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ABSTRACT

Proportional-Integral-Derivative controller is remained as the most widely used
controller for many industrial applications even though it was developed decades ago. This
is because of its simplicity, satisfactory control performance and robustness. The classical
and empirical PID tuning rules are applicable only to the FOPDT and cannot guarantee its
optimality. The Ziegler-Nichols frequency response method is regarded as a basis of relay
feedback auto-tuning because it uses the only information at the phase crossover frequency.
The Ziegler-Nichols tunings are quite aggressive for lag- dominant processes but sluggish
for delay-dominant processes. The IMC-PID settings yield good servo performance and
robustness, they result in poor LD (load disturbance) rejection for lag-dominant plants.

We have proposed a new method of determining LQ index in consideration of
dominant pole placement for desired performance and derive a simple LQR-PID tuning
formula via IMC-like H∞ approach for first order plus dead-time systems. We have
determined the weight for sensitivity function so that LQ optimization is equivalent to the
H∞ optimization of the weighted sensitivity function. The proposed PID controller has the
same performance as LQR controller and the tuning method is simple, since it does not
need to solve the Riccati algebraic equation. We also present other two tuning methods for
PID controller: LQR-like and pole-placement-like ones. The new contributions in this
paper are: determination of LQ index for dominant poles placement and optimal weight for
sensitivity, and derivation of LQR-PID tuning methods via IMC-like �∞ approach, LQR
and pole-placement approaches. The effectiveness of the proposed methodology and the
identity of the PID parameters tuned by those three methods have been demonstrated via
simulation.
Keywords: LQR-PID controller, optimal weight, Linear Quadratic Regulator, Internal
Model Control
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1. Introduction
PID controller is remained as the most widely used controller for many industrial

applications even though it was developed decades ago. This is because of its simplicity,
satisfactory control performance and robustness.
The classical Ziegler-Nichols method [1] is widely used in control practice for its good

control effect.
Especially, the Ziegler-Nichols frequency response method is regarded as a basis of

relay feedback auto-tuning because it uses the only information at the phase crossover
frequency [2-5]. However, the Ziegler-Nichols tunings are quite aggressive for lag-
dominant processes but sluggish for delay-dominant processes.
The SP (set point) overshoot method guarantees the good performance and robustness

for delay-dominant processes [6]. The classical and empirical PID tuning rules are
applicable only to the FOPDT and cannot guarantee its optimality. Some researchers have
proposed the inverse of maximum of absolute real part � of loop transfer function as a
tuning parameter for both of the gain margin and phase margin specifications, and have
proposed the PI tuning method for IE optimality of system [7]. This method can be applied
to process with arbitrary transfer function and guarantees of both robustness and optimality.
They have demonstrated that the closed-loop responses are similar for a given value of �,
although the processes have large differences in the dynamics. This is convenient because
the desired response of the system can be specified by setting only one parameter �.

In the method, called MIGO (M-constrained integral gain optimization), they have
introduced the maximum sensitivity � as a specification for both of gain and phase
margin and have proposed a PI tuning formula to maximize integral gain subject to the
sensitivity constraint [8]. A simple tuning rule for PID controllers called AMIGO
(approximate MIGO) has been proposed [9]. AMIGO and MIGO well work for a wide
range of processes including ones with integration and pure time delay.

The IMC design method has been proposed by many researchers[10-11] and was first
applied to PID control of stable plants [12]. This method has gained remarkable industrial
application due to its simple yet effective procedure [13-14]. Although the IMC-PID
settings yield good servo performance and robustness, they result in poor LD (load
disturbance) rejection for lag-dominant plants [15-16]. In order to improve LD rejection
performance, based on min–max model matching theory, a methodology to Servo/
Regulator tradeoff tuning [17] and a robust PID design for smooth SP tracking [18] have
been proposed. The frequency weight with two tuning parameters, two zeros, for the
sensitivity function has been introduced: one zero adjusts the robustness/performance
trade-off as in the IMC procedure; the other zero balances the servo and regulatory
performance [19-20]. The pole-placement method together with LQR was used to obtain
the PID parameters for second order systems [21]. They have determined the LQ cost
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function and desired dominant closed loop poles so that the system has appropriate
oscillatory response.

The new contributions in this paper are: determination of LQ index for dominant
poles placement and optimal weight for sensitivity, and derivation of LQR-PID tuning
methods via IMC-like �∞ approach, LQR and pole-placement approaches.

