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Abstract

In this article, the author inquires into a new property for a set of numbers containing the
Sheldon prime as the first term that allows to calculate summations just by solving a simple
multiplication.

1 Introduction

In [1] the authors propose that 73 is a unique number due to the rare properties it possesses, creating
the concept of a “Sheldon Prime” and conjecturing it was the only number with all these properties.
In [2] Carl Pomerance and Chris Spicer proved this conjecture, thus establishing that 73 is the only
number that fulfill these properties, and consequently, that it is the only Sheldon prime.
In the current article, it is shown an interesting new property of the Sheldon prime, which is also
shared with a set of numbers.

The idea of this new property comes from analyzing the result of
∑73

i=1 i and noticing that 2701 is,
surprisingly, 73× 37; which is interesting due to the fact that 37 is rev(73), where rev(n) is the integer
which has the same digits as n but in the reverse order.

2 How does the property work?

To begin with, let us define a generic natural number n with b digits where ai is the ith digit as

n = 10ba0 + 10b−1a1 + 10b−2a2 + ...+ 102ab−2 + 10ab−1 + ab. (1)

The numbers that have this new property satisfy that
∑n

i=1 i = n× rev(n)

In the previous example where n = 73,
∑73

i=1 i = 73× 37
We know that 73 fulfills this property, but how many other numbers than 73 have this property

Theorem: There is an infinite set of numbers that have this property

Demonstration:
Using the same notation as above, allow us to denote rev(n) as

rev(n) = 10bab + 10b−1ab−1 + 10b−2ab−2 + ...+ 102a2 + 10a1 + a0 (2)

To obtain an equivalent expression, we can use the ”Gauss’s summation trick” which allows us to
rewrite

∑n
i=1 i as

n+1
2 . This gives us (3), showing that this property only works for numbers that are

equal to two times its reverse number minus 1.

n∑
i=1

i = n× rev(n) → n(n+ 1)

2
= n× rev(n) → rev(n) =

n+ 1

2
→ n = 2rev(n)− 1 (3)
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Now, we can analyze which numbers verify this property.

In the first instance, without doing any calculations, we can ensure that n cannot be a palindromic
number because rev(n)=n.

We also discard number 1 because although rev(1) = 1+1
2 , its reverse is equal to itself rev(1) = 1

The rest of one-digit numbers are all discarded because, as number 1, their reverses are themselves
(and obviously not equal to the double of themselves minus 1).

With the information we have at this point, it is possible to assure that the numbers with this property
have at least two digits.

3 The first digit

Let us start by focusing on the first digit:

As it is written above being n = 10ba0 + ...+ ab → rev(n) = 10bab + ...+ a0

Then, according to the property mentioned rev(n) = n+1
2 , therefore, for the last digit of rev(n) which

is a0 we can say that a0 = ab+1
2 → 2a0 − 1 = ab.

Considering that every ai can only adopt integer values from 0 to 9, if a0 > 5 → ab will have two
digits, which is not allowed. To avoid this case, we can eliminate the last digit and isolate the first
digit using this formula: ⌊ 2a0−1

10 ⌋ × 10

Then we can subtract the first digit to ensure that ab will have just one digit:

2a0 − 1− ⌊2a0 − 1

10
⌋ × 10 = ab (4)

Let us use a table to analyze the possible values:

Table 1: Calculation of the possible ab values depending on the a0 values.

a0 calculation ab

0 2× 0− 1− ⌊ 0−1
10 ⌋ × 10 = 2× 0− 1− 0 −1

1 2× 1− 1− ⌊ 1−1
10 ⌋ × 10 = 2× 1− 1− 0 1

2 2× 2− 1− ⌊ 2−1
10 ⌋ × 10 = 2× 2− 1− 0 3

3 2× 3− 1− ⌊ 3−1
10 ⌋ × 10 = 2× 3− 1− 0 5

4 2× 4− 1− ⌊ 4−1
10 ⌋ × 10 = 2× 4− 1− 0 7

5 2× 5− 1− ⌊ 5−1
10 ⌋ × 10 = 2× 5− 1− 0 9

6 2× 6− 1− ⌊ 6−1
10 ⌋ × 10 = 2× 6− 1− 10 1

7 2× 7− 1− ⌊ 7−1
10 ⌋ × 10 = 2× 7− 1− 10 3

8 2× 8− 1− ⌊ 8−1
10 ⌋ × 10 = 2× 8− 1− 10 5

9 2× 9− 1− ⌊ 9−1
10 ⌋ × 10 = 2× 9− 1− 10 7

As we can see in the table, ab is always an odd number.
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4 The last digit

Let us study now the last digit.

Returning again to the property which sets up that being n = 10ba0+...+ab and rev(n) = 10bab...a0 →
rev(n) = n+1

2 , it is easy to see that the first digit of n (a0) it would be the double of the first digit of
rev(n) (ab), so permit us write a0 = 2× ab.

As before, ai can only adopt integer values from 0 to 9, and if ab > 5 → a0 will have two digits, which
is not allowed. To prevent this, we use formula 4, but adapted to this case, which looks like this:

a0 = 2ab − ⌊2ab
10

⌋ × 10 (5)

It also has to be considered that the previous digit of a0 (a1) could have more than one digit due to the
multiplication, which will carry over a digit to a0. As ai has to be lower than 10, the maximum carry
it would be 1. To include this in our consideration, allow us to write the formula as 2ab−⌊ 2ab

10 ⌋×10 =
a0 + c|c is the possible carry.

