative Frequency, Clinical Data”. 

𝐵(𝑡3) is a function of [𝑀0], 𝑡1.  

𝜌, as defined in Eq. (38), satisfies all the conditions of the definition of 

measure. Additionally, it is normalized and 0 ≤ 𝜌 ≤ 1, so that it 

expresses Probability Measure, (Hemmo and Shenker (2012), p. 132, 

footnotes).  

“This idea that larger macrostates are invariably associated with a 

higher probability would entail the prediction that systems evolve 

directly to the macrostate with the largest measure. This prediction 

would be of course false for the following reason. By and large, the 

observed phenomenon in thermodynamic systems is that systems 

evolve to equilibrium via macrostates that have gradually increasing 

sizes. Therefore, this equilibrium ought to receive high probability. But 

the above prediction gives it only small probability. Moreover, equating 

the probability of a macrostate with its size is also in clear contradiction 

to the laws of dynamics that govern the evolution of mechanical 

systems by dictating their trajectories […] By contrast, the Probability 

Rule takes into account the dynamics in a way that meshes very well 

with the fact that systems evolve to equilibrium gradually, that is via 

macrostates with increasing entropies.” Hemmo and Shenker (2012), 

Section 6.4, p.136.  

By defining 𝜌 in Eq. (38) we observe that the macrostate with the 

maximum probability of occurrence is the one with the maximum 

Lebesgue measure, from the set of the macrostates that intersect the 

dynamical blob at a specific point in time. This definition/conclusion 

does not necessarily contrast what was mentioned in the paragraph 

above, since the dynamical blob evolves to equilibrium gradually. Only 

in the case that the dynamical blob intersects [𝑀𝑒𝑞], is the system 

probable to be found in [𝑀𝑒𝑞].  In this case [𝑀𝑒𝑞] has the maximum 

probability of occurrence compared to the rest macrostates that overlap 

with the dynamical blob. See Eq. (38). Furthermore, my definition of 𝜌 is 

compatible with the conditions (I) – (III), for the Law of Approach to 

Equilibrium and the conditions (I) – (II) for the Second Law, as defined 

in Hemmo and Shenker (2012), Sections 7.5, 7.6, pp. 162, 164, 

respectively. See also Section “v-measure”. 

As we notice in Section “Liouville’s Theorem”, the dynamical blob is 

defined classically. Additionally, the dynamical blob has a constant size 

‖𝐵(𝑡)‖ = 𝛼Ω(𝑞, 𝑁) ≈ 𝛼(𝑒𝑇)𝑁, Eq. (2), (35). “Now, one of the properties 

of the Lebesgue measure that makes it so convenient is that it is 
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conserved under the dynamics of classical mechanics.”, Hemmo and 

Shenker (2012), Section 6.9, p. 151. 

Hemmo and Shenker (2012), p. 131: “Formally, the rule for calculating 

transition probabilities in statistical mechanics is the following: 

(Probability Rule) 𝑃([𝑀1], 𝑡2 | [𝑀0], 𝑡1) = 𝜌(𝐵(𝑡2) ∩  [𝑀1]) 

Hemmo and Shenker (2012), Section 6.6, p. 139: “This means that the 

probability that a system that starts in macrostate [𝑀0] at time 𝑡1 will end 

in macrostate [𝑀1] at time 𝑡2 is given by the relative size 𝜌 of the 

dynamical blob 𝐵(𝑡2) which overlaps with the macrostate [𝑀1].”.  

I do not follow this approach in this study. That is because the 

Probability Rule must primarily express the Relative Frequency of 

occurrence of future macrostates which is given by the clinical data. 

And the clinical data indicate that 𝑃′ refers to one time instance, it is 

proportional to the value of the Lebesgue measure of each macrostate 

that overlaps with the dynamical blob, by the Lebesgue measure of any 

other candidate to occur macrostate that overlaps with the blob. And it 

is not depending on the measure of the overlap of the dynamical blob 

with any macrostate. I.e., 𝑃′ is given by Eq. (37). 