2. Problem statement
The process is assumed to be modeled by a first order plus dead-time (FOPDT) transfer

function of the form

��0 � = �0
��+1

�−�� (1)

where �0 is the static gain, � is the time constant and � is the time delay.

The PID controller is represented as

�� � = �� 1 + 1
���

+ ��� = �� + ��
�

+ ���. (2)

For the IMC-like design, the following internal model obtained by the Padé
approximation of Eq. 1 is used.

�0 � = �0
��+1

∙
1−��

2
1+��

2
(3)

Fig. 1 shows the structures of standard IMC system and its equivalent feedback control
system.

Fig. 1. IMC system and its equivalent feedback system

(A) (B)

In the equivalent feedback system, the feedback controller is described as

�� � = �(�)
1−�0(�)�(�)
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, and the transfer function from the LD to the output is written as

��� � = �0(�)
1+�� � �0(�)

= �0 � � �

In order to reject the LD as much as possible, we specify the cost function for
determination of ��(�) as

� = min
��

�0 � ��� �
∞

= min
��

�0 � �0 �
1+�� � �0 � ∞

= min
��

�0 � �0 � � � ∞ = min
��

�0 � �0
��+1

� �
∞

(4)

= min
��

�0 � � � � ∞

or

� = ���
��

� � � � ∞

where �(�) = �0(s)/(�� + 1) is the weight of the sensitivity function � � .
As shown in Eq. 4, the performance of IMC-PID controller mainly depends on the

weight �(�) of the sensitivity function. Therefore, it is very important to determine the
weight for the sensitivity function so as to be able to maximally reject the LD.

3. IMC-like design of LQR-PID controller
The LQR is known for good control effect and robustness, so we use the following LQ

index as a criterion for the performance

� = 0
∞ �2 � ��� = 0

∞ �� � + �1�� � + �0� � 2
��� . (5)

This criterion is to be determined so that the closed-loop system has the appropriate
oscillatory response i.e. desired dominant poles as follows

� � = �� � + �1�� � + �0� � = 0 (6)

where �1 = 2���, �0 = ��
2, � < 1.

By applying the Parceval’s theorem, the LQ index can be rewritten as

� = 1
2�� −�∞

�∞ � � � −� ���

= 0
∞ �� � + �1�� � + �0� � 2

���

= 1
2�� −�∞

�∞ �2 + �1� + �0 �2 − �1� + �0 �(�)�( − �)���
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= 1
2�� −�∞

�∞ �4 − �1�2 + �0 �(�)�( − �)��� .

As a result, the LQ index Eq. 5 is expressed as

� = 0
∞ �0�2 � + �1��2 � + ��2 � ��� (7)

where �0 = �0
2 = ��

4, �1 = �1
2 − 2�0 = 2��

2(2�2 − 1).
Using LQ index Eq. 7, we can tune the PID controller based on the LQR approach,

however, the LQR-like design requires solving of the Riccati algebraic equation. In this
paper, we propose a simple IMC-like design for LQR-PID controller without solving of
Riccati algebraic equation. By taking into account that the system performance depends on
only the normalized dead-time � = �/� and time-scaling with the time constant � , we
rewrite the Eq. 6 as

� � = �2�� � + �1��� � + �0� � = 0. (8)

Also, substituting 1
��

= � into Eq. 8, the following equation is obtained.

� � + 2����� � + �2�2�� � = 0 (9)
Proposition. For the non-minimum phase process

�0 � = �0
��+1

∙
1−��

2
1+��

2
(10)

, the LQ optimization with the LQ index below

� = 0
∞ � � + 2����� � + �2�2�� �

2
��� (11)

is equivalent to the following �∞ optimization for the weighted sensitivity
���

��∈��∞
� � � � ∞ (12)

where �(�) is the sensitivity function and �(�) is optimal weight of the sensitivity
function, and these are represented, respectively, as

� � = 1
1+�� � �0 �

(13)

� � = �2�2+2�����+��
2

� �+��
, � = 1

��
, �� = 1

�
. (14)

The sensitivity function and the transfer function between LD � and output � for the
optimal system are obtained, respectively, as

�∗ � = 4�2+4���+�2

2(2+�)
∙ � �+��

�2�2+2�����+��
2 (15)

���
∗ � = ����

�2�2+2�����+��
2 ∙

1−�
2�

1+�
2�

(16)

where ��� = �0��(4�2+4���+�2)
2(2+�)

.