Now, as it is done before, we create a table but taking into account that ab has to be an odd number
between 1 and 9 and that the carry can be 0 or 1.

Table 2: Verification for the possible values of ab.

a0 calculation without carry ab + 0 calculation with carry ab + 1

1 2× 1− ⌊ 2
10⌋ × 10 = 2− 0 2 2× 1 + 1− ⌊ 3

10⌋ × 10 = 2× 2 + 1− 0 3

3 2× 3− ⌊ 6
10⌋ × 10 = 6− 0 6 2× 3 + 1− ⌊ 7

10⌋ × 10 = 6 + 1− 0 7

5 2× 5− ⌊ 10
10⌋ × 10 = 10− 10 0 2× 5 + 1− ⌊ 11

10⌋ × 10 = 10 + 1− 10 1

7 2× 7− ⌊ 14
10⌋ × 10 = 14− 10 4 2× 7 + 1− ⌊ 15

10⌋ × 10 = 14 + 1− 10 5

9 2× 9− ⌊ 18
10⌋ × 10 = 18− 10 8 2× 9 + 1− ⌊ 19

10⌋ × 10 = 18 + 1− 10 9

5 Comparing the results

As a0 and ab have the same value in both numbers, we can join the tables to analyze the results:

Table 3: Comparison between supposed values of a0 and the theoretical values it would have.

Supposed a0 theoretical ab theoretical a0 without carry theoretical a0 with carry

0 −1 −2 −1

1 1 2 3

2 3 6 7

3 5 0 1

4 7 4 5

5 9 8 9

6 1 2 3

7 3 6 7

8 5 0 1

9 7 4 5
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As we can see, there are only two values for a supposed a0 that match with the theoretical a0. This
automatically discards the rest of the values due to an incongruence.

This means that if n has two digits, it has to be either 47 or 73.

• If n = 47 → 47+1
2 = rev(47)

47+1
2 = 48

2 = 24
rev(47) = 74

• If n = 73 → 73+1
2 = rev(73)

73+1
2 = 74

2 = 37
rev(73) = 37

After doing the verification, it seems that 47 does not fulfill this property, therefore, we can conclude
that all the numbers with this property will look like 7×10b+10b−1ab−1+10b−2ab−2+...+102a2+10a1+3

6 The middle terms

To start with an easy number to analyze, let us choose a number n with three digits (b = 3).

In that case, n would be 7× 100 + 10ab−1 + 3 and rev(n) would be 3× 100 + 10ab−1 + 7

If n satisfies the property, then 300 + 10ab−1 + 7× 2 + 1 = 7× 100 + 10ab−1 + 3

As can be seen, ab−1 does not change when multiplying it by two and adding 1 (because, as it is proved
before, there will be a carry 1).

Knowing this, we can say that 2ab−1 + 1 = ab−1.

We also know that ab−1 might transfer the carry to the next number because the 2× 3 + c = 7 where
c is the carry.

This means that ab−1 has to be a number from 5 to 10 (because if it was lower, there will be no
carrying).

Because of this, we know that ab−1 will have two digits. Thus, we are going to exclude the first digit
using the same method used before. This gives us this formula:

2× ab−1 + 1− ⌊2× ab−1 + 1

10
⌋ × 10 = ab−1 (6)

If we make a table to analyze the results, we get this:

Table 4: Verification for the possible values of ab−1.

ab−1 calculation result

5 2× 5 + 1− ⌊ 2×5+1
10 ⌋ × 10 = 11− 10 1

6 2× 6 + 1− ⌊ 2×6+1
10 ⌋ × 10 = 13− 10 3

7 2× 7 + 1− ⌊ 2×7+1
10 ⌋ × 10 = 15− 10 5

8 2× 8 + 1− ⌊ 2×8+1
10 ⌋ × 10 = 17− 10 7

9 2× 9 + 1− ⌊ 2×9+1
10 ⌋ × 10 = 19− 10 9
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As it can be observed, the only digit that has the property of transferring the carry to the next term
without changing itself is the 9. This means that not only 73 and 793 fulfill the property of being∑n

i=1 i equal to n× rev(n), but it is also extended to every number whose first digit is 7(a0 = 7), last
digit is 3(ab = 3), and all other digits are 9(ai = 9 ∀ai|i̸=0 and i̸=b).

From this information, we define two sets of numbers: the set that contains the upper limit value of
the summations, which will be called ”Bigger numbers’ set” (B) and the one that contains its reverses
called from now on ”Smaller numbers’ set” (S).

n∑
i=1

i = n× rev(n) ∀n ∈ B (7)

rev(n)∑
i=1

i = n× rev(n) ∀n ∈ S (8)

Table 5: Representation of the first ten terms of both sets

B S
73 37

793 397
7993 3997
79993 39997

799993 399997
7999993 3999997
79999993 39999997

799999993 399999997
7999999993 3999999997
79999999993 39999999997

Although some of these numbers are not prime, all can be expressed as Pythagorean primes (4n+ 1).

In the case of a number m that belongs to S, it can be written as m = 4× (10⌊log10 m⌋ − 1) + 1

In the case of a number n that belongs to B, it can be written as n = 8× (10⌊log10 n⌋ − 1) + 1

Using this last expression, we can affirm that for every n > 1

n∑
i=1

i = n× rev(n) ∀n = 8× (10⌊log10 n⌋ − 1) + 1 (9)

7 Conclusion

We have defined a set of numbers with infinitely many terms for which the summation from 1 to one
of the numbers in this set can be solved just by multiplying the number by its reverse; which can
significantly simplify calculations when doing mental arithmetic.
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