Hemmo and Shenker (2012), Section 6.6, p. 139. “Our above account 

of probability in statistical mechanics implies that the probability 

assigned to future macrostates depends on the initial macrostate that 

one assigns to the system, and on the calculation of the dynamical blob, 

given that initial macrostate.” From a statistical mechanical point of 

view: “The knowledge that the microstate of G is within 𝐵∗(𝑡2) is a 

combination of three items: (i) the observation that at 𝑡1 the macrostate 

of G was [𝑀0], (ii) the observation that at 𝑡2 the macrostate of G was 

[𝑀1], and (iii) the calculation that, owing to the equation of motion of G, 

the dynamical blob that starts out in [𝑀0] at 𝑡1 evolves into 𝐵(𝑡2) at 𝑡2.”, 

Hemmo and Shenker (2012), Section 6.6, p. 140.  

“We can express the fact that the thermodynamic regularities are 

independent of observed history as the idea that 𝑎𝑖  =  𝑏𝑖. This 

immediately implies that 𝜌(𝑎): 𝜌(𝑏) = 𝜌(𝛾): 𝜌(𝛿) (see Figure 6.8).” 

Additionally, “A very special case, which may or may not hold in 

thermodynamic evolutions, is that in which the probability of a 

macrostate is equal to its measure: 𝜌(𝛼): 𝜌(𝛽) = 𝜌(𝛾): 𝜌(𝛿) =

𝜌([𝑀1]): 𝜌([𝑀2])”. Hemmo and Shenker (2012), Section 6.8, p. 149. This 

is almost the case that I examine. This means that my definition of 𝜌 is 

correct according to thermodynamics,  (𝑎𝑖  =  𝑏𝑖), but not according to 

statistical mechanics. “It is a fact that the thermodynamic regularities 
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are robust in the sense that they are independent of observed history.” 

Hemmo and Shenker (2012), Section. 6.8, p. 149.  

Commentating. 

The sum, ∑ ‖[𝑀𝑖]‖𝑖 , expresses the total size in phase space of the 

macrostates that intersect the dynamical blob. The Lebesgue measure 

‖[𝑀1]‖, divided by ∑ ‖[𝑀𝑖]‖𝑖 , expresses the probability of the collapse of 

the dynamical blob into [𝑀1]. 

In every dynamical blob corresponds a unique set of macrostates [𝑀𝑖]. 

The reverse statement is not valid though since for instance many 

(equal in Lebesgue measure) “distorted” versions of the dynamical blob 

can intersect the same macrostates, [𝑀𝑖]. 

We can conclude from the above that Eq. (38) is valid taking into 

consideration the available clinical data. 

Relative Frequency, Clinical Data. 

I define that each arrangement of the total amount of libido (𝑞 energy 

quanta) over the ideas (𝑁, QHOs) residing in the ego, represents a 

mental state. I.e., that each microstate is a mental state. 

Macrostates are observable while microstates are not. 

I argue that as for the time evolution of the mental apparatus it is 

possible for the Relative Frequency of the observed macrostates to be 

measured. For the physical definition and the role of the Relative 

Frequency see Hemmo and Shenker (2012), Section 6.5. 

I assume that the practitioner demonstrates to the patient the largest in 

Lebesgue measure macrostate from those that the patient mentions or 

implies. I.e., by definition the most “liberating”, “broader”, “existing” 

choice. “Existing” here refers to the macrostates which overlap with the 

dynamical blob. This implies that the probability of finding the current 

state of the ego within [𝑀𝑖], [𝑀𝑖]:  𝐵(𝑡) ∩ [𝑀𝑖] ≠ ∅, ∀𝑖, depends on its 

Lebesgue measure and 𝐵(𝑡). 

We conclude from the above that Eq. (38) is valid.  

v-measure. 