Proof. See Appendix A. □
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Using the above proposition, the complementary sensitivity function corresponding to
the sensitivity function Eq. 15 is determined as

�∗ � = 1 − �∗ � = 4��+�−2�2 �+ 2+� ��
2+� �2�2+2�����+��

2 1 − ��
2

��. (17)

Thus, the optimal IMC-LQR PID tuning rule is simply derived as

�� � = �∗ �
�∗ �

�0 � −1

=
��+2 4��+�−2�2 �+ 2+� ��

�0 4�2+4���+�2 �
(18)

= ��
(�1�+1)(�2�+1)

�
= �� + ��

�
+ ���

where

�� = 2 2+� ��
�0 4�2+4���+�2 , �1 = 4��+�−2�2

2+� ��
, �2 = �

2
,

�� = �� �1 + �2 , �� = ��, �� = ���1�2, (1
9)

�� = ���1�2.
The step load disturbance response ��(�) is

�� � = ���

�2�2+2�����+��
2 ∙

1−��
2

1+��
2

. (20)

The characteristic polynomial corresponding to oscillatory mode of Eq. 20 is identical
with the one of the desired free response Eq. 9 specified in LQ index. Since Eq. 20 is the
second order plus Padé approximated delay, the oscillatory mode is dominant. From this,
the LQ index can be determined directly in demand of desired dominant poles.
The optimal PID controller with the desired performance measure can be easily obtained
from Eq. 19 by properly setting the parameters � and �� of LQ index Eq. 11. The
parameter � is related to the dampness, while another parameter � = 1/�� is related to
the swiftness of the response. By setting the damping ratio � in the tuning rule Eq. 19, we
can let the system possible to have the oscillatory response appropriate to the LD rejection.
The response becomes faster as � decreases, but it also causes poor robustness.
Hence, � must be determined to satisfy robustness of the system and we use the
maximum sensitivity as a robustness index. The maximum sensitivity is defined as

�� = max
�

�∗ ��

= max
�

4�2+4���+�2

2 2+�
∙ � �+��

�2�2+2�����+��
2

�=��
(21)

= max
�

4�2+4���+�2

2 2+�
∙ � � �=�� .

The frequency corresponding to the maximum sensitivity is obtained as

mailto:https://orcid.org/0009-0009-0994-5469


� = �� �

� = −1− 1−�2(4�2−2−�2)
�2(4�2−2−�2)

=
1+ 1+�2 �2+2−4�2

�2 �2+2−4�2 . (22)

The following condition must be satisfied for the solution above.
�2 �2 + 2 − 4�2 > 0

This inequality is satisfied for all � > 0 if the system is oscillatory i.e. � ≤ 1/ 2 ≈
0.707. But if � < 1 , � becomes too big and the extreme point does not exist. Thus, for
calculation of � , we use the value of sensitivity function when � is infinity instead of
maximum sensitivity

�� = �∗(�∞) = 4�2+4���+�2

2 2+� �2 . (23)

Eq. 18 shows that the bigger � gets, the smaller maximum sensitivity becomes i.e. the
better robustness is obtained. As normalized dead time � gets bigger, � should be bigger
for the same sensitivity. Because in most cases the extreme point does not exist, by using
Eq. 18, we determine � as

� =
��+� �2+ 1+�

2 ��−1

2 1+�
2 ��−1

(24)

Although this method aims at LD rejection performance, we can obtain also the good
set-point tracking performance by properly setting the damping ratio �. Additionally, using
the proposed LQ index, we have derived the tuning formulas of PID controller via
LQR-like and pole-placement-like approach. (Refer to Appendix B, C.)

3. Simulation examples
In order to demonstrate the effectiveness of the PID tuning methodology proposed in

this paper, we now present simulation results for different processes. In Example , we have
compared the proposed method (IMC-LQR) with the other methods such as the MMA
(model matching approach)17 and the AMIGO (Approximate M-constrained integral gain
optimization)[9]. Table 1 shows nominal models and real processes for simulation. The
tuning results for nominal model �� are shown in Table 2.
The MMA tuning rule [17] is

�� = 0.53��
�0�

, �� = � + 0.25�, �� = 0.258��, � = 1.94 �
��

− 1

and the AMIGO tuning rule [9] is
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�� = 1
�0

0.2 + 0.45 �
�
, �� = 0.4�+0.8�

�+0.1�
�, �� = 0.5��

0.3�+�
, �� = ��

��
, �� = ����.

