
Deterministic Structures in Gravitational Fields: A Unified Model

Bridging Black Hole Singularities and Quantum Topology

Alfonso De Miguel Bueno∗

September 30, 2024

Contents

1 Introduction 1

2 Model Description 2

3 Other Diagrams 6

Abstract

This paper presents a deterministic model that uni-
fies gravitational, strong, weak, and electromagnetic
interactions by examining the intersection of gravita-
tional fields. These fields, which expand and contract
periodically, create a shared nucleus of subfields char-
acterized by complementary topological transforma-
tions. Within this framework, singularities are rein-
terpreted as abrupt curvature discontinuities, linking
phenomena across quantum and cosmic scales. The
model offers insights into energy and density trans-
fer and information preservation. It explores connec-
tions to dark matter, reflection positivity, the mass
gap problem, and Hodge cycles, providing a pathway
to understand the breakdown of General Relativity
in both atomic and black hole structures.

1 Introduction

In 2020, Roger Penrose was awarded the Nobel Prize
in Physics for his work demonstrating the existence of
black hole singularities—points of extreme curvature
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where density and gravity become infinite—within
the framework of Einstein’s General Relativity.

Although it remains a theoretical model, Penrose
mathematically demonstrated that the gravitational
collapse of massive stars leads to a process of ex-
treme compression, culminating in the formation of a
curvature singularity where density and the gravita-
tional field reach infinity, resulting in the creation of
a black hole. Other researchers, such as Kip Thorne,
have modeled black hole formation by studying bi-
nary black hole mergers and the resulting gravita-
tional waves.

Mathematically, singularities are characterized as
points where a curve abruptly changes direction or
sign, forming a sharp cusp where a tangent cannot
be defined. Such a singular point is described as a
point-like region of undefined or infinite curvature.

Within the framework of General Relativity, which
models gravity as a consequence of spacetime curva-
ture, such a curvature singularity represents a point
where gravitational forces become infinitely strong.
This leads to a breakdown of the laws of General
Relativity, highlighting the need for a more compre-
hensive theory to fully describe the behavior of space-
time in the presence of curvature singularities, which
are considered extreme conditions.

The static universe model, prevalent at the begin-
ning of the 20th century, was a foundational assump-
tion in Einstein’s original General Relativity the-
ory. To maintain a static gravitational field, Einstein
introduced a cosmological constant — an outward-
pushing force — to compensate for the inward grav-
itational pull caused by spacetime curvature.

However, in 1922, Alexander Friedmann developed
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solutions to Einstein’s General Relativity equations
that demonstrated that the universe, as a curved
spacetime manifold, could be dynamically changing
— either expanding or contracting — instead of being
static. Friedmann’s solutions showed that, depend-
ing on the universe’s density and the cosmological
constant, different evolutionary scenarios involving
contraction and expansion were possible, laying the
groundwork for modern cyclic cosmology.

2 Model Description

In this paper, we propose a novel model in which
black holes emerge from the intersection of two merg-
ing gravitational fields whose curvature periodically
varies in or out of phase. This intersection forms
a nucleus composed of two vertical and two trans-
verse gravitational subfields, which are characterized
as black holes with an inner singularity point where
gravitational forces remain finite.
Additionally, the model posits that similar singu-

larities exist in the curvature of subatomic field parti-
cles, being integrated into the nucleus proposed by a
deterministic dual atomic model formed by two inter-
secting gravitational fields varying in or out of phase.
Under this framework, black holes and sub-

atomic particles share identical topological struc-
tures, wherein curvature singularities involve abrupt
changes in sign or direction. These singularities con-
trast with the gradually changing, smooth curvature
predicted by General Relativity, possibly resulting in
the failure of Einstein’s equations.
Conceptually, our model shares a link with Gerard

’t Hooft’s work, particularly in exploring connections
between black holes and subatomic particles through
a deterministic framework, although it differs in both
approach and results.
The intersecting gravitational fields produce two

vertical and two transverse subfields. The vertical
subfields resemble inverted cones of light meeting
at their apex, while the transverse subfields resem-
ble mirrored regions connected at a cusp singularity.
This apex marks the intersection of the gravitational
fields, creating regions of positive, negative, or mixed
curvature.

Figure 1: Singularities in the symmetric system when
both intersecting fields contract.

In string theory, curvature singularities emerge as
Calabi-Yau conifold cusps, with various mechanisms
proposed to resolve the resulting infinities by intro-
ducing extended fundamental objects and extra di-
mensions to smooth spacetime curvature, aiming to
unify quantum mechanics and General Relativity.