In the Section “Gaussian Distribution of the Multiplicity Ω”, I proved that 

equilibrium according to statistical mechanics (𝑑𝑆 = 0 ⇒ 𝑆 = 𝑚𝑎𝑥.) is 

equivalent to the thermodynamic perspective, system always in 

equilibrium, (uniform temperature and chemical potential) and that with 
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the identification, 𝐶_𝑆(𝑚,𝑟) ≡ Ω(𝑞,𝑁), see Eq. (23) and 𝑚, 𝑟, (𝑚′, 𝑟′) are 

related by Eq. (7). From (12): 

 𝛥𝑆{𝑠𝑡𝑎𝑡}

𝑘
=  ln (𝐶_𝑆(𝑚′ ,𝑟′)/𝐶_𝑆(𝑚 ,𝑟)) = ln(Ω(𝑞, 𝑁)/Ω(𝑞, 𝑁)) = 0

=
𝛥𝑆{𝑡ℎ𝑒𝑟𝑚𝑜}

𝑘
  

(39) 

The outcome is that 𝐶_𝑆(𝑚 ,𝑟), is appropriate as v-measure. See Hemmo 

and Shenker (2012) Section 7.2, pp. 157, 158. A more rigorous 

demonstration follows right below. 

In statistical mechanics entropy can be defined for any macrostate and 

not specifically in equilibrium. By application of (1), (2) we get: 

 𝑆

𝑘
= (𝑆𝑅 + 𝑆𝐿)/𝑘 = 𝑁 ln(𝑒𝑇𝑅) + 𝑁𝐿 ln (

𝑇𝐿
𝑇𝑅
)  

(40) 

 

Let us consider that we have an evolution from a macrostate A in 

equilibrium to a macrostate B, also in equilibrium. According to 

thermodynamics it must be, 𝑇𝛢 = 𝑇𝐿,𝛢 = 𝑇𝑅,𝛢 ^ 𝑇𝐿,𝛣 = 𝑇𝑅,𝛣 = 𝑇𝛣. In 

statistical mechanics when the previous Eq. is satisfied, we have 

additionally that 𝑇𝐴 =
𝑞

𝑁
 = 𝑇𝐵, (see Eq. (8)). The variation of the 

statistical entropy is 𝛥𝑆𝐴→𝛣 = 𝑆𝛣 − 𝑆𝐴, by substituting to Eq. (16) and due 

to (17) is zero. Consequently, starting from the thermodynamic 

perspective (uniform temperature/chemical potential) we infer the 

statistical mechanical notion of entropy. 

In the Section “Gaussian Distribution of the Multiplicity Ω” Eq. (14), (15), 

(16), (17), I established an algebraic relationship for 𝐶_𝑆(𝑚,𝑟). If the 

statistical entropy at equilibrium (𝑑𝑆 =  0 ⇒  𝑆 = 𝑚𝑎𝑥.), i.e., Eq. (7), (17) 

is valid, we also have that 𝑇𝐴 =
𝑞

𝑁
 = 𝑇𝐵, Eq. (8), we end up in the 

validation of the thermodynamic version (as I outlined there). 

In conclusion, I proved that the statistical mechanical notion of 

equilibrium is equivalent to its thermodynamic counterpart in the case 

that we examine.  

Alternative Approach. 

In this alternative approach (which is wrong according to Hemmo & 

Shenker (2012), Section 9.2, p. 194: “…in classical mechanics there are 

no microscopic measurements: a classical account of measurements 

has to be carried out in terms of macrostates.”). 
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The number of energy quanta (eigenvalue n) of the average-energy-

QHO(s) are given by the equation 𝑘𝑇 =  〈𝑛〉ℎ𝑓 see Aliferis (2023), Eq. 

(5.5.8), (5.5.9). Consequently, the number of energy quanta determines 

whether a QHO belongs to L or R among comparison with 〈𝑛〉. This 

implies that we gradually broaden the temperature difference between 

𝑇𝐿 , 𝑇𝑅, as it is the case in the original version of Maxwell’s Demon for an 

ideal gas. 

The Observer. 

The observer (henceforth abbreviated as O) is an entity that according 

to the theory of psychoanalysis resides within the ego, see “The Ego 

and the Mechanisms of Defence”, by Anna Freud, Karnac Books 

(1993), pp. 6-10. To the best of my knowledge, O lacks a precise 

definition in the theory of psychoanalysis.  

O in physics is equipped with memory and the ability to conduct 

measurements over the ES (ego or more generally the Cs.). O 

processes and manipulates information. The physical interaction 

between O and the ES is negligible. 

