
 

Bouchaïb Bahbouhi

Independent Researcher. Nantes. France. bahbouhibouchaib524@gmail.com
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Abstract

This article presents for the first time two methods for decomposing integers in products of prime factors which are
based on the calculation of decimal fractions. Its originality lies in the fact that the divisors used are decimals and not
prime divisors and in addition the decimal part is manipulated in such a way that two decimal digits are fixed and the
others are variable. In the first method, the divisors are of type 2n and which have a very interesting particularity which
is that they always have two same digits at the end of their decimal parts (25 or 75). And it is this particularity which is
exploited to develop these methods. The other method introduces a new notion that of the decomposition key which is a
product of prime factors used to decompose all numbers having the same number of digits. It is similar to the first
method because it also uses decimal fractions for the calculation and the denominator is the square root. This article
paves the way for new applications in computer science.
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1. Introduction

In  mathematics,  the  fundamental  theorem  of  arithmetic,  also  called  the  unique  factorization  theorem  and  prime
factorization theorem, states  that  every integer  greater  than  1  can  be  represented  uniquely as  a  product  of  prime
numbers, up to the order of the factors (https:// en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic). However,
the problem is to be able to transform any number into a product of prime factors since a theorem must always be
correct whatever the number. The solution that has always been imposed is the Euclidean division in series by prime
factors called trial division (Zalaket & Hajj-Boutros, 2011)  [see 1]. Trial division is the most laborious but easiest to
understand of the integer factorization algorithms. The essential idea behind trial division tests is to see if an integer n,
the integer to be factored, can be divided by each prime number in turn that is less than the square root of n. It is for this
reason that it has become necessary to develop new algorithms for decomposing natural numbers by taking advantage
of  the  high  computing  speed  of  computers.  Nowadays,  these  algorithms  are  capable  of  decomposing  numbers
containing several digits but are all limited by the value of the number to be factored, the larger it is, the more time and
energy it requires (Bressoud, 2012; Harahap & Khairina, 2019) [see 2,3]. Among numbers, biprime numbers with two
prime factors relatively closer in value are the most difficult to decompose. Hence their interest for cryptology. The
problem of determining whether  a  given integer  is  prime is  one of  the better  known and most  easily understood
problems of pure mathematics. This problem has caught the interest of mathematicians again and again for centuries.
However,  it  was not until the 20th century that questions about primality testing and factoring were recognized as
problems of practical importance, and a central part of applied mathematics. The advent of cryptographic systems that
use large  primes, such as  RSA, was the main driving force for  the development of  fast  and reliable methods for
primality testing (Maurer, 1995) [see 4].
The defining property of a prime number p is that it  is a positive integer p ≥ 2 that  is only divisible by 1 and p.
Equivalently, p is prime if and only if p is a positive integer p ≥ 2 that is not divisible by any integer m such that 2 ≤ m
< p. A positive integer n ≥ 2 which is not prime is called composite. A primality test is a mathematical procedure for
determining whether a given number is a prime number (i.e. it has no divisor other than by 1 or itself). How to know if
a number is a prime? To determine if a number is prime, it must now pass a primality test which confirms its status as a
prime number.  There exist several primeness tests to know if a number is a prime number, the oldest is the Sieve of
Eratosthenes, and the most common are Miller–Rabin and Lucas-Lehmer tests (https://www.dcode.fr/primality-test).
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring
integers larger than 10100 (Wikipedia). 
There are broadly two categories of number primality tests: A deterministic primality test provides a certain answer
about the primality of a number (it guarantees whether the number is prime or not). In contrast, a probabilistic test
provides a probable answer, with a controlled margin of error, which means it can tell whether a number is probably
prime or probably composite.

The Sieve of Eratosthenes is a simple and ancient algorithm used to find the prime numbers up to any given limit
(Nicol, 1950; Harahap & Khairina, 2019) [see 5,3]. It is one of the most efficient ways to find small prime numbers. For
a given upper limit n the algorithm works by iteratively marking the multiples of primes as composite, starting from 2.
Once all multiples of 2 have been marked composite, the muliples of next prime, ie 3 are marked composite. This
process continues until p≤n where p is a prime number (https://brilliant.org/wiki/sieve-of-eratosthenes).  
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2. The new proposals in this article 

Let us suppose you have a biprime number Bn = p x q such that p < q that you want to decompose and thus find its two
prime factors p and q. You do not want to use a decomposition algorithm that automatically gives you the result but you
want to proceed differently by doing your own calculation. First,  let's agree on some rules.  If  you multiply Bn by
another prime factor denoted r or a multiple of prime numbers s et t denoted M = s x t and you decompose it with your
algorithm; you have three possible outcomes: r x p x q; s x t x p x q if your algorithm is able to decompose it, and   r x
Bn or s x t x Bn if it is not able to do it. In the first case, you have not really decomposed the number Bn by your own
calculation because you have just decomposed one of its multiples. In the second case, the algorithm reaches its limit
and returns it to you undecomposed. However, a solution is available to you, which is to look for any numbers that have
a common factor with Bn. Let us denote these numbers M' = s' x t' x p and M'' = s'' x t'' x q  (p or q are the common
prime factors between Bn and M' or M''). These numbers M' and M'' can be less than or greater than Bn, that does not
matter. In case they are lesser than Bn, we would say that they are its  submultiples and in the other that they are its
supermultiples.

If you mark multiple by multiple of a prime number in an Erastothenes sieve, and if you choose a multiple in the
middle, the submultiples will be those which precede it and the supermultiples those which follow it. A number to be
decomposed  therefore  has  a  common  factor  with  an  infinite  number  of  numbers  which  are  its  submultiples  or
supermultiples. This is the central idea of this article and it is also a truth of Erastothenes' sieve which has always gone
unnoticed and which has not been exploited to its fair value to develop a factorization method. This article will then
exploit this fact.

In fact, looking for a common factor between M' or M'' and Bn amounts to going up or down the Erasthotenes'sieve, but
if you want to do it manually by searching in this sieve for submultiples or supermultiples and knowing that Bn could
be a very large number, you will quickly realize that the task is very difficult and very long or impossible to carry out.
How then can you do it? This article gives you answers and alternative methods.

Now you  understand  that  the  Erasthtotenes'sieve  is  a  fixed  structure  like  a  ladder  that  can  only be  ascended  or
descended step by step. You will therefore have to proceed differently and therefore you must carry out a precise and
safe calculation. The question is the following: how can we find a submultiple or supermultiple of Bn which has one
prime factor in common with it that we will use to divide it while being sure and certain that it is indeed one of its
divisors?

In fact, finding a submultiple or supermultiple of a number is another way of breaking it down in the strict sense of
mathematics. But be careful,  the number sought must only have one factor p or q in common with Bn, never both
because in the latter case and as said above we only multiply Bn by an integer and then the algorithm gives it back to us
in the form of a product of prime factors, this is not decomposition. Decomposing a number means finding another
number which has a single prime factor in common with it or finding an integer or decimal or even irrational divisor
which gives a quotient which is a multiple of one of its prime factors. These are the main ideas of this article. The
conventional idea is that a divisor is always an integer, this article ignores this classic concept and uses decimal  (or
irrrational) divisors instead.

New calculation methods are thus necessary to which this article is all dedicated. As a result, this article will propose
new methods for decomposing natural numbers.  These methods use the calculation of decimal fractions between a
denominator  and  a  numerator  in  a  continuous  manner  using  calculators  available  on  the  web.  An  available
decomposition algorithm is always necessary but will be used differently, only to find the common factor between Bn
and one of its sub- or super-multiples and thus decompose it. This article is undoubtedly the first which uses classic
mathematics and which decomposes a number by looking for submultiples which have a common factor with it. 

 All these new tests are deterministic because we only have two cases: 1) if the number is composite, you will at one
time or another have an integer quotient between the numerator and the denominator; 2) if the number is prime, the
calculation of fractions will run in an incessant loop giving only decimal or irrational numbers until the end. Examples
of calculations will be given and the methods explained. Note that the calculation is mainly the calculation of fractions
between a numerator and a denominator with a decimal part limited to few digits. The most important thing is to have a
calculator capable of doing this calculation in series and continuously.

It is important to note now that the decomposition of a number is all the more difficult as the number is large with large
prime factors and that if the known algorithms give a rapid answer it is only thanks to the power of computers. This
simplicity is deceptive and breaking down a number could be an extremely difficult or an unachievable task if done
manually. But the most important thing is to find an orderly and specific calculation method which leads to the result in
a reproducible and programmable way. The calculation must also be done to take the shortest and least expensive path
to decompose the number posed. These elements were taken into consideration in the design of the methods described
in this article, which will now be described one after the other with illustrative examples.
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3. Materials and Methods

This article  is  based on calculation in the first  place which is obviously deduced from an equation which will  be
described  and  demonstrated.  To  calculate  all  decimal  fractions  a  calculator  was  used  available  on  the  web
(https://calculatrices.app/calculatrice-de-grands-nombres).  Note  that  the  latter  calculates  a  decimal  fraction  but  not
continuously  (We  must  write  the  decimal  denominator).  For  very  large  numbers,  the  calculator
(https://www.123calculus.com/)  was  also  used.  To  factor  the  numbers,  two  sites  were  used:
https://www.dcode.fr/decomposition-nombres-premiers;  and  https://calculis.net/premier.  The  prime  numbers  were
obtained from the site http://compoasso.free.fr/primelistweb/page/prime/liste_online.php.

