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Abstract 

    A derivation of the Darwin term is given based on assuming a non-spherical charge 

distribution.   The total translational energy of the system is obtained for a static electric field and  

the corresponding quantum equation is found to contain the Darwin term under certain 

conditions. 

 

I. Introduction. 

   If we make a non-relativistic expansion of the Dirac equation, one of the terms in the  

expansion is the Darwin term, (for example see Sakurai1).    It is named for C. G. Darwin2  

who first investigated it.   It takes the form −
𝑞ħ2

8𝑚2𝑐2
𝛁 ⋅ 𝑬 where 𝑬 is the electric field, m is the  

mass of the particle, q its charge, and c is the speed of light.  A bold symbol represents a vector. 

   The most common explanation of the Darwin term is that it is an effect due to Zitterbewegung,  

(for example see Sakurai1).  Wilson3 extends this approach by representing the electron as an  

oscillator.   Yu, Henneberger4 propose that it is an extension of the spin-orbit 



term while Fushchych et al.5 show that it can thought of as a non-relativistic effect by 

expanding the Levi- Leblond equation.  Khripolovich and Milstein6 show that the Darwin term  

can be considered of the same origin as the spin-orbit term.  Faber7 shows that it can be  

associated with a random walk.   We show that by using a non-spherical charge distribution it is  

possible to derive it in a way different from the above sources. 

 

II. Charge Distribution 

   Consider a rotating cylindrically symmetric charge distribution in a frame where the angular 

velocity  aligns with the z axis in an x, y, z rectangular coordinate system.  Also take the charge 

density  to be centered at the center of the coordinate system and symmetric with respect to z. 

Call this the primed frame.  We need ∫ 𝜌𝑑𝑉 = 𝑞 where the spatial integral is over the particle.   

Because of the charge symmetry we also have 

 

  ∫ 𝜌𝑥′𝑑𝑉 = ∫ 𝜌𝑦′𝑑𝑉 = ∫ 𝜌𝑧′𝑑𝑉 = 0                                                                            (1a) 

 

  ∫ 𝜌𝑥′𝑦′𝑑𝑉 = ∫ 𝜌𝑥′𝑧′𝑑𝑉 = ∫ 𝜌𝑦′𝑧′𝑑𝑉 = 0                                                                   (1b) 

 

In this frame we then define the values 𝑄1and 𝑄2 by the relations 

 

   𝑄1 = ∫ 𝜌𝑧′2𝑑𝑉                                                                                                            (1c)   

 

   𝑄2 = ∫ 𝜌𝑥′2𝑑𝑉 = ∫ 𝜌𝑦′2𝑑𝑉                                                                                         (1d) 

 

Note that 𝑄1and 𝑄2 are similar to the moment of inertia for a mass distribution, but are 

defined in terms of the charge density instead of the mass density.   In general for a rotating 



object the charge distribution will not be spherically symmetric but will depend upon the 

angular velocity .   As a result of this 𝑄1 and 𝑄2 will also depend upon . 

   Now we need 𝑄1 = 𝑄2 as  goes to zero, so to second order set 𝑄1 = 𝑄0(1 +  𝛼1𝜔 + 𝛼2𝜔2)  

and 𝑄2 = 𝑄0(1 +  𝛽1𝜔 +  𝛽2𝜔2) for some constants 𝑄0 , 𝛼1 , 𝛼2 , 𝛽1 and  𝛽2 .  We want this to 

be unchanged if we replace  by -, so we need 𝛼1 =  𝛽1 = 0.  To make the units work out  

correctly we can set 𝛼2 = 𝛼
𝐼

𝑚𝑐2 and 𝛽2 = 𝛽
𝐼

𝑚𝑐2 where I is the moment of inertia of the particle 

and  and  are dimensionless constants.  I is the standard moment of inertia for a mass 

distribution and has units of grams-cm2 (for example see Goldstein8).   Thus we have 

 

       𝑄1 = 𝑄0(1 +  𝛼
𝐼

𝑚𝑐2 𝜔2)                                                                                            (2a) 

 

        𝑄2 = 𝑄0(1 +  𝛽
𝐼

𝑚𝑐2 𝜔2)                                                                                            (2b) 

 

  In general rectangular coordinates 𝑥𝑖, where i = 1,2,3, using eqs. (2a,b), eqs. (1a-d) take the 

 form 

 

     ∫ 𝜌𝛿𝑥𝑖𝑑𝑉 = 0                                                                                                            (3a) 

 

     ∫ 𝜌𝛿𝑥𝑖𝛿𝑥𝑗𝑑𝑉 = 𝑄0((1 +  𝛽
𝐼

𝑚𝑐2 𝜔2)𝛿𝑖𝑗 + (𝛼 − 𝛽)
𝐼

𝑚𝑐2 𝜔𝑖𝜔𝑗)                                (3b) 

 

where 𝛿𝑥𝑖 represents the coordinate distance from the center of the charge. 