According to Hemmo and Shenker (2012), Section 5.8, O is physically 

corelated both with the environment and the isolated system, the part of 

the ego (or ES) in our case, that contains ideas and libido. At least in 

the latter case corelation occurs after a measurement takes place. This 

means that O links the environment with the mental apparatus. Thus, 

the ego in its abstract version (O, ES) will not be considered as being 

isolated from the environment.  

Physicalism. 

Physicalism dictates that the mental apparatus is physical. I.e., since 

the mental apparatus is a conceivable entity then as such it is in space 

and time. This does not necessarily mean that the material counterpart 

of the mental apparatus is a coherent physical system or has any 

physically useful sense as it was intendent. Just that it is in the universe 

as any other thought entity. 

The Ego as an Open System. 

An open system according to physics does exchange energy and 

matter with its surroundings. 

My objective was to depict the abstract model of the mental apparatus 

as defined in the theory of psychoanalysis, to that of a valid abstract 

model in theoretical physics, i.e., to make psychoanalysis (and 

consequently psychology) scientific in an abstract level.  
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However, in an abstract model of the mental apparatus (may it be 

according to theoretical physics or psychoanalysis) the concepts and 

the attributes of libido and ideas may not have any 

physical/spatial/bodily equivalents, may it be energy and “particles” 

(energy carriers) as Freud requested in the “Project”. For instance, it 

seems that it could be difficult to depict ideas (abstractly defined as 

QHOs in my approach) to any somatic counterpart.  

Still, there could be place for a depiction of the abstract to the material 

even without a detailed correspondence between their respective 

constituents. It would be necessary though for the bodily representation 

of the mental apparatus to be somehow located and confined in 

physical space and time and to specify its boundaries, the precise way 

of inner functioning, and furthermore interacting with its environment. 

Such a proof is beyond the scope of the present research, and I am 

unaware of its existence by the time of this writing. 

The above analysis does not contradict what was mentioned in the 

Sections “The Observer” and “Physicalism”. 

Deviation from Thermal Equilibrium. 

I examine the deviation from equilibrium by a gradually 

increasing/decreasing temperature difference |𝛥𝑇| = |𝑇𝐿 − 𝑇𝑅| between 

the compartments L, R. This can be considered as a deviation contra 

the Second Law when occurring, e.g., by a fixed 𝑟, see Eq. (16). 

It would be very helpful to refer to the Section “Statistical Mechanical 

Treatment of the Classical and Quantum Harmonic Oscillators” for an 

introductory physical study of what follows. 

Given an arrangement of QHOs between the two distinguishable 

compartments, L, R, there can be, in an algebraically valid way, heat 

transfer against the Second Law (as defined by Clausius).    

The second approach that has to do with deviation from equilibrium is 

Maxwell’s Demon as described by Hemmo and Shenker (2012), 

Chapter 13 and in the present research in the Section “Maxwell’s 

Demon”. In this (second) approach deviation from equilibrium does not 

have to do directly with temperature difference (or heat transfer) 

between the two compartments L, R. Instead, it is based on a v-

measure decrease in each cycle of operation. 

According to Hemmo and Shenker (2012), Section 2.4, we are allowed 

to consider both approaches as equivalent as for the invalidity of the 

Second Law. This means that the later objection to the Second Law 

implies that we have the right to consider as valid and the former 
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objection, i.e., that |𝛥𝑇| can increase, e.g., given a specific arrangement 

of the oscillators between L, R, i.e., by keeping 𝑟 constant. That is 

because the two definitions of the Second Law are equivalent. “Since 

the entropy formulation assumes those of Kelvin and Clausius, and the 

formulations of the Second Law by Kelvin and Clausius, in turn, can be 

derived from the entropy formulation of the entropy law, all three 

formulations are equivalent.”, Hemmo and Shenker (2012), Section 2.4. 

As temperature is proportional to the quota of affect, see Aliferis (2023), 

it would seem reasonable to correlate heat transfer contra the Second 

Law between L and R, with “mood imbalance”. 

Measurement in Maxwell’s Demon. 

I describe measurement as applied in the special case of Maxwell’s 
Demon. 
In our case, there is no measuring device D necessary, however for 
reasons of compatibility with Hemmo and Shenker (2012) I do not 
disregard it.  
In what follows the term gas (G) can and should be replaced by the 
term ES without any conflict. 
  

