GLOBAL WELLPOSEDNESS FOR THE HOMOGENEOUS PERIODIC
NAVIER-STOKES EQUATION SMALL INITIAL DATA

EN-LIN LIU

ABsTrACT. We consider the homogeneous incompressible Navier-Stokes equations on periodic do-
main T? with sufficiently small initial datum. For d > 3 and s > % — 1, the equations are globally
wellposed in the energy space Lt‘X’Hf: (R+;Td) n LfH;'H (R+;Td) in the critical sense if the ini-
tial data ug is divergence free, mean zero and ||u0||H; (rd) is sufficiently small. We use Strichartz
estimates for the heat kernel, bilinear Strichartz estimates to obtain an iteration scheme critically
depending on the value of e*®uq in L2H? ([0, T]; T¢) norm. Use such iteration scheme, we can prove
u (t) is decreasing in Hj (Td) with time t. The decay property guarantees the global existence and
wellposedness.

1. INTRODUCTION AND MAIN RESULTS
In this paper we consider the incompressible Navier-Stokes (NS) equation
Ou—LAu+Vp+V-(u®u)=0
(1.1) V-u=0

(0, ) = ug

with periodic boundary conditions in z € T¢ = R?/ (27rZ)d and kinematic viscosity 1. Where the
solution is a vector value function v : RT x T¢ — R? and wug is a divergence free vector field, i.e.,
& -ug (&) = 0. We also consider solutions normalized to have zero spatial mean, i.e., de u(t,x)de =0
or equivalently u(0) = 0. The pressure p can be eliminated from the system via Leray projections,
and so we view this equation as an evolution equation for w alone. If we take inner product of (1.1)
with v and integrate in time, we obtain the fundamental energy identity

T
(1.2) 1/ |u(T,x)|2d:c+/ / |vu(t,x)\2dxdt:1/ |uo(z)|* da
2 Jpa o Jrd 2 Jra

for suitable solutions. The solutions to (1.1) obey the Duhamel’s formula

(1.3) u(t) = e"Pug — /0 )2 Pdiv (u(s) @ u(s)) ds,

here P is the Leray projector on to divergence free vector fields Pu = u — VA~V -4 and e!® denotes
convolution with the heat kernel [2]. For divergence free vector fields u,v, we have div (v ® v) = u- V.
Hence we can rewrite the equation (1.1) as

(1.4) Ou — Au+P(u-Vu) = 0.

Theorem 1. We have the following we.llposedness theorem for NS (1.1): Let d > 3. There exists
§ > 0 depending on s and d. For ug € H3 (T?), [woll grs(pay < 6, divergence free and mean zero with
s> 21, the NS (1.1) is globally wellposed in L HS ([0, 00); T¢) NL2HsH! ([0,00); T¢) in the critical

sense. Moreover, ||u (t)|| . (pay is decreasing with time t.

Before we go forward, first define the Fourier coefficient and the Sobolev norm used in the paper.
Weuse X <Y ,Y 2 X to denote the estimate X < CY for an absolute constant C. If C' depends on a
1
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parameter o, we denote the inequality by X <, Y. The Fourier coefficient on a torusT¢ := R%/ (27rZ)d
is given by

(1.5) ) = — /Tdu(:v)e‘if'xdx, u(z) = ! u(&) e,

(2m)% 7 (2m)

(SEY

for all ¢ € Z%. We also use the notation F,u = @ (£) and F, 4 = u to denote Fourier transformation

and inverse Fourier transformation respectively in this paper. The homogeneous Sobolev norm Hj is
defined by

(L6) lull gy = | S 1€ @ (E)

cezd

Since we only consider divergence free functions v in this paper, we only use homogeneous Sobolev
spaces. It is easy to see that ||ul| g ray < |lull g (a) Whenever s <r. Also define the operator IV|* by

(1.7) VI u=F e a(6)
for any s € R. Also, the heat kernel e/“u can be written as e'“u := F;le 6% (¢). The inner
product related to H} (']Td)is denoted by
28 =77~
(1.8) (W, 0) o iz ray = D €7 @D (&)
¢ezd

The NS equation (1.1) has scaling symmetry, for L > 0 and u(t, ) is a solution to (1.1) on T¢,