In the IMC-LQR, setting damping ratio � and �� respectively as 0.7 and 1.3, � is
calculated by Eq. 24. In the simulation, we obtained the responses of nominal model and
real processes to show the robustness of the IMC-LQR. Figs. 2, 3, and 4 show the
responses of control systems designed by IMC-LQR, MMA and AMIGO.
The comparison of the results obtained by MMA, AMIGO and IMC-LQR is shown in

Table 3. As performance indices, the maximum error (�� ), the settling time (�� ) and the
integrated absolute error (IAE) of step disturbance response were used. As shown in Figs.
2, 3, 4 and Table 3, most values of the performance indices for IMC-LQR are smaller than
ones of other methods; especially its performance is approximate to AMIGO well-known
for good LD rejection. Also, the proposed controller works well, whether the process is a
delay-dominant or a lag-dominant, and has good robustness. The best performance of
IMC-LQR is known also from the fact that its integrating gain �� is the biggest.

Fig. 2. Step disturbance response for processes (A) �1 (B) �11 (C) �12

(A) (B) (C)

Fig. 3. Step disturbance response for processes (A) �2 (B) �21 (C) �22

(A) (B) (C)

mailto:https://orcid.org/0009-0009-0994-5469


Fig. 4. Step disturbance response for processes (A) �3 (B) �31 (C) �32

(A) (B) (C)

Conclusion
In this paper, we have proposed a new form of LQ index for maximum LD rejection

and have derived a tuning formula of LQR-PID controller for FOPDT systems.
The maximum load disturbance rejection is achieved by minimizing the LQ index.

Robustness is guaranteed by requiring that the maximum sensitivity is less than a specified
value �� . The primary parameters of controller are damping ratio � and natural
frequency �� . These parameters are independently determined in demand of the
disturbance response damping and the robustness respectively, thus it provides the
convenience of design. The proposed controller gives a second order oscillatory response
specified by the parameters � and ��, and the similar responses for the FOPDT processes
with a wide range of �. This method is applicable to any process that can be modeled as or
approximated to FOPDT, while not to oscillatory process. Research effort should be
provided in the future in order to derive tuning rules of PID controllers for wide range of
process.

Appendix A. Proof of proposition
By applying the Parseval’s theorem, the LQ index Eq. 11 can be rewritten as

� = 1
2�� −�∞

�∞ �2�2�2 + 2���� + 1 �2�2�2 − 2���� + 1 � � � −� ���

= 1
2�� −�∞

�∞ � � � −� ��� (A.1)

and optimization of Eq. (A.1) is equivalent to the following minimization.

min
��∈��∞

� � ∞ = ���
��∈��∞

�2�2�2 + 2���� + 1 � �
∞ (A.2)
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On the other side, the error response to the step LD is

� � =− 1
�

∙ �0 �
1+�� � �0 �

=− 1
s
�0 � � � (A.3)

where � � = �0 �
1+�� � �0 �

is the sensitivity function.

By substituting Eq. (A.3) into Eq. (A.2), we obtain

min
��∈��∞

� � ∞ = min
��∈��∞

�0(�2�2�2+2����+1)
����(��+1)

∙
1−��

2
1+��

2
∙ �(�)

∞

= min
��∈��∞

�2�2�2+2����+1
�� ��+1

∙ � �
∞

(A.4)

= min
��∈��∞

�(�)�(�) ∞

where �(�) is the weight of the sensitivity function and it is represented as

� � = �2�2�2+2����+1
�� ��+1

= �2�2+2�����+��
2

� �+��
. (A.5)

By the lemma,[17], the optimum value of the cost function Eq. (A.4) is

�∗ = �0 = � 2/� = 2��/� = 4�2+4���+�2

2(2+�)
.

Therefore, the sensitivity function and the transfer function from LD � to output �
of the optimal system are obtained, respectively, as

�∗ � = �∗

�(�)
= 4�2+4���+�2

2(2+�)
∙ � �+��

�2�2+2�����+��
2 (A.6)

���
∗ � = �0 � �∗ � = ����

�2�2+2�����+��
2 ∙

1−��
2

1+��
2

(A.7)

Where ��� = �0���∗ = �0��� 2/� = �0��(4�2+4���+�2)
2(2+�)

.