(A)  Pre-measurement. 
 

Initially, before the measurement, O is in some microstate OS and G is 
in the macrostate [L + R] relative to OS. This pre-measurement situation 
is illustrated in Figure 9.2, where the horizontal axis represents the 
states of G, the vertical axis represents the states of D, and, as usual, O 
is perpendicular to the page. The states of these three elements of this 
set up are correlated as follows. (i) The set [S] (initially the Left or Right 
compartment of 𝐶_𝑆(𝑚,𝑟)) is correlated with the microstate OS of O, so 

that O experiences D as being in [S]. (ii) The dynamical set up is such 
that when D is in [S], G is somewhere in the box rather than anywhere 
outside the box. (iii) The microstates of D in [S] are not correlated with 
the position of G in the box, so that O cannot read off from the pre-
measurement state [S] of D whether G is in the left-hand side or the 
right-hand side of the box. At this stage we must point out that 
information is always concerning the macrostate of the system and 
ignorance (with respect to the microstate within that macrostate). 
Conditions (ii) and (iii) together mean that the pre-measurement 
macrostate of D + G (relative to O) is [S, L + R], as illustrated in Figure 
9.2. 

 
(B)  Split 

 
In Figure 9.3, the Lebesgue measure of the union of [0, L] and [1, R] is 
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equal to the Lebesgue measure of [S, L + R]. Notice that at the split 
stage, the relevant macrostates of G are [L] and [R] (and no longer the 
single macrostate [L + R]) because O can distinguish between these 
sets of microstates of G, by looking at D. Once again, the correlations 
between O, D, and G are objective and physical since they are brought 
about by the interactions between these systems and expressed by the 
accessible region which is affected by external constraints and other 
objective limitations. 
 

(C) Outcome 
  
By the end of the measurement, the actual microstate of D+G is either 
in the macrostate [0, L] or in the macrostate [1, R]; and the macrostate 
in which the actual microstate of D + G happens to be is the 
macroscopic outcome of the measurement. Let us now add O’s state to 
this picture. The macrostates [S], [0], and [1] of D, are sets of 
microstates of D that are correlated with three microstates of O, let us 
call them os, o0, and o1, and so the actual microstate of D + G 
determines whether O’s microstate will be o0 or o1. Since, by our 
assumption (discussed in Chapter 5), O’s microstate gives rise to O’s 
experience, by the end of the evolution O has either the experience that 
D is in [0] or the experience that D is in [1]; and from this, together with 
an acquaintance with the correlations between D and G (acquaintance 
which induces O to use D as a measuring device of the position of G), 
O infers whether G’s actual position is in [L] or [R]. Thus, the final state 
is this: either O is in o0 and has the experience that D + G is in [0, L], or 
O is in o1 and has the experience that D + G is in [1, R]. Notice (and this 
will turn out to be important) that since O’s final microstate is correlated 
with the entire macrostate [0, L] (or [1, R], as the case may be), O 
assigns the entire macrostate [0, L] to D + G, so that O describes the 
final state as in Figure 9.6. (O knows that D + G are in [0, L] and no 
probabilities are involved.) 
These are the three conditions that an interaction must satisfy to be a 
measurement. 

Maxwell’s Demon. 

Temporarily neglecting that thermodynamic systems must be 

macroscopical there is a total of 𝛮 × 𝑞 distinguishable macrostates 

(𝐶_𝑆(𝑚,𝑟)) in which the ego/ES can be divided. And that excluding further 

divisions of their L, R, compartments.  

The same statistical mechanical treatment can be applied to each of the 

L or R compartments of every 𝐶_𝑆(𝑚,𝑟). An L or R compartment can be 

considered as a starting point for measurement and repeated cycles of 
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Maxwell’s Demon. In this case instead of 𝑞 we will be having 
𝑞

2
±𝑚 

energy quanta and instead of 𝑁 we will be having 
𝑁

2
± 𝑟 QHOs. 

For ease of presentation, I set the configuration space arbitrarily as 

divided by two after each consecutive measurement. If the number of 

consecutive measurements is 𝑛 then the configuration space is 

arithmetically divided by 2𝑛. The resulting macrostates are also 

considered in equilibrium. 