1 t
up(t,x) := T\ T

is also a solution to the NS equation with domain scaling to T¢. The scalin;g property of s is given by
the equation HUL(t)HH;(TrLz) = L5 1 (@)l 75 (ay- When s = 41, the M2 'norm of uy, is invariant
for all L > 0. When s > g — 1, the equation is sub-critical and we expect the high frequencies of the

solution to evolve linearly for all time. The X® norm has scaling L%~17% for the solution to the NS
equation (1.1). Since the conservation law (1.2) is in super-critical and have no use to achieve global
regularity. In this paper, we will take advantage from the conservation quantity for the linear heat
equation, which can be applied to critical and sub-critical energy spaces: For any s > 0, from a direct
computation there is the conservation quantity

(1.9) HeTAuOHZ;(Td) +2 HetAUO||2LgH;+1([o,T];1rd) - ”uOH%’;(W)

for VT > 0.
The proof of the theorem will follow the manner: First we apply a Strichartz estimate for the heat
kernel, and obtain the bound for the integral part of (1.3),

The local wellposedness can be obtained by setting up iteration scheme. Let u; = e®ug. For n > 2,
let u,, solve

t
/O NP (4 Vo) (r)dr S Mull 2 s (rvmay 0 2 s rimey -

X=(I;T4)

Optt, — Dy, + P (tp—1 - Vtp—1) =0
(1.10)
un (0,2) = ug

If the sequence (u,) converges, the limit is a solution of (1.1) with initial data wy. The locally
wellposedness is hold for large initial data in H (’]I‘d) and s > g — 1. For the small initial data, the
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global wellposedness of the solution heavily rely on the decay property: If the initial data is sufficiently
small, for any time 0 < t; < t5, we have

llw (E2)ll g (ray < Ml ()l s (pay -
Moreover, [|u (2)ll 7z (pay = llt (&)l g5 (pay if and only if u is a zero solution. To obtain the decay
property, here we use the approach in [4] with some modification (See also [1] for a similar setting).
Observe that w,, — u,_1 is an n-linear operator from the data space to the solution space; denote

it by Fy, (u1,---,u1). Under appropriate convergence assumptions, one gets the following analytic
expansion for the solution wu,

(1.11) u:u1+ZFn(u1,~~,u1).

n=2
By (1.9), if we can prove that 2 (3777, Fy (w1, ,u1),u1) g + 12020 Fu (ug, - ,u1)||2€ is small
enough in a short time interval [0, T], the decay property follows. Let € (T') := ||uy ||L3H;+1([0 314y 5 BY

the Strichartz estimate, for n > 2 and some large constant C,
-1
HFn (uh . 7u1)||L§°H§+1([O,T];Td) <O (T).

Hence choosing T small enough, the summation

9] 2 9]
(112) ZF7L(U17"'au1)(T) +2 Z<Fn(u17"'au1)(T)7u1 (T)>H£><H; S€2(T)7
n=2 H;(Td) n=3

which is small enough. The difficulties lies in estimates related to (Fy (u1,u1),u;1). For the summation
of third to infinity iterationin, u; can be large in HS (T?). Since we can only obtain || F) (u1,u) I Lo 2+ ((o,7)ma) <

Cé? (T) from Strichartz estimates. Thus, if the initial data in H? less than § = 1/2C' can garantee the
decay of H norm.

For the continous embedding inequality on compact subset K in RY, ||ul| Lek) < Ok [lu|l frs- The
constant Cx depending on the size of the subset K. Scaling a solution u on unit torus T? to a
solution on torus with size L, T := R/ (27 LZ)*will affect the constant C' in the bilinear estimates.

Hence for general large initial data ug in H 5 (']I‘d), there is no guarantee of decay property and global
wellposedness. For other similar results on scaling invariant space VBMO, see [9].

2. THE STRICHARTZ ESTIMATE FOR THE HEAT KERNEL

Lemma 2. For d > 3, and any time interval I = [0,T] C [0,00) or I = [0,00), and any up(z) €
L2 (T?) we have the homogeneous Strichartz estimates

(2.1) ||€tAUo||L3H;(1;Td) < HUOHLg(Td)v ||etAu0||L§°Lg(I;Td) < HUOHLi(W)

the inhomogeneous Strichartz estimate for any f(t,x) € Lf,z (I; Td),

t
(2.2) ] [ e <l
0 L?Hg([;'[rd)
k A
(2.3) / 0| <l -
0 L HL(I;T4)