Appendix B. LQR-like design of PID controller
The tuning rule derived here is used to demonstrate the validity of the IMC-PID tuning
formula Eq. 19. For the convenience, we use the following normalized process

��0 � = � �
� �

= 1
�+1

�−��, � = �
�

(B.1)

and the PID controller is described as
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�� � = �(�)
�(�)

= �� 1 + 1
���

+ ��� = �� + ��
�

+ ���. (B.2)

The controller for the process Eq. 1 is obtained by scaling the controller Eq. (B.2) as

�� = ��

�0
, �� = ��� = ���

��
, �� = ��� = ���

��
, �� = ��

��
= ��

��0
, �� = ���� = ���

�0
.

By using the Padé approximation, the internal model can be described as

�0 � =
1−��

2

�+1 1+��
2

=
2
�−�

�2+ 1+2
� �+2

�

= �0−�
�2+�1�+�0

(B.3)

and the state equation is expressed as

�� = �� + ��
� = �� (B.4)

where �� = (�1 �2) , � = 0 1
− �0 − �1

, � = 0
1 , C = (�0 −1) , �0 = 2/� , �1 =

1 + 2/ � .

Now, in order to design the LQR-PID controller, we, first, construct the augmented
system equation for the state variables ��� = (�� 1 �� 2 �)

��� = ���� + ����
�� =− �� = ��� = ���� (B. 5)

where �� = � 0
−� 0 , �� = �

0 , �� = (� 0).

Then, each term of the LQ index Eq. 7 is represented as follows

�2 � = ����1��,

��2 � = �� 2 � = ����2�� ,

��2 � = ����3�� + 2������ + ��� 2

where �2 = �����, �3 = ����2��, � = ����2�� , � = ����2�� .

As a result, the LQ index Eq. 7 is changed to the following form

� =
0

∞
������ + 2������ + ��� 2 ���

where � = �0�1 + �1�2 + �3.

Using a solution � of the Riccati algebraic equation
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���� + ��� − ��� + � �−1 ���� + �� + � = 0

and state feedback gain

� = �1 �2 �3 = �−1(���� + ��)

, LQ optimal control law is represented as

�� � =− ��� � =− �1�� 1 � + �2�� 2 � + �3� �

� � =− �1�1 � + �2�2 � + �3
0

�
� � ���

= �12� � + �3�0 � (B. 6)

where �12 = (�1 �2), � = (�1 �2), �0 � = 0
� � � ��� .

Now, in order to derive the LQR-PID controller, we rewrite Eq. (B.6) as

� � = ��� � + ���� � + �� 0
� � � ���

=− ��� � − ���� � + ���0 �

=− ���� � − ����� � + ���0 � (B.7)

=− ���� � − ��� �� + �� + ���0(�)

� � =− 1
1+����

�� ��
�

�� � − ���0 .

By taking account that �� =− 1, the following PID tuning formula is derived.

�� = �1+�0�2
�1+�0 2+2�0+�2

�� =− �2 + �� 1 + 2�0 + �2

�� =− �3 1 − ��

(B.8)

Appendix C. Pole-placement-like design of the PID controller
Here derives the tuning rule used to demonstrate the validity of characteristic

polynomial of the optimal system in the proposition. The tuning rule is derived for the
normalized process Eq. (B.1). From Eq. 16, the characteristic polynomial of optimal
system is expressed as

�∗ � = �2�2 + 2����� + ��
2 1 + �

2
� . (C.1)

For normalized process,
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�� = 1
�

= 1, � = �� = �, � = 1
��

.

Substituting these relations into Eq. (C.1), we obtain

�∗ � = �2 + 2���� + ��
2 � + �0

= �2 + �1� + �0 � + �0 , �0 = 2
�

. (C.2)

The characteristic polynomial of the closed-loop system consisting of the controller Eq.
(B.2) and the process Eq. (B.3) is

� � = � � + 1 � + �0 + �0 − � �� + ��� + ���2 . (C.3)

By taking account of one pole, � =− �0, we obtain

�� − ���0 + ���0
2 = 0 ⟹ �� = ���0 − ���0

2. (C.4)

Using Eq. (C.4), Eq. (C.3) is rewritten as

� � = � � + 1 � + �0 + �0 − � �� � + �0 + �� �2 − �0
2

= � + �0 � � + 1 + �0 − � �� + �� � − �0 . (C.5)

Therefore, � � = 1 − �� �∗(�).

As a result, the tuning formula via pole-placement-like approach is obtained as

�� = �1�0−�0+�0
�0

2+�1�0+�0

�� = �� 2�0 + �1 − �1�0 + 1
�� = ���0 − ���0

2

where �1 = 2���, �0 = ��
2.
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