The Lebesgue measure of the dynamical blob must be equal to the 

Lebesgue measure of the configuration space after 𝑛 consecutive 

measurements, i.e., ‖𝐵(𝑡)‖ ≡
‖𝐵(𝑡0)‖

2𝑛
. Where 𝑡0 is the moment when the 

first measurement occurs. I assume that ‖𝐵(𝑡)‖ is equal to the 

Lebesgue measure of the entire L or R compartment after each 

measurement. Nevertheless, Liouville’s theorem is still valid, see 

Hemmo and Shenker (2012), Section 13.3, pp. 276, 277. 

The probability of every microstate, 𝑃(𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒), after each consecutive 

measurement is: 

 
0 ≤ 𝑃(𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒) =

2𝑛

‖𝐵(𝑡0)‖
≤ 1 ⇒ 

⇒ 0 ≤ 𝑛 ≤
ln(‖𝐵(𝑡0)‖)

ln 2
 

(41) 

 
This means that the probability of occurrence of each microstate 
(mental state) increases exponentially by each consecutive 
measurement. On the opposite, the number (quantum mechanically) of 
the microstates decreases exponentially.  
 
Classically the configuration space (R)elatively ("𝑅𝐶_𝑆") to its initial size 

(‖𝐵(𝑡0)‖), is decreasing exponentially in every cycle of Maxwell’s 
Demon. 
 
 

𝑅𝐶_𝑆 =
2(−𝑛)‖𝐵(𝑡0)‖

 ‖𝐵(𝑡0)‖
= 2(−𝑛) 

(42) 

 
 
Psychologically, the last two paragraphs mean that the measure of 
“options” and “choices” in the mental apparatus of the patient has 
declined.  
 
“Idealization is the other defence important to note in depressive 

patients. Because their self-esteem has been damaged by the effects of 
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their experiences (either by feeling chronically empty or feeling secretly 

bad), the admiration with which they view others is correspondingly 

increased. Self-perpetuating cycles of holding others in excessively high 

regard, then feeling diminished in comparison, then seeking idealized 

objects to compensate for the diminution, feeling inferior to those 

objects, and so on, are typical for depressive people.”. N. McWilliams, 

“Psychoanalytic Diagnosis”, The Guilford Press (2011), p. 240.  

From the analysis above I imply that we may assume that Maxwell’s 

Demon may also apply to the cycles observed in bipolar disorder. 

Hemmo and Shenker (2012), Section 12.8 p. 268: “It is clear that 

blending does not erase the memory of O. Blending only prevents 

inferring the actual macrostate in the past [𝑀1] or [𝑀2] from the present 

macrostate regardless of whether or not O remembers the past 

macrostate.”. I assume that the patient does not necessarily forget the 

past macrostate after each cycle of operation of Maxwell’s Demon.  

The rest of the treatment of Maxwell’s Demon for an ES and O can be 
found approximately intact for the case that I examine, see Hemmo and 
Shenker (2012), Chapter 13. 
 

Psychoanalytic Notes. 

“Neurosis is the result of a conflict between the ego and its id, whereas 

psychosis is the analogous outcome of a similar disturbance in the 

relation between the ego and the external world […] Transference 

neuroses correspond to a conflict between the ego and the id; 

narcissistic neuroses, to a conflict between the ego and the super-ego; 

and psychoses to one between the ego and the external world.”. S. 

Freud (1924), “Neurosis and Psychosis”. 

“Now this means that the proper field for our observation is always the 

ego. It is, so to speak, the medium through which we try to get a picture 

of the other two institutions. When the relations between the two 

neighboring powers —ego and id—are peaceful, the former fulfills to 

admiration its role of observing the latter. […] Unfortunately the passing 

of instinctual impulses from one institution to the other may be the 

signal for all manner of conflicts, with the inevitable result that 

observation of the id is interrupted.”. “The Ego and the Mechanisms of 

Defence”, by Anna Freud, Karnac Books (1993), p. 6. 