Proof. See also Tao’s work for u € CYH} (I;T?). [11] for this estimate. By Parseval’s identity
dezd o (& )|2 = |luo]| 2 (14) » we have the following inequalities for homogeneous Strichartz estimates

_ 2 — e — 2 —
el gy = [ X 6P e @@ < 3 ([ Il eean) @ o
P I 0

gezd gezd
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and

e! UOHLWLQ(I ;) = SUP Z e P TG (©) < Z a0 (€
€l eeza =

For the inhomogeneous Strichartz estimates, let ¢ be any function in L7 L2 (I1; T%) and ||g0||L§L2 (1) =
1, (2.2) can be interpret as the following equation

t
/e(tfr)Af(s)dr —SUP// RGZ|§|2 —le (=) (7’ §o (t §)drdt.
0

We can rewrite the boundary of the time integrations into the following formula

/ / e U] (r. ) P Edrat = / / 1t = 8) €2 TP, () Flr, )1, (03 E)drt,

(2.4) ’

L2H2(I;Td)

~

after applying Young’s inequality on functions 1;(t — r) [¢|* e~ 1€°t=") 1,(#) F(r, €), and 1;(£)3(¢, ),

we have
15z [t

Since (fI €| €—2|E\27”dr)5 < ( i [k e—2|§|27‘dr)E < % |€], by Holder inequality, and (2.4), we
obtain (2.2). Applying the Minkowski’s inequality we can switch the order of integration over ¢ with
the summation over &,

‘ /t e(t*T)Af(r)dr
0

For (2.3), for t — s > 0 it is obvious that |e(t_5)Af ()] < |f (s)I.

t
/ e(t*T)Af(r)dr
0

, we prove (2.3). O

e PN F (e &) 311, f)drdt‘

N
N

1 -~ 2 ~
<sw | 3 |7l S8z | < Moy -

: I
L2H2(I;T4) ¢\ ez HO) cezd

t
<su He(t—s)A T H ) dr < )| 1y
L H(I;T4) teII)/o 1) H1(Td) I7 )”LtHi(I’T”’)

Note that it is obvious that all the inequality coefficients in Lemma 2 are constants independent of
dimension d and s.

Lemma 3. Let d > 3, and any time interval I = [0,T] C [0,00) or I = [0,00), and given ug € H? (T4)

, f € LlHj (I; ']Td), s € R, f and ug are divergence free function. We have the following Strichartz
estimates:

(25) ||6tAuOHXs(I;Td) < 2 ||u0||H;(']I‘d) ’
t
(2.6) ‘ / =N f(r)dr < Wl Lmrscsmey »
0 L5° Hs (I;T4)
t
(2.7) ’/ =18 £ () dy < W lley s rimay -
0 L2HSTY(I;T4) o

Proof. If we substitute uy and f by |V|*uo and |V|® f in Lemma 2, we can obtain the following
Strichartz estimates in L°H} (I; Td), L2Hs*! (I; ’I[‘d) and L} H? (I; ’]I‘d) spaces without any difficulty.
O
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3. PROOF OF THE THEOREM

Let ¢ 5—1<s< % and d > 4. Let ug be a divergence free, mean zero vector value, and [|uol| f7: (pay =
M < co. By the standard iteration scheme and (1.3), let u; = e!“ug, and

t
(31) Up = 6tAUO - / e(tis)AP(un—l(T) : vun—l(r)) dr.
0

It is easy to verify that for divergence free and mean zero vector field u, v, we have that e**®u and
P(u-Vv) = Pdiv (u ® v) are also divergence free and mean zero. Therefore if u,, is divergence free

and mean zero, u,11 is also divergence free and mean zero. Here define the bilinear form B (u,v) by

(3.2) B (u,0) () = /0 =P (4 (s) - Vo (s)) ds.