4. Results: New methods of integer decomposition

For a method to be valid and even conceivable, it  must be based on an invariable and infinitely reproducible fact.
Otherwise, the method will generate so many variations and it will be random and impractical. Mathematics reject
exceptions and only works  with axioms and theorems,  but  given the great  complexity of  prime numbers  and the
decomposition of natural numbers into prime factors, the development of algorithms and probabilistic methods were
considered because they take advantage of the high speed of computer calculation and make it possible to verify the
authenticity of the theorem of the decomposition of natural numbers at a very high level. In order to avoid probabilistic
methods, we must therefore start with sure principles leaving no shadow of doubt.

4.1 Methods based on the series of divisions by 2n

4.1A Principles

As  a  reminder,  this  study  will  be  dedicated  to  biprime  numbers  because  we  know  that  they  are  the  hardest  to
decompose, especially when their two prime factors are very large halfway between 0 and the square root (SR). But
what will be described is valid for any odd number whatever its number of prime factors.

If you take an odd number > 1 and divide it by 2 you will have the remainder 1. Any odd  number divided by 2 will
therefore give a decimal extension 0.5. But if you divide it again by 2 (i.e. 4), you will only have two possible decimal
parts 0.25 or 0.75. This is because the remainders of Euclidean divisions of an odd number by 4 is either 1 or 3 and in
the first case it is 0.25 and the other it is 0.75. If you continue your divisions by 2 n (8, 16, 32, 64, 128, 256, and so on),
you will always have a decimal extension which ends either with 25 or 75 (Table 1A-C). 

Tables 1: division by 2  n   always generate 25 or 75 as digits in the decimal parts of the quotients.
Table 1A

1/4 1/8 1/16 1/32

91 0.75 0.375 0.6875 0.84375

323 0.75 0.375 0.1875 0.09375

3397 0.25 0.625 0.3125 0.15625

10873 0.25 0.125 0.5625 0.78125

520187 0.75 0.375 0.6875 0.84375

1297603 0.75 0.375 0.1875 0.09375

5321531 0.75 0.375 0.6875 0.84375

20777459 0.75 0.375 0.1875 0.59375

152771243 0.75 0.375 0.6875 0,.34375
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Table 1B

1/64 1/128 1/256 1/512

91 0.421875 0.7109375 0.35546875 0.177734375

323 0.046875 0.5234375 0.26171875 0.630859375

3397 0.078125 0.5390625 0.26953125 0.634765625

10873 0.890625 0.9453125 0.47265625 0.236328125

520187 0.921875 0.9609375 0.98046875 0.990234375

1297603 0.046875 0.5234375 0.76171875 0.380859375

5321531 0.921875 0.4609375 0.23046875 0.615234375

20777459 0.796875 0.8984375 0.94921875 0.974609375

152771243 0.671875 0.3359375 0.66796875 0.333984375

Table 1C

1/1024 1/2048 1/4096 1/8192

91 0.0888671875 0.04443359375 0.022216796875 0.0111083984375

323 0.3154296875 0.15771484375 0.078857421875 0.0394287109375

3397 0.3173828125 0.65869140625 0.829345703125 0.4146728515625

10873 0.6181640625 0.30908203125 0.654541015625 0.3272705078125

520187 0.9951171875 0.99755859375 0.998779296875 0.998779296875

1297603 0.1904296875 0.59521484375 0.797607421875 0.3988037109375

5321531 0.8076171875 0.40380859375 0.201904296875 0.6009521484375

20777459 0.4873046875 0.24365234375 0.621826171875 0.3109130859375

152771243 0.6669921875 0.33349609375 0.666748046875  0.8333740234375

These are therefore decimal numbers but whose decimal part is all the longer as n of 2 n tends towards infinity. When 2n

is too high, we can say that the number obtained is between a decimal and irrational number since the digits after the
decimal point are unpredictable and non-repeating, except that they always end with 25 or 75. Several examples of
numbers of different values that have an increasing number of digits are shown in the following tables. We see that this
fact remains true whatever the number of digits of the numbers tested (Table 2A-C). However, the most important fact
to note is that for a given 2n, we have the same number of digits before 25 or 75 in the resulting decimal part . For
example, for 1/8, we always have one digit before 25 or 75 (for example 0.375), for 1/16 we have 2 digits (for example
0.6875), for 1/32 we have 3 digits (for example 0.84375) and so on. The decimal part before 25 or 75 increases by one
digit when going from 2n to 2n+1. The number of digits after the decimal separator = n being the exponent of 2n.
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Tables 2: division by 2n still generate 25 or 75 as digits in the decimal parts of quotient obtained with numbers having
increasing digits.
Table 2A

1/4 1/8 1/16 1/32

4877863751 0.75 0.875 0.4375 0.21875

14048615549 0.25 0.625 0.8125 0.90625

329650448509 0.25 0.625 0.8125 0.90625

1657851033857 0.25 0.125 0.0625 0.03125

59708282945131 0.75 0.375 0.6875 0.34375

472250023232509 0.25 0.625 0.8125 0.90625

772405727553181 0.25 0.625 0.8125 0.90625

5422745703328963 0.75 0.375 0.1875 0.09375

69605379628229681 0.25 0.125 0.0625 0.53125

Table 2B

1/64 1/128 1/256 1/512

4877863751 0.109375 0.5546875 0.27734375 0.638671875

14048615549 0.953125 0.9765625 0.48828125 0.244140625

329650448509 0.953125 0.9765625 0.48828125 0.244140625

1657851033857 0.015625 0.0078125 0.00390625 0.501953125

59708282945131 0.671875 0.8359375 0.41796875 0.208984375

472250023232509 0.953125 0.9765625 0.98828125 0.994140625

772405727553181 0.453125 0.2265625 0.61328125 0.306640625

5422745703328963 0.046875 0.5234375 0.76171875 0.380859375

69605379628229681 0.765625 0.3828125 0.19140625 0.095703125

Table 2C

1/1024 1/2048 1/4096 1/8192

4877863751 0.8193359375 0.40966796875 0.704833984375 0.3524169921875

14048615549 0.1220703125 0.56103515625 0.780517578125 0.8902587890625

329650448509 0.1220703125 0.06103515625 0.530517578125 0.2652587890625

1657851033857 0.2509765625 0.12548828125 0.562744140625 0.7813720703125

59708282945131 0.2509765625 0.12548828125 0.562744140625 0.7813720703125

472250023232509 0.9970703125 0.49853515625 0.249267578125 0.1246337890625

772405727553181 0.6533203125 0.82666015625 0.413330078125 0.2066650390625

5422745703328963 0.1904296875 0.59521484375 0.797607421875 0.3988037109375

69605379628229681 0.0478515625 0.52392578125 0.261962890625 0.1309814453125

In tables 3A-B, there are two examples of  30- and 34-digit numbers produced by three prime factors of different
values. Dividing them by 2n in ascending order generates decimal parts which have the same kinds of decimal parts
although with different digits before 25 (or  75).  This further confirms that  integers divided by 2n always generate
decimal parts ending with 25 or 75 and having the same number of digits, which depend on the magnitude of n in 2n.
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Tables 3: division by 2n still generate 25 (or 75) as digits in the decimal parts of quotients obtained with two larger
numbers.

Table 3A
185592806269448167697065108937 = 91969 × 16588907 × 121647139715480539 

¼ 46398201567362041924266277234.25
1/8 23199100783681020962133138617.125
1/16 11599550391840510481066569308.5625
1/32 5799775195920255240533284654.28125
1/64 2899887597960127620266642327.140625
1/128 1449943798980063810133321163.5703125
1/256 724971899490031905066660581.78515625
1/512 362485949745015952533330290.892578125
1/1024 181242974872507976266665145.4462890625
1/2048 90621487436253988133332572.72314453125
1/4096 45310743718126994066666286.361572265625
1/8192 22655371859063497033333143.1807861328125

Table 3B
5643479997656899909896887654211013 = 17 × 113 × 2937782403777667834407541725253 

/4  1410869999414224977474221913552753.25
/8   705434999707112488737110956776376.625
/16 352717499853556244368555478388188.3125
/32 176358749926778122184277739194094.15625
/64 88179374963389061092138869597047.078125
/128 44089687481694530546069434798523.5390625
/256 22044843740847265273034717399261.76953125
/512 11022421870423632636517358699630.884765625
/1024 5511210935211816318258679349815.4423828125
/2048 2755605467605908159129339674907.72119140625
/4096 1377802733802954079564669837453.860595703125
/8192 688901366901477039782334918726.9302978515625                  

4.1B First method based upon division by 2n

Let a biprime number Bn = p x q therefore Bn/4 = p/4 x q or p x q/4. Let p < q and let us focus on the smallest factor p. 
So Bn/4 : p/4 = q and it follows that Bn : p/4 = 4 x q. We can generalize to any 2  to the (power) n by setting the global 
equation: Bn : p/2n = 2n x q. Let's first look at the case of 22 (n = 2), 23 (n = 3), 24 (n = 4), and 25 (n = 5).  This is 
therefore the first method of decomposing natural numbers into prime factors in this article as described in Table 4. A 
calculator of decimal fractions is needed for the whole study. Put the number to decompose Bn as the numerator and the
denominators as indicated. Then changes the denominators as indicated and lets the decimal quotients scroll until the 
desired quotient is obtained, i.e. an integer. The method requires a special calculator or a computer program where 25 or
75 digits are fixed in the decimal part. We only vary the values framed by the two vertical arrows including N for 22 
fraction or X, XX and XXX for the others. This is also true for the whole study where it is indicated. 
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Table 4. First Method for the decomposition of integer into prime factors (Bn = p x q).  Note that two digits 75 or 25 of
the decimal parts are fixed and only X, XX or XXX varies starting with 0, 00 or 000. N varies only in the case of 2 2

fraction. The digits that must change are framed by two vertical arrows in the whole study. 