   We will consider a current density 𝒋 = 𝜌(𝒗 + 𝝎 × 𝛿𝒙)  where v is the velocity of 

the particle.  The magnetic moment  and g factor are defined by (for example see Jackson9) 

                                                                        



   𝝁 =  
1

2𝑐
∫ 𝛿𝒙 × 𝒋𝑑𝑉                                                                                                        (4)  

 

   𝝁 =  
𝑔𝑞

2𝑚𝑐
𝒔                                                                                                                     (5)   

 

where s is the interior angular momentum of the particle.  If we take 𝒔 = 𝐼𝝎, and use our relation 

for j given above along with eq. (4) and eqs. (3a,b) in eq. (5) we obtain 

 

  𝑄0 =  
𝑔𝑞

2𝑚
𝐼(1 −  𝛽

𝐼

𝑚𝑐2
𝜔2)                                                                                            

 

to order 1/c2.  The  term cancels out.   The moment of inertia can also be a function of 𝜔2 so set  

𝐼 =  𝐼0(1 +  𝛾
𝜔2

𝑐2 ) for some constants  and 𝐼0, so to order 1/c2 

                                                                                                  

𝑄0 =  
𝑔𝑞

2𝑚
𝐼0(1 + 𝛾

𝜔2

𝑐2 −  𝛽
𝐼0

𝑚𝑐2 𝜔2)                                                                              

 

In order for 𝑄0 and 𝐼0 to be independent of  we need 𝛾 =  𝛽
𝐼0

𝑚
  so that 

 

  𝑄0 =  
𝑔𝑞

2𝑚
𝐼0                                                                                                                                (6) 

 

III. Equations of Motion and Quantization 

   Now consider the translational equation of motion with only a static electric field E. 

 

   𝑚
𝑑𝒗

𝑑𝑡
=  ∫ 𝜌𝑬𝑑𝑉                                                                                                                       (7)  

 



  Expanding E in a Taylor series about the center of the particle we have 

 

  𝑬 = 𝑬0 + (𝛿𝒙 ⋅ 𝛁)𝑬0 +  
1

2
(𝛿𝒙 ⋅ 𝛁)2𝑬0                                                                                     (8)                                                                                                

 

where 𝑬0 is E and its derivatives evaluated at the center of the particle, and we have ignored  

terms higher than quadratic in δ𝐱.                                                                       

   Using eq. (8), eqs. (3a,b), and eq. (6) along with the condition ∫ 𝜌𝑑𝑉 = 𝑞 in eq. (7) we obtain  

the relation 

 

  𝑚
𝑑𝒗

𝑑𝑡
= 𝑞{𝑬0 +  

𝐼0

2𝑚
((1 +  𝛽

𝐼0

𝑚𝑐2 𝜔2)∇2𝑬0 + (α − β)
𝐼0

𝑚𝑐2 (𝝎 ⋅ 𝛁)𝟐𝑬0)}                                  (9)         

                                                                                                

where we have ignored terms higher than quadratic in x and dropped terms higher than 1/c2. 

We have also set g = 2. 

   Since we are only considering static electric fields, we can set 𝑬0 = −𝛁𝜙 where  is the scalar  

potential.    Expressing 𝑬0 in this form eq. (9) becomes 

 

  𝑚
𝑑𝒗

𝑑𝑡
= −𝑞𝛁{𝜙 +  

𝐼0

2𝑚
((1 +  𝛽

𝐼0

𝑚𝑐2 𝜔2)∇2𝜙 + (α − β)
𝐼0

𝑚𝑐2 (𝝎 ⋅ 𝛁)𝟐𝜙)}                                 (10) 

 

The right hand side can be viewed as the gradient of a potential so the total energy E of the  

system can be written as 

 

  𝐸 =  
1

2
𝑚𝑣2 + 𝑞{𝜙 + 

𝐼0

2𝑚
((1 +  𝛽

𝐼0

𝑚𝑐2 𝜔2)∇2𝜙 + (α − β)
𝐼0

𝑚𝑐2 (𝝎 ⋅ 𝛁)𝟐𝜙)} 

 

     = 
1

2𝑚
𝑝2 + 𝑞{𝜙 +  

𝐼0

2𝑚
∇2𝜙 +

1

2𝑚2𝑐2 ( 𝛽𝑠2∇2 + (α − β)(𝒔 ⋅ 𝛁)𝟐)𝜙}                                      (11) 



 

where p is the momentum, and again ignoring terms higher than 1/c2. 

    We will quantize the system by expressing the energy in eq. (11) as an operator by replacing p 

by −𝑖ħ𝛁 and s by 
1

2
 ħ𝝈 where  are the Pauli spin matrices in vector form (for example see  

Saxon10) so that our Schrodinger type equation takes the form 

                                                                        

  𝑖ħ
𝜕𝜓

𝜕𝑡
= [−

ħ2

2𝑚
∇2 + 𝑞{𝜙 +  

𝐼0

2𝑚
∇2𝜙 +  

ħ2

8𝑚2𝑐2 (𝛽𝜎2∇2 + (𝛼 − 𝛽)(𝝈 ⋅ 𝛁)𝟐)𝜙}]𝜓 

 

           = [−
ħ2

2𝑚
∇2 + 𝑞{𝜙 +  

ħ2

8𝑚2𝑐2 (2𝛽 + 𝛼)∇2𝜙}]𝜓                                                              (12) 

                                                                      

We have used the properties of the  matrices so that 𝜎2 = 3 and (𝝈 ⋅ 𝛁)𝟐 =  ∇2 and have taken 

the limit of 𝐼0 going to zero.    If we think of a rotating object then as  increases the equator  

moment should expand and the moment parallel to  should reduce in size.   Therefore  should  

be positive and  negative.   If we set −𝛼 = 𝛽 = 1 we obtain the Darwin term. 

     

Conclusion. 

  One interesting thing about this derivation is that the 1/8 in front of the Darwin term comes out  

naturally,  although there is no apparent reason why 2+ should be 1.   The other 𝑐−2  

corrections in the non-relativistic expansion of the Dirac eq., the spin-orbit and relativistic mass 

correction terms, are due to a relativistic correction to the velocity while in our case the Darwin 

term appears to be a relativistic correction to the spin. 

   Instead of including the rotational equations and using a finding a Lagrangian for the whole 

system, the translational energy has just been used.  It turns out that if we try to find a  

Lagrangian for the translational and rotational equations we run into problems.    



  In spite of these assumptions it is interesting that the Darwin term can be obtained by using a  

non-spherical charge distribution, and perhaps a more sophisticated derivation will lead to a 

better understanding. 
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