Lemma 4. Letu, v € X* (I; Td) for some time interval [0,T) with s > % —1 and d > 3. Then theres
1s the bound for the bilinear form B,

(3.3) | B (u,v) (t)HXS(I;Td) Ssd ||UHL3H;+1(1;W) ||UHL§H;+1(1;W) :

Proof. By Bersteins type inequalities, we have |V*fg| < [(V*f) g + |fV*g|. Using standard dyadic
frequency decomposition, the deritivate can be move to the high frequency function. Here we omit the

detail proof, from Bersteins type inequalities and taking summation over all frequency decomposition,
IV (fVg)| Ss | fV*Tg| + [gVeT! f] for all s > 0. Hence the estimate holds

(3.4) [IP(u- V“)”Hs(qrd) ~S HU”LOO(W) ||v||H§+1(Td)+||U||L°°(Td ||“HH*+1(W S ||UHH;;+1(W) ||“HH;+1(W)-

The second inequality comes from Sobolev embedding ||fHL;°(11‘d) Ssia vl g+ (pay for s > 41
Applying above inequality to the bilinear form B (u,v),
1B (u, )l xs (10ay S 1P (w- VO 1 s (1,70
T

S [ Iz e 0z oy dr S Wollizon o Nz gy
The estimate at the scaling critical regularity s = % — 1 will require using bilinear wave estimate
technique. The proof is shown in the Appendix. Here we directly quote the result that
3.5 P(u-Vov < .
(35) 1B G Tl g Sl g B0l
The same argument can be applied to the special case s = 5 —1. 0
Proposition 5. Let d > 3 and s > %— . For any ug € H; (’]Td), the equation (1.1) is locally

wellposed in X° (I;Td) for some time interval [0,T]. The value of T is depending on the value of
Hul”LfH;“(];Td)-

Proof. First we prove the local wellposedness in the scaling critical norm. The iteration (3.1) converges
in X°¢ (I; Td) where I = [0,T], T > 0, and s > % — 1. We will choose the value T later. To compute

the difference between w, 11 and u,, let D,, := P (u,, - Vu, — up—1 - Vu,—1), and separate it into two
parts:

Dy, =P (up —tn—1) - Vup +Pup_1 -V (up —up_1).

With bilinear form B defined as in (3.2), the integration u,41 — u, = — fot e®="AD,, (r) dr can be
written as fot et=MAD, (1) ds = B (tn — tp_1,Un) + B (Un_1,Un — tupn_1). By (3.3),

[tnt1 = unll x- S(I;T) ~ (HunHL2H‘+1([ Ty T [[ttn— 1||L2H§+1(I 'er)) l[un — UnflanH;“(mrd)'
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Let ||uq HL%H;Jrl(I;Td) = o and assume that Hun”LfH;“(I;Td) < 2¢p for allm > 1. Since lim; o+ Hu1||L§Hi“([o,t];R+) =

1

160> Where C is a constant only depend on d,

0, we can choose T small enough that ¢y <

1
(36) Hun_H - un||XS(I;Td) < 4C¢ ||Un - u”L—1||L§H;+1(I;’]1‘d) < 1 ||un - un_1|‘L%H;+1(I;Td) .

By the contraction mapping u,, converges to a solution v € X* (I ; Td), which also obeys the required
Lipschitz property for local wellposedness. Note that by induction we have the following bound

(3.7) llun — u’ﬂ—lnxs(l;'ﬂ‘d) < (40)"_1 HU1HZ§H;+1(1;W) = (40)"_1 € -
The assumption bound on I holds by applying (3.7)

- 1
(3:8) HunHLgH;“(l;W) < Z [l — “Fl”LgH;H([;W) + ||U1HL3;I;+1(1;W) < 3¢ +e0 <26

i=2
for all n > 1.

The uniqueness and dependence on initial data can be obtained by the following inequality. Assume
u and v are two solutions to (1.1) on time interval I = [0,T] with initial data uy and vy respectively,
there is the bound
A A

lJu — UHXS(I;Td) S ||€t up — €' UOHXSU;W) + (||U\|L3H;+1(1;1rd) + ||UHL3H;+1(1;W)) [w— U||L5H;+1(1;Td) .
If we take subinterval 1" = [0,¢] C I small enough that [lull 2 gs+1pipay s [Vl g2 ot pripay < . By
subtract 1 [lu — ””LfH;“(I/;Td) on both side and (2.5), [[u — vl y.(f.pe0) S et ug — etAUOHXS(I;']I‘d) <
[[uo = ’UOHH;(W) : 0

3.1. Decay property of u(t). For the global wellposedness, first we prove that on a small time
interval the solution u obtained by above iteration scheme is decreasing in H. - (Td) norm where s >
4 — 1. From the observation of [1][4], the first approximation of the solution to the corresponding
linear equation given by B (u1,u;) has the worst property. Indeed, the solution u can be written as
the summation of linear part uy, the first approximation part B (ui,u;), and the remainder E.