22 Fraction  23  Fraction  24  Fraction  25  Fraction  

Numerator / Bn / Bn / Bn / Bn / 

Denominator ↑N↑.75 N.↑X↑75 N.↑XX↑75 N.↑XXX↑75

Or

Denominator ↑N↑.25 N.↑X↑25 N.↑XX↑25 N.↑XXX↑25

The quotient must be
an integer = 

22 x q 23  x q 24 x q 25 x q

This first method based on the equation Bn : p/2n = 2n x q then gives us submultiples of the biprime number Bn = p x q
including 4q, 8q, 16q and 32q. This is a new method described for the first time in this paper which allows to factorize
integers into products of prime factors. The only particularity is to be able to vary the denominator by fixing the two
digits 75 or 25 of the decimal part while increasing X, XX or XXX starting from 0, 00, or 000. Here are the instructions
or the calculation program in the box below to apply this method for any number to decompose. As soon as we have an
integer as a result, we divide it by 2n, and we have the prime factor of Bn.

a) First, put the decimal fraction with Bn as the numerator and as denominators the decimals shown below.
b) Put ↑N↑.75 or ↑N↑.25 as denominators then increase N to divide Bn.
c) Put N.↑X↑75 or N.↑X↑25 as denominators  with 0 ≤ X≤ 9. Change X to divide Bn. N will increase from 1 to +∞.
d) Put N.↑XX↑75 or N.↑XX↑25 as denominators  with 00 ≤ XX≤ 99. Change XX to divide Bn. N will increase from 1
to +∞.
e) Put N.↑XXX↑75 or N.↑XXX↑25 as  denominators  with 000 ≤ XXX≤ 999. Change XXX to divide Bn.  N will
increase from 1 to +∞.

Factorize Bn once you get an integer as a result of the decimal fractions

To explain the method well, biprime numbers Bn = p x q whose prime factors we know are used and then we apply the
method to fall back on their prime factors. We will give examples of numbers with an increasing number of digits
(Tables 5A-D). All integers which are the quotients of the fractions in the tables are in the form of 2n x q corresponding
to the box in which they are found.

 
Tables 5: Examples of the application of the first method based on series of divisions by 2n (n  ≤  5) to decompose
randomly chosen biprime numbers (Bn). Quotients (Q) are highighted.

Table 5A : The number 91 to decompose (SR = 9.5393920); 91 = p x q with p = 7 and q = 13.

Bn = p x q (q > p) 22 Fraction  23  Fraction  24  Fraction  25  Fraction  

t = p/2n 7/4 = 1.75 7/8 = 0.875 7/16 = 0.4375 7/32 = 0.21875

Q = 91/t 52 104 208 416

t = q/2n 13/4 = 3.25 13/8 = 1.625  13/16 = 0.8125 13/32 = 0.40625 

Q = 91/t
 

28 56 112 224

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 91 = 7 x 13. 
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Table 5B : The number 152771243 to decompose (SR = 12360.0664642); p = 11383 and q = 13421

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  

t = p/2n 11383/4 = 2845.75 11383/8 = 1422.875 11383/16 = 711.4375 11383/32 = 355.71875

Q = 152771243/t 53684 107368 214736 429472

t = q/2n 13421/4 = 3355.25 13421/8 = 1677.625 13421/16 = 838.8125 13421 /32 =
419.40625 

Q = 152771243/t 45532 91064 182128 364256

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 152771243= 11383 x 13421 

Table 5C : The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q = 780833.

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  

t = p/2n 6247/4 = 1561.75 6247/8 = 780.875 6247/16 = 390.4375 6247/32 = 195.21875

Q = 4877863751/t 3123332 6246664 12493328 24986656

t = q/2n 780833/4 =
195208.25 

780833/8 =
97604.125  

780833/16 =
48802.0625

780833/32 =
24401.03125 

Q = 4877863751/t 24988 5649976 99952 199904

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Table 5D : The number 69605379628229681 to decompose (SR = 263828314.6825406); p = 854299 and 
q = 81476602019

Bn = p x q (q > p) t = 22 Fraction  t = 23  Fraction  t = 24  Fraction  t = 25  Fraction  

t = p/2n 854299/4 =
213574.75

854299/8 =
106787.375

854299/16 =
53393.6875

854299/32 =
26696.84375

Q =
69605379628229681/t

325906408076 651812816152 1303625632304 2607251264608 

t = q/2n 81476602019/4 =
20369150504.75

81476602019/8 =
10184575252.375 

81476602019/16 =
5092287626.1875

81476602019/32 =
2546143813.09375

Q =
69605379628229681/t

3417196 6834392 13668784 27337568

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 69605379628229681 =  854299 x  81476602019

The method can be extended to all powers of 2 to infinity.  As above, these results are summarized in the tables below:
tables 6A-C for 2n such n ranges from 6 to 13; and tables 7A-B for n ranging from 14 to 17. 
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Tables 6: Examples of the application of the first method based on series of divisions by 2n (5 < n  ≤ 13) to decompose
randomly chosen biprime numbers (Bn). Quotients (Q) are highighted.

Table 6A : The number 4877863751 to decompose (SR = 69841.7049548); p =  6247 and q = 780833

Bn = p x q (q > p)  26 Fraction   27  Fraction   28  Fraction   29  Fraction  

t = p/2n 6247/64 = 97.609375 6247/128 =
48.8046875

6247/256 =
24.40234375

6247/512 =
12.201171875

Q = 4877863751/t 49973312 99946624 199893248 399786496

t = q/2n 780833/64 =
12200.515625 

780833/128 =
6100.2578125  

780833/256 =
3050.12890625

780833/512 =
1525.064453125

Q = 4877863751/t 399808 799616 1599232 3198464

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

 
Table  6B  :  The  number  69605379628229681 to  decompose  (SR  =  263828314.6825406);  p  =  854299  and  q  =
81476602019  

Bn = p x q (q > p)  26 Fraction   27  Fraction   28  Fraction   29  Fraction  

t = p/2n 854299/64 =
13348.421875

854299/128 =  
6674.2109375

854299/256 =
3337.10546875

854299/512 =
1668.552734375

Q =
69605379628229681/t

5214502529216 10429005058432 20858010116864  20858010116864

t = q/2n 81476602019/64 =
1273071906.546875

81476602019/128 =   
636535953.2734375

81476602019/256 =  
318267976.63671875

81476602019/512 =
159133988.318359375

Q =
69605379628229681/t

54675136 109350272 218700544 437401088 

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 69605379628229681 =  854299 x  81476602019  

Table 6C : The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q =  780833 

Bn = p x q (q > p)  210 Fraction   211  Fraction   212 Fraction   213  Fraction  

t = p/2n 6247/1024 =
6.1005859375

6247/2048 =
3.05029296875

6247/4096 =
1.525146484375

6247/8192 =
0.7625732421875

Q = 4877863751/t 799572992 1599145984 3198291968 6396583936

t = q/2n 780833/ 1024 =
762.5322265625

780833/ 2048 =
381.26611328125

780833/ 4096 =
190.633056640625

780833/ 8192 =
95.3165283203125

Q = 4877863751/t 6396928 12793856 25587712 51175424

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833
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Tables 7: Examples of the application of the first method based on series of divisions by 2n (14 < n  ≤ 17) to decompose
randomly chosen biprime numbers (Bn). Quotients (Q) are highighted.

Table 7A : The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q = 780833.

Bn = p x q (q > p)  214 Fraction   215  Fraction   216 Fraction   217  Fraction  

t = p/2n 6247/16384 =
0.38128662109375

6247/32768 =
0.190643310546875

6247/65536 =
0.0953216552734375

6247/131072 =
0.04766082763671875

Q = 4877863751/t 12793167872 25586335744 51172671488 102345342976

t = q/2n 780833/ 16384 =
47.65826416015625

780833/ 32768 =
23.829132080078125

780833/ 65536 =
11.914566040039062

5

780833/ 131072 =
5.95728302001953125

Q = 4877863751/t 102350848 204701696 409403392 818806784

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

 Table 7B : The number 5422745703328963 to decompose (SR = 73639294.5602343); p = 549319 and q = 9871760677

Bn = p x q (q > p)  214 Fraction   215  Fraction   216 Fraction   217  Fraction  

t = p/2n 549319/16384 =
33.52777099609375

549319/32768 =
16.763885498046875

549319/65536 =
8.3819427490234375

549319/131072 =
4.19097137451171875

Q =
5422745703328963/t

161738926931968 323477853863936 646955707727872 1293911415455744

t = q/2n 9871760677/ 16384 =
602524.45538330078

125

9871760677/ 32768 =
301262.22769165039

0625

9871760677/ 65536 =
150631.11384582519

53125

9871760677/ 131072
=

75315.5569229125976
5625

Q =
5422745703328963/t

9000042496 18000084992 36000169984 72000339968

Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 5422745703328963 = 549319 x  9871760677 