The number of ideas (𝑁) and the number of energy quanta (𝑞), of the 

Cs. is conserved. This is justified from the last two paragraphs. For the 

mental apparatus it means that we have the option not to examine any 

interaction with the Ucs. when deviation from equilibrium and 
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observation occur. Allow me to note that “mood imbalance”, i.e., 

deviation from thermal equilibrium, may occur without libido (energy) 

influx or withdrawal from the Ucs. (reservoir). 

The Ucs. was defined as the reservoir coupled to the ES, or ego, in the 

grand canonical ensemble. See Aliferis (2023).  

The size of the configuration space expresses the number, multiplicity 

(Ω), of the arrangements of 𝑞 energy quanta over the 𝛮 ideas (QHOs) of 

the ego (ES). I.e., the number of all possible mental states. Each mental 

state is defined as a microstate (arrangement). Each microstate is 

represented by a point in the classical phase space. It 

(microstate/mental state) belongs to a macrostate part of the ES/ego. 

See Figure 5.6, Section 5.4, Hemmo and Shenker (2012).  

I assume the Past Hypothesis: “(1) Our memories are reliable.” and “(2) 

The contents of our memories are that the entropy in the past was lower 

than it is at present”. Hemmo and Shenker (2012), Section 10.3, p. 216. 

I additionally assume, that the thermodynamic notion of entropy 

corresponds to exploitability of energy despite the fact that, “…the 

thermodynamic notion of entropy will no longer correspond to 

exploitability of energy. In other words, in a Demonic world, in which 

Maxwellian Demons exist, the very definition of entropy will have to 

change: the size of a macrostate will no longer be inversely correlated 

with the degree of exploitability of energy.”. Hemmo and Shenker 

(2012), Section 7.12, p. 180. An important comment here is that the 

patient cannot redeem his increasingly exploitable energy (in a 

thermodynamically or statistical mechanically valid way) in every 

consecutive cycle of Maxwell’s Demon. (See also the notion of 

“omnipotent control.”). The only exception here may be the second case 

about observer “Tami” see below. 

“The fact that in Lanford’s theorem, and in all attempts to underwrite the 

thermodynamic regularities by mechanics, the direction of time has to 

be inserted by hand, is no accident, and cannot be avoided, owing to 

the time symmetry of mechanics.”. Hemmo and Shenker (2012), 

Section 7.12, p. 178. 

I consider the following two cases: 

1. “Tami will fail in her predictions time and again. If she adheres to 

the theorem despite these failures, she will conclude that her 

actual trajectory is atypical: despite the high likelihood of entropy 

increase, she happens to experience the unlikely cases, 

repeatedly. But such a consistent failure will happen only if Tami 

adopts the measure 𝜌 of probability and the measure 𝜈 of entropy 
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that fit our experience.” Hemmo and Shenker (2012), Section 

7.12. In conclusion, deviation from equilibrium is unwanted by the 

patient.  

2. “…If she replaces them with measures that reflect the relative 

frequencies that she observes and the degree to which she can 

exploit energy, her theory will be good and useful – albeit anti-

thermodynamic relative to our measures.” Hemmo and Shenker 

(2012), Section 7.12. The patient is in agreement with the 

deviation from equilibrium. 

Findings. 

If psychoanalytic theory correctly describes psychoses, then Maxwellian 

Demons do exist in nature.  

According to the current research the ego can be considered as 

correlated with the environment in agreement with the Reality Principle. 

The equivalence of the three formulations of the Second Law in 

thermodynamics and the counterexample of Maxwell’s Demon imply a 

theoretical unification of the definitions of the spectrum of psychoses. 

Propositions for further interdisciplinary study.  

The notion of the “observer” in psychoanalysis. Reality Principle and the 

correlation of the observer both with the environment and the isolated 

system of ideas and libido. 

Reality Principle and exploitability of energy. 

The ego as encapsulating the observer and the isolated system of ideas 

and libido. Ego, “identification” and their connection to the concepts of 

microstates, macrostates, dynamical blob and measurement. 

Maxwell’s Demon may be related to pathological splitting of the ego. 

The arrow of time and regression. 

“Omnipotent control” and information, exploitability of energy. 

The psychological mechanism of “undoing” and the concept of erasure, 

as defined in Hemmo and Shenker (2012), Chapter 12.  
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