We relate the transverse subfields and their singu-
larities to topological features such as conifold sin-
gularities and Calabi-Yau transverse regions, akin to
those in string theory, though our approach to com-
pactifying additional dimensions is distinct. This
framework maintains finite gravitational forces at sin-
gularity points, offering a unified view of spacetime
geometry.

Our model conceptualizes the transverse subfields,
their singularities, and elliptic orbits as curved,
”trapped” folds within a dual system, providing a
relativistic interpretation of their hyperdimensional-
ity. Additional spatial coordinates are necessary to
describe the transverse subfields because their Y-axis
would be considered from the perspective of their
host gravitational fields as a diagonal, introducing
dilation or contraction in the resultant measures of
space and time. Additionally, a second time dimen-
sion is needed to describe the differences in phase be-
tween the nuclear subfields and their respective hosts,
or the different phases between the mirror subfields
when antisymmetry is introduced.

With opposite phases, the upper vertical subfield
will move right or left toward the side of the host
field that contracts. Moving leftwards, that subfield
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will act as an electron. The pushing force generated
by the outer positive side of its left curvature when
moving left is interpreted as an electric charge. On
the right side of the system, that vertical subfield will
exist as a virtual particle; that is, it will not currently
exist but will later appear as a positron subfield mov-
ing rightwards when the left field expands and the
right contracts.

Figure 2: Atmic model: Antisymmetric system.

The pendular displacements of this subfield allow
us to describe it as a Majorana antiparticle, a particle
that is its own antiparticle at different times.

The inner curvature of this vertical subfield is
formed by two negative curvatures united by a cusp
point; it also can be considered as a single negative
curvature that abruptly changes direction at its cen-

tral singularity point.
Simplifying its curvature in a 2D model, we can

say that acting as a positron, when the right field
expands and the left one expands, the subfield’s right
side curvature is formed by the negative curvature
inside the right-handed half part of the left expanding
field, and the subfield’s left curvature is formed by the
negative side of the curvature inside the left half part
of the right contracting field.

At that same stage, when the right field contracts
and the left one expands, the right transverse sub-
field receives a double pushing force that contracts
it: one caused by the positive outer side of the right-
handed half part of the left expanding field, and an-
other caused by the inner negative curvature of the
left half part of the right contracting field. At that
moment, the left transverse subfield does not exhibit
symmetry because it will be experiencing a double de-
compression: Its upper positive curvature will move
rightwards because it is formed by the outer side of
the half part of the right contracting field; and its
bottom negative curvature will also move right be-
cause it is formed by the negative side of the right
half part of the left expansive field.

The subfield that contracts increases its inner ki-
netic orbital energy and its mass density, creating a
stronger bond that unites the system. The subfield
that expands decreases its inner kinetic energy and
its mass density, representing a weaker bond in the
interactions that allow the nucleus and the whole sys-
tem to remain united.

When the left field contracts and the right one
expands, the left transverse subfield will contract,
reaching mirror symmetry with the previous stage of
the right transverse contracting subfield, which now
will be expanding.

The left expanding transverse subfield at moment 1
will be the mirror antiparticle of the right expanding
transverse subfield at moment 2; and the left con-
tracting transverse subfield at moment 2 will be the
antiparticle of the right contracting subfield at mo-
ment 1. These would be Dirac antiparticles.

These topological transformations represent an os-
cillatory flux of transfer density and energy between
the left and right sides of the system.

In this antisymmetric system, the singularity point
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will move left or right of the center of the system,
toward the side of the fields that contract.
In the context of this dual atomic model, the right

transverse contracting subfield is predicted to be a
contracting proton that decays into a neutrino when
expanding; the right expanding transverse subfield is
proposed to be an antineutrino that becomes an an-
tiproton when contracting. Neutrons are character-
ized in this model as the neutral stage where the neg-
ative and positive sides of the system annihilate their
charges because the vertical subfields pass through
the vertical axis that determines the center of the
system, and the transverse subfields exhibit the same
shape and density during the short moment when the
left and right fields have the same curvature while
contracting and expanding (or expanding and con-
tracting).
Antisymmetry is introduced in the system because

of a delay in the phase of one of the intersecting fields.
This implies the necessity of an additional time di-
mension represented by a coordinate that moves—in
a type of Wick rotation—from the imaginary coordi-
nate Y to a purely imaginary coordinate represented
by a diagonal axis.
As the vertical subfield cannot simultaneously be

at the left and right sides, and the transverse sub-
fields cannot be simultaneously expanding or simul-
taneously contracting, they can be considered gov-
erned by an exclusion principle. Considering Pauli’s
principle in the context of mirror symmetry or an-
tisymmetric field-particles, we could state that the
four subfields in this antisymmetric system would be
fermions.
When the phases of the intersecting fields synchro-

nize, the upper central subfield will move upwards
while contracting, receiving a double inward force
caused by the negative side of the left half part of
the right field’s curvature, and by the negative side
of the right half part of the left field’s curvature. The
singularity point will move upwards through the cen-
tral Y axis. The double force of compression would
cause an upward pushing force that can be inter-
preted as Hawking radiation in the context of cosmo-
logical black holes, a pulsation that emits a photon
in an atomic realm.
When a moment later both intersecting fields ex-