 
Note that the more 2n increases the more the decimal fraction obtained tends towards 0 which shows that this method
can be very quick to decompose a natural number into products of prime factors. The most important thing is to have a
continuous decimal fraction calculator where the denominator can be a decimal fraction. It is also possible to create a
computer program or an algorithm by following the instructions indicated in Table 4 which directly gives the quotient Q
and the prime factor of the number to be decomposed.  Here are the instructions or the calculation program of the
method in the box below (n from 4 to 7 for example). Make up the decimal fraction and put Bn as the numerator. Then
follow what is below.

 a) As denominators, Put N.↑XXXX↑75 or N.↑XXXX↑25 with 0000 ≤ XXXX≤ 9999. Change XXXX to divide BN. N
will increase from 1 to +∞.
b)  As denominators, Put N.↑XXXXX↑75 or N.↑XXXXX↑25 with 00000 ≤ XXXXX≤ 99999. Change XXXXX to
divide BN. N will increase from 1 to +∞.
c)   As  denominators,  Put  N.↑XXXXXX↑75  or  N.↑XXXXXX↑25  with  000000  ≤  XXXXXX≤  999999.  Change
XXXXXX to divide BN. N will increase from 1 to +∞.
d) As denominators, Put N.↑XXXXXXX↑75 or N.↑XXXXXXX↑25 with 0000000 ≤ XXXXXXX≤ 9999999. Change
XXXXXXX to divide BN. N will increase from 1 to +∞.
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Here are the instructions or the calculation program of the method in the box below (n from 10 to 13) (see Table 6C).
Make up the decimal fraction and put Bn as the numerator. Then follow what is below.

a) As denominators, Put N.↑XXXXXXXXXX↑75 or N.↑XXXXXXXXXX↑25 with 0000000000 ≤XXXXXXXXXX≤
9999999999. Change XXXXXXXXXX to divide Bn. N will increase from 1 to +∞.
b)   As  denominators,  Put  N.↑XXXXXXXXXXX↑75  or  N.↑XXXXXXXXXXX↑25  with  00000000000
≤XXXXXXXXXXX≤ 99999999999. Change XXXXXXXXXXX to divide Bn. N will increase from 1 to +∞.
c)   As  denominators,  Put  N.↑XXXXXXXXXXXX↑75  or  N.↑XXXXXXXXXXXX↑25  with  000000000000  ≤
XXXXXXXXXXXX≤ 999999999999. Change XXXXXXXXXXXX to divide Bn. N will increase from 1 to +∞.
d)  As  denominators,  Put  N.↑XXXXXXXXXXXXX↑75  or  N.↑XXXXXXXXXXXXX↑25  with  0000000000000  ≤
XXXXXXXXXXXXX≤ 9999999999999. Change XXXXXXXXXXXXX to divide Bn. N will increase from 1 to +∞.

 We can continue for increasing values  of n of the powers of 2n to infinity but this study is limited to what has been
shown (n = 17). 

Conclusion: This method is used to find submultiples of the number to be decomposed or, in other words, to go up
against the grain of Erastothenes'sieve. The goal is to find by specific calculations a submultiple which has a prime
factor of the number to be decomposed. This is achieved by using powers of 2 to divide the number to be decomposed.
The number is finally factorized according to the equation initially posed  Bn : p/2n = 2n x q. The instructions given
show how to apply the method for numbers with unknown prime factors.

4.1C Variant of the first method described by standardizing the denominators by multiplication with powers of 10

Since the method uses decimal divisors it is possible to modify it and make it uniform, i.e. operating in the same way
whatever the decimal length of the divisors. Below are the instructions to follow and this time we will just use a few
divisors (up to 25) without covering them all because the method will always apply in the same way. Make up the
decimal fraction and put Bn as the numerator. Then follow what is below. Here are the instruction to follow to apply this
new method. Change N for ¼ and change NX, NXX, or NXXX for 1/8, 1/16 and 1/32.

a) Divide BN by N.25 and N.75 →    N.25 or N.75         (1/4)    
b)  If the divisor has one digit in the decimal part before 25 or 75 digits such N.X25 ou N.X75 multiply by 10  →
↑NX↑.25 or ↑NX↑.75 as denominators (1/8)
c)  If the divisor  has two digits in the decimal part before 25 or 75 digits such N.XX25 ou N.XX75 multiply by 100 →
↑NXX↑,25 or ↑NXX↑.75 as denominators (1/16)
If the divisor  has three digits in the decimal part before 25 or 75 digits such N.XXX25 ou N.XXX75 multiply by 1000
→ ↑NXXX↑.25 or ↑NXXX↑.75 as denominators  (1/32)

Therefore, all denominators of the decimal fractions have the same form N.75 or N.25. It is as if you divided Bn by the
decimals N.75 and N.25 except that this time you will recover at the same time the quotients 1/8 and 1/16 and 1/32
during the same one calculation because these will be decimals which we will make integers by multiplying them by
10m. To explain it differently, you only divide Bn by 4 but this time you do not limit yourself to taking only the integer
quotients but also any decimals with 1, 2 or 3 digits after the decimal point which you multiply by 10m in order to be
able to decompose them and find the q factor of Bn. You could recover all the decimal quotients having one digit, two,
three, four, five and by increasing n in 2n (or the expnonent n) and so on to find all the submultples of the number to be
decomposed. This method does not offer a single solution for factoring a number as in Trial division, but an infinity.

Representative examples are shown in Tables 8A-D. Indeed, with this method three quotients obtained are decimals
with one, two and three digits after the decimal separator following the initial equation Bn : p/2n = 2n x q and so its two
terms are multiplied by 10m (1 ≤ m ≤ 3 for 1/8, 1/16 and 1/32) to have integer quotients such (Bn : p/2n) x 10m =  (2n x q)
x 10m. We therefore multiply the obtained quotient by 10m so as to have a natural number as a quotient Q' = p x 2 n

whose decomposition will give the factor of the number Bn.  
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Tables 8: Examples of the application of the first method with variations aimed at standardizing the calculation. Note 1
≤ m ≤ 3 in 10m. 

Table 8A : The number 91 to decompose (SR = 9.5393920) 

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  

t = p/2n 7/4 = 1.75 7/8 = 0.875 7/16 = 0.4375 7/32 = 0.21875

N.75 1.75 8.75 43.75 218.75

Q = 91/t 52 10.4 2.08 0.416

Q' (integer) = 
Q x 10m

52 104 208 416

t = q/2n 13/4 = 3.25 13/8 = 1.625  13/16 = 0.8125 13/32 = 0.40625 

N.25 3.25 16.25 81.25 406.25

Q = 91/t
 

28 5.6 1.12 0.224

Q' (integer) = 
Q x 10m

28 56 112 224

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 91 = 7 x 13

Table 8B : The number 152771243 to decompose (SR = 12360.0664642) 

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  

t = p/2n 11383/4 = 2845.75 11383/8 = 1422.875 11383/16 = 711.4375 11383/32 = 355.71875

N.75 2845.75 14228.75 71143.75 355718.75

Q = 152771243/t 53684 10736.8 2147.36 429.472

Q' (integer) = 
Q x 10m

53684 107368 214736 429472

t = q/2n 13421/4 = 3355.25 13421/8 = 1677.625 13421/16 = 838.8125 13421/32 = 419.40625

N.25 3355.25 16776.25 83881.25 419406.25 

Q = 152771243/t 45532 9106.4 1821.28 364.256

Q' (integer) = 
Q x 10m

45532 91064 182128 364256

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 152771243= 11383 x 13421 
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Table 8C : The number 4877863751 to decompose (SR = 69841.7049548) 

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  

t = p/2n 6247/4 = 1561.75 6247/8 = 780.875 6247/16 = 390.4375 6247/32 = 195.21875

N.75 1561.75 7808.75 39043.75 195218.75

Q = 4877863751/t 3123332 624666.4 124933.28 24986.656

Q' (integer) = 
Q x 10m

3123332 6246664 12493328 24986656

t = q/2n 780833/4 =
195208.25 

780833/8 =
97604.125  

780833/16 =
48802.0625

780833/32 =
24401.03125 

N.25 195208.25 976041.25  4880206.25 24401031.25 

Q = 4877863751/t
 

24988 4997.6 999.52 199.904

Q' (integer) = 
Q x 10m

24988 5649976 99952 199904

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Table 8D : The number 69605379628229681 to decompose (SR = 263828314.6825406) 

Bn = p x q (q > p) t = 22 Fraction  t = 23  Fraction  t = 24  Fraction  t = 25  Fraction  

t = p/2n 854299/4 =
213574.75

854299/8 =
106787.375

854299/16 =
53393.6875

854299/32 =
26696.84375

N.75 213574.75 1067873.75 5339368.75 26696843.75

Q =
69605379628229681/t

 325906408076 65181281615.2 13036256323.04 2607251264.608 

Q' (integer) = 
Q x 10m

325906408076 651812816152 1303625632304 2607251264608 

t = q/2n 81476602019/4 =
20369150504.75

81476602019/8 =
10184575252.375 

81476602019/16 =
5092287626.1875

81476602019/32 =
2546143813.09375

N.75 20369150504.75 101845752523.75 509228762618.75 2546143813093.75

Q =
69605379628229681/t

 

3417196 683439.2 136687.84 27337.568

Q' (integer) = 
Q x 10m

3417196 6834392 13668784 27337568

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 69605379628229681 =  854299 x  81476602019
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The other option is to completely remove the decimal point and continue the same divisions process. So we must then
multiply Bn by a power of 10 to avoid having decimals as a result. We choose a power of 10 (10 m) high enough (m ≥ 5
for 25 and much more when increasing n of 2n) to be divisible by all the divisors obtained and give an integer number.
Even if 10m is too high, this has no impact because the most important thing is to recover the prime factor which divides
Bn. It follows that the quotient is also a multiple of 5 and 2 and of the prime factor which divides Bn. Make up the
decimal fraction and put Bn as the numerator. Then follow what is below. The instructions are summarized below and
representative examples are shown in Tables 9A-C.

a) Calculate Bn' = Bn x 10m ( m ≥  5 for up to 25)
b) Divide Bn' by changing N only and without changing 75 or 25 digits such that ↑N↑75 or ↑N↑25 with N increasing
from 1 to to + ∞. Note that the decimal separator is removed.
c) When you get an integer as the quotient, Decompose it and get prime factors of B n'. You also get prime factors by
dividing the denominators that give integer quotients by 2 x 5n.

Tables 9: Examples of the application of the first method with other variations aimed at standardizing the calculation.
This involves eliminating the decimal point. Note that we multiply Bn by 105 in all cases.

Table 9A : The number 91 to decompose (SR = 9.5393920). Note that we multiply Bn = 91 by 105. 

7 7/4 7/8 7/16 7/32

Divisors
N75

175 0875 04375 021875

Q' = 9 100 000/N75 52000 10400 2080 416

13 13/4 13/8 13/16 13/32

Divisors
N25

325 1625 08125 040625

Q ' = 9 100 000/N25 28000 5600 1 120 224

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5. 
We will then find that 91 = 7 x 13

 
Table 9B : The number 152771243 to decompose (SR = 12360.0664642). Note that we multiply Bn =152771243 by 
105. 

11383 f/4 f/8 f/16 f/32

Divisor N75 284575 1422875 7114375 35571875

Q = 15277124300000
/N75

53684000 10736800 2147360 429472

13421 f/4 f/8 f/16 f/32

Divisor N25 335525 1677625 8388125 41940625

Q' = 15277124300000
/N25

45532000 9106400 1821280 364256

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5. 
We will then find that 152771243 = 11383 x 13421
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Table 9C : The number 69605379628229681 to decompose (SR = 263828314.6825406). Note that we multiply Bn = 
69605379628229681by 105.  

854299 854299/4 = 213574.75 854299/8 = 106787.375 854299/16 = 53393.6875 854299/32 =
26696.84375

Divisor N75 21357475 106787375 533936875 2669684375

Q' =
6960537962822968100

000/N75

32590640807600000 6518128161520000 1303625632304000 260725126460800 

81476602019 81476602019/4 =
20369150504.75

81476602019/8 =
10184575252.375 

81476602019/16 =
5092287626.1875

81476602019/32 =
2546143813.09375

Divisor N75 2036915050475 10184575252375 50922876261875 254614381309375 

Q' =
6960537962822968100

000/N75

3417196000 683439200 136687840 683439200

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5.
We will then find that 69605379628229681 = 854299 x 81476602019

Overall conclusion on the methods based on divisions by 2n

First this method is set with a calculator of decimal fractions that works continuously. We put Bn as the numerator and
the denominators are defined in the tables and in the instructions cited above. These first methods also require specific
calculators where it is necessary to fix two decimal digits after the decimal point (or without the decimal separator)
which are 75 or 25 and only vary those which are before (framed by arrows) as if 25 and 75 are separated from the rest
of the number which continues to grow as if they were not present. The other option is that you can have several
calculators for each fraction based on 2n because as soon as an integer quotient appears, all the calculations on all the
calculators combined  automatically stop. Here the approach differs from that of serial divisions because the calculation
consists of determining decimal fraction after decimal fraction by increasing the values of the divisors as indicated in
the instructions. The calculation is therefore continuous but the path is shorter than that of Euclidean divisions in series
and the number of operations can be drastically reduced in these new methods because in the end we are only counting,
i.e. increasing the value of the divisor until you find the one which gives a quotient in the form of an integer. This
method is robust, and applicable to any number, even those with two digits like 91. It can help in the decomposition of
very large numbers by calculating the quotients with several fractions whose denominator is the desired factor divided
by powers of 2. It therefore applies without limits.

4.1D Can we use other decimal divisors?

If we were able to use the 2n divisors it is because they form a repeating pattern and therefore predictable, however this
is not the case for all other numbers. We can always calculate submultiples or supermultiples of the number Bn = p x q,
that is to say multiples of p or q. 
Let r = p/n. Then Bn : r = pq : r = pq : p/n = pq x n/p = nq. However,  very few numbers give recognizable fractions and 
among them are 2, 3, 6  in addition to powers of 10. 
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Table 10 : Decimal divisors that can work in a decompisition method. The table shows 2, 3, 6 as good divisors but not 7
that vary from a prime number to another. The number Bn = 5601385979857  is used as an exemple but the data are
true for all composite odd numbers. F means prime factor either p or q of the chosen numbers Bn.

Bn = 5601385979857 (p x q) F:2 Bn/f:2

99793 (p) 49896.5 112260098 = 2 × 56130049 

56130049 (q) 28065024.5 199586 = 2 × 99793 

Bn = 5601385979857 (p x q) F:3** Bn/f:3

99793 (p) 33264.333333 168390147 = 3 x 56130049 

56130049 (q) 18710016.33333 299379 = 3 × 99793 

Bn = 5601385979857 (p x q) F: 6** Bn/f:6

99793 (p) 16632.16666666
666666666667

336780293 = 2 x 3 x 56130049 

56130049 (q) 9355008.166666
66666666666667

598758= 2 x 3 × 99793 

Bn = 5601385979857 (p x q) F:7 Bn/f:7

99793 (p) 14256.14285714
285714285714

392910343 = 7 x 56130049 

56130049 (q) 8018578.428571
42857142857143

698551 = 7 x  99793 

** An odd number divided by 3 can also give a decimal extension = 0.666..While divided by 6 can also give another 
decimal extension of 0.83333...This is true for all odd numbers.

Table 10 shows us the other decimal extensions obtained with other denominators. All prime numbers divided by 2 give
a decimal extension 0.5 for example. Odd numbers divided by 3 give two extensions either 0,3333...or 0.66666... The
table shows a prime number p divided by 3 giving a decimal extension of 0.33333. But prime number like 597566339
divided  by  3  gives  instead  an  extension  of  0.66666...Prime  numbers  divided  by  6  either  gives  an  extension  of
0.1666666...  like  in  the  table or  0.8333333 with another  prime numbers  like  597566339.  Altough prime numbers
divided by 11 give decimal fractions with a repeating pattern,  it  varies from one number to another.  For example
99793/11 = 9072.0909090909... while another prime number 597566273/11 = 54324206.6363636363... Therefore, we
cannot make a method with 11 because of variable results. Prime numbers divided by 7 give several decimal extensions
either  0.428571428571...;  0,14285714285714285714...;   0.28571428571428571...  or  0.71428571428571428571....
Even if we can tinker with 7, this will complicate the method and therefore 7 is not a good candidate nor is 11 nor 6 n

like 36. We can only develop a calculation method with 2, 3 or 6. We have seen the case of 2 n but this does not work
with the powers of 3 or 6. Here are the instructions in the case where one wants to decompose a number using decimal
extensions of 2, 3 and 6.

In a similar way this method is based on the calculation of decimal fractions:

a) Put Bn to decompose into numerator (Bn = p x q such that q > p)
b) Put the denominator by fixing the decimal part and only change N. Therefore, ↑N↑.5 (we will detect the submultiple 
2 x q), ↑N↑.3333 or ↑N↑.6666 (we will detect 3 x q), ↑N↑.1666... or ↑N↑.83333... (we will detect 6 x q).  The decimal 
part in bold must remain unchanged despite N changes and therefore you must have a calculator capable of carrying out
this type of specific calculation as metioned above with 2n.
d) If the quotient is an integer or very close** then decompose Bn by its larger prime factor. 
** When we divide BN by a decimal number having .3333... or .6666... or similar decimal parts we could obtain a quotient close to an integer having
the form N.999999999...XXX or N.00000000...XXX..., in the first case take N + 1 and in the second case N. 

By contrast, it is entirely possible to develop a reliable and extended method with 10 and its powers which is as robust
and relevant as that which we saw with the 2n subdivisions.

a) Put the number BN to be decomposed into the numerator of the decimal fraction

b) As a denominator, Put N.↑X↑ (0 ≤ X ≤ 9) to detect 10 x q. Or N.↑XX↑ (00 ≤ XX ≤ 99) to detect 100 x q. N.↑XXX↑
to detect 1000 x q (000 ≤ XXX ≤ 999). N.↑XXX....Xn↑ (000...0n ≤ XXX....Xn ≤ 999...9n) to detect 10n x q. Change X;
XX; XXX;...and then N will increase from 1 to +∞

c) Divide the quotient by 10n et get the prime factor of Bn.
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Here is an exemple Bn = 77633670588622783  = 9865069 x 7869551707. If we divide Bn by a decimal number like
986506.9 (in the form of N.↑X↑) we will get 10 x 7869551707. If we divide it by 98650.69 ((in the form of N.↑XX↑)
we will get  102 x  7869551707. If we divide it by  9865.069 (in the form of N.↑XXX↑) we will get  103 x  7869551707.
If we divide it by  9.865069 (in the form of N.↑XXXXXX↑)we will get 106 x 7869551707. Finally by a decimal divisor
like 0.9865069 (in the form of N.↑XXXXXXX↑)  we will get 107 x 7869551707. Even with 0.0009865069  (in the form
of N.↑XXXXXXXXXX↑) we will get 1010 x 7869551707 and so on.       