Figure 3: Symmetric system: subatomic particles.
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pand, the vertical subfield will expand moving down-
wards, losing its inner density and slowing its inner
kinetic orbital energy. This decay that occurs in the
concave side of the system does not imply a loss of
information because an equivalent inverted force will
emerge at the convex side of the system, where an in-
verted cone of light with a double positive curvature
connected by the singularity point receives the com-
pression caused by the positive side of the right half
part of the left expanding field, and by the positive
side of the left half part of the right expanding field.
This inverted pulsation would cause an antiphoton.
Photon and antiphoton would follow the Exclusion
principle.
However, in the symmetric system, the transverse

subfields have chiral symmetry; they simultaneously
contract or expand, being interchangeable under ro-
tation. As the left and right transverse subfields
simultaneously contract or simultaneously expand,
their states of being contracting or expanding would
not be ruled by the Pauli Exclusion Principle, being
characterized as bosons.
Individually considered, each intersecting field has

a smooth curvature with no singularity; if they were
separately considered black holes, they would fit with
Kerr’s statements about the non-mandatory exis-
tence of singularities in black holes.
However, considered as a system, it can be said

that although singularity points exist inside the
”trapped” transverse subfields and in the vertical
subfields, a singularity point does exist on the outer
side of the black hole systems, below Penrose’s event
horizon, representing a counterexample to Penrose’s
censorship conjecture.
The inner singularity of the subfield placed at the

convex side of the system will be seen naked by an ob-
server at a distance looking at the convex side of the
black hole system. Its inner kinetic energy and ma-
terial density will be considered dark by an observer
placed in the concave side of the system.
Initially, it can be thought that the dynamics of

the system can be described by two separate func-
tions: a complex differential function that describes
the evolution of the symmetric system, and a com-
plex conjugate differential function which describes
the evolution of the antisymmetric system. Even

Figure 4: Singularities in the symmetric system when
both intersecting fields expand.

if they synchronize and desynchronize periodically,
those smooth and continuous transformations would
respond to the traditional continuity of classical wave
mechanics. Then, where does the quantum behaviour
originate from?

By representing the pushing forces caused by the
inner or outer curvatures of the expanding or con-
tracting fields with eigenvectors of value 1 or -1, and
representing those eigenvectors as the elements of a
set of 2x2 complex rotational matrices, the evolution
of the vectors indicates an interpolation between the
symmetric complex and the antisymmetric complex
conjugate moments of a rotational system:

Figure 5: Rotational system: eigenvectors evolu-
tion interpolates the symmetric and the antisymmet-
ric systems.

A first symmetric stage where both intersecting
fields contract. A second antisymmetric stage where
the right field contracts and the left expands. A third
symmetric stage where both intersecting fields ex-
pand. A fourth antisymmetric stage where the left in-
tersecting field contracts and the right expands. The
nuclear transformations in curvature through these
stages imply a total of 4x4=16 singularities, which
relates this composite model with a Kummer-type
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surface and thus with algebraic geometry.
Along with the abrupt changes in the smoothness

of the curvature of the nuclear subfields, the discon-
tinuity derived from that unexpected interpolation
may be interpreted as a quantum jump in the con-
tinuous development of a classical wave function.
A larger mathematical background has been added

to the model in a previous paper Bueno [2023a], char-
acterizing the curvature singularities with Gorenstein
theory, illustrating with the curvature singularity the
mass gap problem and reflection positivity, and de-
scribing the interpolation of the symmetric and an-
tisymmetric transformations of the nuclear subfields
as Hodge cycles related to Tomita-Takesaki theory.

3 Other Diagrams

Figure 6: Singularities in the antisymmetric system:
Reflection positivity.

Keywords: black holes, singularities, Cosmic
Censorship Conjecture, intersecting gravitational
fields, information paradox, mirror symmetry, strong
and weak interactions, electromagnetic interactions,
naked singularities, quantum field theory, General
relativity, Gorenstein singularities, Hodge cycles,
Kummer surfaces, T-duality, reflection positivity,
SYZ conjecture, mass gap problem.
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