Let us recall to better understand the basis of the method. In reality we have no idea about the prime factor of a number
that we want to decompose, we will just put the decimal fraction Bn/N.X or Bn/N.XX, or Bn/N.XXX and so on. We are
just going to vary X from 0 to 9; XX from 00 to 99, and XXX from 000 to 999 and so on. N will increase and increase
till we get that decimal divisor which gives a quotient that is an integer ending up with one or many zeros as digit units
and which is  = 10n x q. Then we can decompose our number Bn by dividing it with q.

4.1E Case of very large numbers 
The larger the number, the more we can increase the exponent n of the denominator 2 n. If we divide an odd number by
2n, it will have a decimal part of n digits that end in 25 or 75. Here are four examples of numbers divided by 2n (n= 20;
40; 60 and 80). The quotients are shown in the table below.

A = 4478426278314973908054947361209202363226832797223
B = 4371670289392423861780657263209609734863176577149611
C= 296656153839032545132756393640972499493454450571947475882071924710747657058731
D = 
122389557149739906602533332456290429797512304738108384203596276538495840617475536035778807576851
5853039701361219

Number /220 /240 /260 /280

A 4270960119547819049887
606965264513362147171.7

8079891204833984375

1113126537800234533301
8941569779638466344504
6260775037993513502932
2699125418471667542497
085167738853.7061245744
7259657783433794975280
76171875

3884415600212213621387
133539669.3333333561638
7630481044501706833216
3034938275814056396484
375

3704467392170156117808
469.3333333333333551062
3579484028341013749328
9027155185522133251652
12154388427734375

B 4169149674789832937031
4190513702485417014852
30.58854198455810546875

3976010966100533425361
079264993904630376.3248
7353185842948732897639
27459716796875

2573081971787784815008
5588200487425906055759
4735267856226178.174927
9339138482365287319275
6374010059516876935958
8623046875

3616160907859496933598
238015.2871925296279413
2466284138853309648438
2209356844839476252673
19381237030029296875

C 2829133547201466990783
2755436036348294587559
7545573688394615101538
417489.1078290939331054

6875

2698072001649348250182
4145732914303106868324
0457128227610221005953.
2332316473284663516096
770763397216796875

2573081971787784815008
5588200487425906055759
4735267856226178.174927
9339138482365287319275
6374010059516876935958
8623046875

2453882190501961531647
2614479529786974006423
4481113296.724489378860
4106081468930518454814
5650873240963818489035
4750677943229675292968
75

D 1167197772500418725991
5669675473254184485655
2827938446239086414850
7078558134799347265041
423576846936263753.2818

0217742919921875

1113126537800234533301
8941569779638466344504
6260775037993513502932
2699125418471667542497
085167738853.7061245744
7259657783433794975280
76171875

1061560190010294469167
6084108142507997841362
5965857542031777861530
5613637369605701010224
423568.4765374242063278
8905771048959536528855
0965487957000732421875

1012382688532156438033
6841686384685514298784
8249299566299226628809
5105779046636296282028.
6021885648130647719649
2105265664062057999472
7101791340828640386462
21160888671875

Here is an example where we see that if we divide a number by 220, we can factor it after a quick number of operations. 
In the example below where A is the numerator, we must reach the denominator 75307.34239673614501953125 to 
obtain an integer quotient whose decomposition gives the largest factor of the number to be decomposed (A).
296656153839032545132756393640972499493454450571947475882071924710747657058731 (A) = 78965471861 
(B) × 3756783146451975902703159225296742756247967386181329259467691040671 (C) 
78965471861(B) / 220 = 75307.34239673614501953125
296656153839032545132756393640972499493454450571947475882071924710747657058731 (A)/ 
75307.34239673614501953125 = 
3939272644574027084152867887824757332375468649932473509575593600662634496 (D) = 220 × 
3756783146451975902703159225296742756247967386181329259467691040671 
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4.2 The second Method based on the use of a decomposition key

4.2A- Decomposition Key (Kd)

A decomposition key is the product of prime numbers (p1 x p2 x p3 x p4 x p5 x... pn) whose values are in ascending order
( pn...

 > p5 > p4 > p3 > p2 > p1)  which helps with decomposition of all numbers having a given number of digits. So there
is one key to decomposing two-digit, another for three-digit, another for 4-digit numbers, and so on. The more digits the
number has, the more the key will encompass more prime factors and will have a much greater value. Not only is it a
product of prime factors, but some are put into power (pn

1 x pm
2 x p3 x p4 x p5 x... pn) depending on the number of digits

of the numbers. This key is calculated by analyzing the value of each number having a given number of digits. This
article is limited to Kd specific for numbers with two or three digits. Two-digit numbers are denoted NX and three-digit
numbers are NXX. But since the decimal numbers such like N.X or N.XX can be converted into fractions between two
integers with 10n as the denominator such that NX/10 or NXX/100, whether the number is NX or N.X or is NXX or
NX.X or N.XX has no importance for the calculation that we will develop subsequently. Since the key will considerably
inflate  the value of  the number Bn, it  is  necessary to have very large number calculators or  specialized computer
programs. See the box below where Kds used in this article are presented. To put it another way, Kd2 will factor all
two-digit numbers NX such as 1≤ NX ≤99 and Kd3 for three-digit numbers NXX such as 100 ≤ NXX ≤ 999.   

*Kd2 = 2671979643323542381608979200 = 28 × 32 × 52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 ×
47.

*Kd2' (Kd2 extended) = Kd2  x  53 x 59 = 8355280344672717027291277958400  

*Kd2'' (Kd2 extended) = Kd2 x 53 = 163565233866050646890193661728000    = 28 × 33 × 53 × 74 × 113 × 132 × 172 ×
192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53 

**Kd3 = 29 x 36 x 54 x 73 x 112 x 132 x 172 x 192 x 232 x 292 x 312 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 71 x 73 x 79
x 83 x 89 x 97 x 101 x 103 x 107 x 109 x 113 x 127 x 131 x 137 x 139 x 149 x 151 x 163  x 167 x 173 x  179 x 181 x
191 x 193 x 197 x 199 x 211 x 223 x 227 x 229 x 233 x 239 x 241 x 251 x 257 x 263 x 269 x 271 x 277 x 281 x 283 x
293 x 307 x 311

* Used in this study. ** Not used but replaced by extended Kd2 including Kd2' and Kd2''.

4.2B Principles

Let Bn = p x q. Let's call Sri the integer part of its square root (SR), ignoring the decimal part. We calculate a decimal
fraction between the number Bn x Kd to be decomposed and Sri such that       Bn x Kd /Sri. Let Q = (Bn x Kd)/Sri. We
will from the start decide the calculation such that Q will be in the form of N.X or N.XX. In the first case we use a Kd2
and in the other a Kd3. For this method as for the first ones we need a calculator for decimal fractions in series, that is to
say in a continuous and automatic way.

The principle of this method is based on the fact that if we vary the value of the SRi by increasing or reducing it
continuously,  we will go through decimal values  which can be used by the decomposition key Kd to factorize the
number Bn. If Bn = p x q such that p < q, at one time or another we will come across a value of SRi that allows Bn
decomposition.  For instance, Sri = N.X x p; Sri = N.XX x p or Sri = N.XXX x p and so on. If we divide Bn x Kd by
these values of SRi, we can obtain a number whose decomposition will give the largest factor of the number Bn (q).
Let's see an example with Kd2, that is to say a two-digit number like N.X. For exemple, Q = Bn x Kd2/SRi and suppose
that one value we reach is Sri = N.X x p therefore Q = Bn x Kd2 / N.X x p = Bn x Kd2 x 10 / NX x p. Let Kd2a  = Kd2
x 10 and Bn = p x q. Hence         p x q x Kd2a / NX x p = q x Kd2a / NX. Let  NX = p1 x p2 and knowing that Kd2a =
p1 x p2 x p3 x p4 x p5 x p6 x...pn x 10 then Q = q x Kd2a' with Kd2a' =  p1 x p2 x p3 x p4 x p5 x p6 x...pn x 10.  
Indeed, Kd2 contains all the prime factors which factor any two-digit number, here we have assumed that NX = p 1 x p2

to simplify but whatever the prime numbers which are factors of NX, they will be included in Kd2, and therefore by
dividing Kd2 by NX, we eliminate the prime factors of NX. Since the chosen value of Sri corresponds to NX x p, by
dividing Bn x Kd/Sri, we have     Bn x Kd/p x NX and given that BN = p x q, we then eliminate p from the numerator
and denominator, and then we finally have the remainder of Kd x q (the largest factor of Bn).

Any Q value that is divisible in this way by Kd2 allows Bn decomposition. This also applies to the largest factor q if we
increase SRi value. A certain number of operations is required before obtaining a desired value with a very short 
decimal part such like N.X or N.XX; N.XXX; or N.XXXX depending on the Kd we want to use. In all cases, we will 
have the closest one when the progress of the continuous calculation of decimal fractions reaches it. 

The speed of the method depends on the distance between Sri and the values like Sri x N.X (in the case of Kd2) or Sri x
N.XX (in the case of Kd3) (or even Sri x N.XXX in the case of kd4 and so on). Note that these values of Sri could be
obtained by reducing and/or increasing Sri and this is why two calculators must be operational in parallel.
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4.2C- Representative examples of the calculation

In order to explain more this method, we will give various examples.  We will see a first example before establishing
the instructions to follow for this method.

 Here, a Kd2 adapted and readjusted to the chosen examples is used to save space and make the explanations more
plausible and be able to carry out the calculations because if Kd3 or Kd4 are used, the limits of the calculators available
on the web or conventional will be exeeded. The Kd3 in the box above gives you an idea of the complex construction of
the decomposition keys which must be the product of all the prime factors and powers of prime numbers capable of
forming a three-digit number (up to 999) either combined together into products or in powers. Examples of the use of
Kd to factor numbers are listed in tables 11.
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Tables 11 : Decomposition by multiplication of the number Bn to factorize by a decompositon key and dividing the 
product by the integer part of SR (Sri). SF: small factor. LF : large factor. SR : square root. Sri = integer part of SR. Kd2
(decompositon key for two-digit odd numbers). Kd2' or Kd2'' the key decomposition for two-digts numbers extended by
its multplication with more prime factors.  
Table 11A 

SF LF Bn SRi SRi/SF 2.5SF 2.5SF - SR
 

14459876343
7 

895514715619 129490320518
144110022503

35984763514
3 

2.4885941386
3370574904

361496908592
.5

1649273449.3
131689930371
0662683

2671979643323542381608979200 (Kd2) x 129490320518144110022503 = 345995500431921880816230698761118569805858858937600 
345995500431921880816230698761118569805858858937600 : 361496908592.5 = 957118836172255643149703593577954449920 = 29 × 32 × 5 ×
73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 895514715619   

SF LF Bn SRi SRi/SF 6.5SF 6.5SF - SR

9471240377 389714237467 369107722138
9216605059

60754236242 6.4146018708
9495089055

61563062450.
5

808826208.5

2671979643323542381608979200 (Kd2)  x 3691077221389216605059 = 9862483197487210863346139335482353522254545772800 
9862483197487210863346139335482353522254545772800 : 61563062450.5 = 160201309111566301048923146690502105600 = 29 × 32 × 52 × 
73 × 112 × 13 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 389714237467   

Table 11B

SF LF Bn SRi SRi/SF 1.32SF SR – 1.32SF

39871425701
3 

698754303007 278603302758
072676738091

52782885745
1

1.3238273981
1029692832

526302819257
.16

1526038193.8
4

2671979643323542381608979200 (Kd2)  x 278603302758072676738091 = 744422353532275922257173111915367167756492266707200
744422353532275922257173111915367167756492266707200 : 526302819257.16 = 1414437328272298725648035663718757920000 = 28 × 3 × 
54 × 73 × 11 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 698754303007   

SF LF Bn SRi SRi/SF 4608.35 x SF (4608.35 x 
SF) - SR

22823697877
120277 

484703753292
603814487663

 11062732025
056632153858
950364786583

642651

10517952284
0981894967

4608.3471402
07266808538
7

105179588112
027228512.95

1526038193.8
4

2671979643323542381608979200 (Kd2)  x  53 x 59 = 8355280344672717027291277958400 (Kd'2) 

141614921096147746225275897600 x 11062732025056632153858950364786583642651 =
92432227447337082323592188819134365189249446133336982453719218443718400

92432227447337082323592188819134365189249446133336982453719218443718400 : 105179588112027228512.95 =
878803854497767400436190504899792571840663105152000 =  210 × 32 × 53 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 41 × 43 × 59 ×

484703753292603814487663 

Table 11C

SF LF Bn SRi (SRi x 10-

9)/SF
9.45SF -  (SRi
x 10-9)

9.45SF

10780251859
59431232990

7551187 

956478064792
755281357337
812662039047
944195630644

07

103110744366
432692787769
570948735978
666103180950
244877199079
356660902693

0301109 

10154346082
66001010577
60046910822
5957770

9.4193959611
646247622 

329919246566
150459866311
8063 

101873380073
166251517626
3587171.5

163565233866050646890193661728000  (Kd2'')  = 28 × 33 × 53 × 74 × 113 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 ×
53 

163565233866050646890193661728000 x
1031107443664326927877695709487359786661031809502448771990793566609026930301109 =

168653330163981276345273748179618754268957139381396147326143518369510602293588945526304179190121658329256
352000 :  1018733800731662515176263587171.5 =

165551913603782604293375443373105817974577638062084096212007067318352254337728000 = 29 × 53 × 73 × 113 × 132 ×
172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53 × 95647806479275528135733781266203904794419563064407 
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In the first example in Table 11A, we have the number Bn = 129490320518144110022503 = 144598763437 (p) x
895514715619 (q). As explained above, we start from numbers with known factors to explain how the method works.
The SR of this Bn = 359847635143.18683100696289337317. We will consider Sri =  359847635143 and ignoring the
decimal part. But the question that interests us in the first place is the following: how far is the SRi from a multiple of
the smallest factor of Bn, i.e. p (Bn = p x q such q > p)?  p is called SF (small factor) in this section. In truth we don't
know, but we will decide to set the square root at a predictive value, that is to say we will, for example, look for the case
where the SRi/SF = N.X (like N.5 thus we look at the two-digits at the end of the quotient digits). We therefore need a
key Kd2 which decomposes all  the two-digit  numbers  NX.  We know that  the SRi  is  > SF,  but  we are  primarily
interested  in  a  ratio  of  type  N.X.  In  our  example  (Table  11A),  we  have
SRi/SF = 2.48859413863370574904. We retain 2.48 and we will then look for SF x 2.5 which is one ratio closest to
2.48. The calculation shows that SF x 2.5 = 361496908592.5. It  takes 1649273449 operations or decimal fractions
before reaching this value from the SRi. 

The Kd2 =  28 × 32 × 52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47. Therefore, Bn x Kd2 =
345995500431921880816230698761118569805858858937600  and  so
345995500431921880816230698761118569805858858937600 : 361496908592.5 = 29 × 32 × 5 × 73 × 112 × 132 × 172 ×
192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 895514715619  . We therefore have the largest factor (LF or q) of Bn and we
can break it down.

Indeed, the detailed calculation is as follows:

345995500431921880816230698761118569805858858937600  :  361496908592.5  =
345995500431921880816230698761118569805858858937600  :  (3614969085925  :  10)  =
(345995500431921880816230698761118569805858858937600  x  10)  :  3614969085925.   Because  3614969085925
must be a multiple of SF (which is= 144598763437)  and indeed  3614969085925 = 25 x  144598763437. Therefore,
we have:

(345995500431921880816230698761118569805858858937600 x  10)  :  3614969085925 = 29 ×  32 ×  53 ×  73 ×  112 ×
132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 144598763437 × 895514715619 : (52 × 144598763437) =  29 ×
32 × 5 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 895514715619.

Note that in this example we have the ratio 25/10 = 2.5 and therefore the two-digit number 25 = 52 and we have 10 = 2 x
5. The method works just as well with all decimals generating natural quotients like 2.1 or 2.2, and even 2.01, 2.001
except that in the last two cases we must have Kd3 and Kd4. Here the Kd2 has been optimized for the example and we
must always have a Kd2 capable of decomposing any two-digit number. In this example we have set the value 2.5 x SF
closest to the SRi/SF ratio, but in reality we ignore the factor of the number to be decomposed and therefore we will just
put one digit or two or more after the decimal point of the decimal fraction and wait to have an  integer as the quotient.
Another key element is how to reduce the number of operations to get the desired value? The only solution is to use
higher Kd and thus increase the number of decimals.  We have as said above SRi/SF = 2.48859413863370574904
(Table 11A, first example):

 if we use 2.49 instead of 2.5 we will have less operations 203285815 (compared to  1649273449 with 2.5).
However 249 = 3 x 83 and we have to use Kd3.

 If we use 2.4885 instead of 2.5 we will have 13612330 operations that are much less than 1649273449 with
2.5. However 24885 = 32 × 5 × 7 × 79 meaning that we have to use Kd5.

 If  we use 2.48859 instead of 2.5 we will have 598441 operations that are much lesser than 1649273449 with 
2.5 or  13612330 with  2.4885. Nevertheless, 248859 =  33 × 13 × 709. Hence a need for a Kd6. 

 If we use 2.4885941386 instead of 2.5 the number of operations decreases drastically  because we only have 4
operations to go through from the Sri to decompose the number. However, 24885941386 = 2 × 12442970693
and thus we need a Kd11.

 If we use two kd for a same calculation with Sri, we will have much less operation with the higher one because
this signifies the use of more decimals after the decimal separator.

 In the example cited above in Table 11A, 2.5 is the closest values to Sri by using Kd2. For each key used,  we
have one closest value. Requiring the least number of operations. Note that Kd2 factors all numbers between 1
and 99. If we set NX as being any two-digit number, thus any product Sri x NX such that 1 ≤ NX ≤ 99 can be
factorized by Kd2, we therefore have 99 chances of decomposing Bn using Kd2.
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  For comparison, and if we pose NXX as being any three-digit number, Kd3 will offer more chances because if
we have  Sri  x  NXX such  that  100  ≤  NXX ≤ 999,  we have  899 chances  of  factoring Bn.  To express  it
differently Bn x Kd2/SRi x NX offers 99 possible factorizations and  Bn x Kd3/SRi x NXX offers 899. This is
why this method is robust and safe and this is above all the major advantage offered by the use of Kd. Unlike
the method of division by series which has only one solution, this method offers several factorization solutions
and therefore accelerates the decomposition process.

 Here are the instructions to follow for this method

a) Calculte SR of Bn to factorize and take only the integer part by ignoring the decimal one (SRi). Let's name it Sri.
Choose your Kd. Then calculate Bn x Kd and put it as a numerator in the calculator of decimal fractions. Put Sri as the
denominator.

b) Let us therefore set the decimal fraction Bn x K/SRi = N.X or N.XX (in this article we only consider one or two
digits after the decimal point and the corresponding Kd2 and Kd3). You might use two calculators : one to increase SRi
(Bn x K/↑SRi↑ = N.X or N.XX) and the other to decrease it  (Bn x K/↓SRi↓ = N.X or N.XX). If one gives the desired
quotient, all the calculations stop all at once.

c) Start the calculation by reducing and/or increasing Sri which must then be set as N.0 or N.00. For example if we start
from 359847635143 from the example cited above, we then start with 359847635142.9 or 359847635142.99. We let it
scroll towards 0 or to higher values.

e) Stop the calculation as soon as you obtain an integer, decompose it and take the prime factor p or q in order to break
down the number Bn.

The second example of the Table 11A is the number Bn = 3691077221389216605059 = 9471240377 x 389714237467
has for SRi = 60754236242 and the ratio SRi/SF = 6.41460187089495089055 and therefore the closest number is SF x
6.5. And we therefore have the ratio 65/10 which will impose itself and therefore 65 = 5 x 13 and 10 = 2 x 5 and thus
the Kd2 defined above is able to decompose it. It takes 808826208 decimal fractions to go from SRi = 60754236242.0
up to SRi x 6.5 = 61563062450.5.

In table 11B, we will use the same Kd2 for the decomposition of a three-digit number. As said above the use of a Kd3 is
avoided to save space and not to interrupt the text with a large gap, but in reality we have to use a Kd3 for a three-digit
number but the methods works the same anyway. Indeed, a Kd2 can work for some three-digit numbers which are the
products of smaller prime factors and in this study it was extended to be able to provide explanatory demonstrations.

In table 11B, we have the number 278603302758072676738091 = 398714257013 x 698754303007 and whose SRi =
527828857451. The SRi/SF ratio = 1.32382739811029692832. Here we set the ratio Bn/SRi = N.XX. You have to
count or scroll through 1526038193 decimal fractions on calculators before arriving at 1.32SF = 526302819257.16. We
therefore have the ratio 132/100 and then 132 = 22 × 3 × 11 and 100 = 22 x 52. We will use to simplify the Kd2 cited
above because it works. Kd2 = 28 × 32 × 52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 and after
calculation as shown in table 11B, we arrive at the decomposition which gives the LF (the largest factor of the number
Bn)  as  follows  =  744422353532275922257173111915367167756492266707200 :  526302819257.16  =
1414437328272298725648035663718757920000 = 28 × 3 × 54 × 73 × 11 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 ×
43 × 47 × 698754303007. 

In the second example of Table 11B, we use a more extended Kd2 noted Kd2' (meaning that we multiply the initial Kd2
with two more prime factors to enlarge it). Kd2' = Kd2 x 53 x 59 =  28 × 32 × 52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 ×
31 × 37 × 41 × 43 × 47 x  53 x 59 = 8355280344672717027291277958400. We see that we have the ratio 295/100 in
this example with 295 = 5 x 59 et 100 = 22 x 52. The number is broken down as explained in the table 11B with the
quotient = 878803854497767400436190504899792571840663105152000 =  210 × 32 × 53 × 73 × 112 × 132 × 172 × 192 ×
23 × 29 × 31 × 41 × 43 × 59 × 484703753292603814487663. 

In the example described in Table 11C we are dealing with an SR which is too large compared to the prime factor SF.
This case is to be mentioned in giant numbers and especially when the two prime factors are large with a large gap
between them and also far from each other from the SR. In this case, it will be necessary to provide a certain number of
calculators which operate in parallel but interrelated so that if one displays an integer, the calculation stops on all of
them simultaneously. We multiply the SR with 10-n depending on its value. The higher Kd, the fewer operations are
required. But if we configure several interconnected calculators, we could work with Kd2 and Kd3.
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The  number  Bn  in  Table  11C  that  we  want  to  decompose  consists  of  79  digits.  You  have  to  count
3299192465661504598663118063 decimal fractions  to get to 9.45 x SF =  1018733800731662515176263587171.5.
Here we use a Kd2'' extended (meaning that we multiply the initial Kd2 with more prime factors to enlarge it). Kd2'' =
163565233866050646890193661728000 = 28 × 33 × 53 × 74 × 113 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47
× 53. We then have the ratio 945/100 with 945 = 33 × 5 × 7  and 100 = 22 x 52. The breakdown of the number is explicit
in table 11C.

Conclusion on the method 

The method which uses the decomposition key is a new method which can be promising. It can be used for numbers to
decompose by starting with their square roots. It works with all numbers. It is necessary to have calculators for very
large numbers.  
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5. Discussion

This article provides original material and proposes new methods for decomposing numbers. It draws its originality
from 1) proposing decimal divisors instead of natural integer divisors as in the case of serial divisions known as Trial
division algorithm; 2) it also proposes a calculation trick which consists of fixing two decimal digits by varying the rest
of the digits of the number which makes it possible to accelerate the decomposition of the odd number into its prime
factors; 3) it varies the methods which proves that they are robust since they are flexible and determinate or semi-
deterministic; 4) it takes advantage of the decimal parts of decimal or irrational numbers to decompose numbers. 5) it
proposes a new notion that of decomposition key (Kd) which is only the product of consecutive prime numbers and
their powers (only certain ones) which decomposes all numbers having a fixed number of digits. Here the article uses
those specific to two- and three-digit numbers.The Erastothenes'sieve is ineffective when it comes to carrying out an
indeterminate number of steps to decompose a number going multiple by multiple, the method described in this article
in fact makes it possible to exploit this sieve by a careful calculation of decimal fractions and go up or down to find the
submultiples or supermultiples of a number to be decomposed. This sieve gives us all the numbers having a common
factor. A number to be decomposed then has an infinity of numbers having a common factor with it. In this article, those
having a common fact < the number to be decomposed are called submultiples; and those > are called supermultiples.

The methods described in this article do not only allow the factorization of biprime numbers or any multiples of prime
factors,  they  make  it  possible  to  find  a  whole  set  of  numbers  having  a  common  factor  with  the  number  to  be
decomposed, unlike the unique solution offered by trial division where we only have one prime factor that works; or by
comparison to other methods such as that of Fermat based on the subtraction between two perfect squares. Here, the
decomposition of the number has limitless solutions or outcomes and therefore we can now argue that these methods
described in this paper have the particularity of offering several solutions (even unlimited) and therefore of considerably
increasing the chances and the speed of decomposition of an odd number whose prime factors we do not know.

The method described here based on the divisions of the number to be decomposed Bn = p x q by 2 n or 10n which gives
submultiples (or symmetrically supermultiples of Bn) should not be confused with the classic methods of searching for
common factors  between  two  numbers,  whether  manual  or  using  a  specific  calculator. Let  us  recall  here  that  a
submultiple is of the form n x p or n' x q which are both < Bn, and a supermultiple is m x p or m' x q that both are > Bn.
Firstly, we are assumed not to know the p and q factors of Bn and secondly the common factor calculator will not be of
any help since the p and q factors of Bn are unknown. We cannot list the factors of Bn neither since it only has two
which are unknown. The method described here is above all a method of decomposition and factorization like any other
algorithm. The decomposition method of this paper has its own specificity and cannot be deduced from any known
algorithms which are more complex and based on more advanced mathematical notions. The relative simplicity of this
article's methods is an additional advantage because it can be used by a very wide range of audiences. 
By using decimal divisors and playing with the location of digits and decimal commas or by allowing the square root to
unfold towards 0 or infinity, this study shows that it is possible to decompose numbers with an efficiency that is not
negligible compared to existing algorithms whether it is The trial division or others such as Pollard's. These are all
limitated by the length of the number and the time of calculation or analysis (Mosca1 & Verschoor,  2022)  [see 6].
Unless there is an unintentional error, this type of calculation detailed in this article has not been reported before. The
calculation methods are all based on the calculation of decimal fractions with the number to be ndecomposed into the
numerator and the denominator is a decimal divider concocted to result in a sub- or super-multiple of the number to be
decomposed which contains one of its prime factors. 

The calculator best suited to the methods described here would be that which allows continuous calculation of decimal
fractions with decimal numbers as denominators. It is also possible to perform that calculation with specific program on
a computer. By analogy, the methods decribed here would amount to going back through Erastothenes'sieve upstream or
downstream to find multiples having a common factor with the number to be decomposed. The idea of decomposing a
number by looking for limitless numbers that have a common factor with it is a new idea of this paper.

The methods described are also limited by the length of the operations like those known, but are very promising since
they offer possiblities to shorten the paths and save time required for the decomposition of a number. Dramatically
increasing the exponent n of 2n or 10n which are used to fix the decimal part of the denominator results in decimal
fractions tending towards 0 meaning that the decomposition of a giant number could be done quickly.  

These new methods decribed in this article and the concepts they convey might lead to new algorithms or programs to
decompose an integer into its prime factors. More importantly, this article attests that the decomposition of a biprime
number or multiple of prime factors, does not have only one solution (finding the right prime divisor) but can have an
infinity of solutions. This idea has always been present in Erastothenes' sieve if we follow multiple by multiple, but it
was necessary to develop a calculation method that puts it into practice, and that is what this article was dedicated to.  
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