(3.9) w(t) =uy (t) — B(u1,u1) (t) + E(t),

A

where u; = e'“ug. Recall that ||“1||L$H;‘;+1(I-1rd) = ¢. Taking H? inner product by using (3.9) at a

given time T > 0,
()7 ray < N (D) ay + 2 [(un (T), B (ur,u1) (T)) gra e vy | + BT
where
R () == || B (u1,uw1) (O)| 5y cpay + 1B O Ty
+ 2B (u1,u1) )l grs pay 1B (Ol grs (ray + 2 lus Ol g5 pay 1€ @)l s pay -
From the iteration scheme (3.7), we have ||E (T)”H;(Td) Ss.d €0 By (3.3), | B (u1,u1) (T)HH;(W) Ss.d
2. Let HUOHHQ(W) = M > 0. If we choose the time interval to be small enough such that ¢ <

(14 C(s,d))"" (1+M)™", where C (s,d) is some constant only depending on s and d. Therefore the
bound holds for R (T'),

(3.10) R(T) < €4+ €§ + 265 + 2Me) < €.

Notice that if ug is a non-zero function, there exists 7' > 0 that for all t € (0,7), R(t) < 2. The
equality holds only for zero function if the time interval is carefully choose. It is suffice to show the
decay in short time by showing the inner product between wjand the first approximation B (u1,u1) in
HS x HS (T%) is small enough. If [(uy (T), B (u1,u1) (T)>H;><H§(’J1‘d)’ < €2, the following proposition
holds.

Proposition 6. Letd > 3, s > %f 1. Ifu is a solution to (1.1) and locally wellposed in X* ([()7 T] ;Td)

for some T > 0 with ||“(0)HH;(W) < 20(137(1), ||“(t)HH;(Td) is decreasing on [0,T].
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Proof. Let u; = e®ug,and ||“0||H,s,(1rd) = M. By (3.4),

t
P (uy - Vur) (1) o oy dr S unll72 51 imay = C (s, d) €5
0 x t ( )
Hence there is the smallness bound
t
1) fur (0.5 on ) O) gy | S Nl [ 1B (s V) 0l gy dr < OGS

Since M < 55, the second iteration in (3.9) is bounded by €2. By taking ¢; small enough, u (t)

decreasing in H? (T?) is obtained by (1.9)
2 2 2
ot () oy < Nt (600 oy + 263 = ol oy -
For any ¢ in the interval [0, ], the same argument gives us |[u ()| 7 (pay < [[t0[l 77 (pa)- The argument
can also be applied to any subinterval of [0,¢1], which gives us the decay in time. By repeating the

argument at time ¢,,, there is the new time interval [t,, t,41], tnt1 > tn, with the same decay property.
By the uniform bound [|u (¢,)|| s (pay < ||woll g7 (7ay. the argument can be applied until we obtain decay

property on [0, T]. Moreover, the equality |l (t5)| s7:(pa) = [[toll gz (pay holds if and only if ug =0. O

The maximal time interval of existence can be extended to [0,00) due to that it is impossible to
have some finite time 7', lim 7 [|u (t)| 7, (ra) = co. Hence the main theorem is proved.

Remark 7. The extend the proof to non-homogeneous NS equations and NS equations onR?, see [10].
Other regularity and wellposedness theory can also be found in this paper and its references as well.

4. APPENDIX—BILINEAR STRICHARTZ ESTIMATES FOR WAVE EQUATIONS ON TORUS

In this section we use % to denote the Fourier transformation both in time and space,

(4.1) i (r,€) = (zi)i K O; /T (b e

where £ € Z¢, 7 € R. For the scaling critical exponent s +1 = %, there is no Sobolev embedding from

. d
L (T?) into HZ (T?) when d > 1. To obtain the inequality (3.3), we need to take advantage of the
null form structure of P (u - Vv). The null form @ (u,v) represent arbitrary linear combinations, with
constant real coefficients of the null forms

(4.2) Q (u,v) = O;ud;v — djud;v.
The nonlinearity P (u - Vwv) for divergence free vector value functions w,v can be represented as
P(u-Vv) = Q (\V|_1 u,v). By applying bilinear Strichartz estimates for the wave equation, the

inequality (3.5) can be acheived. Here the bilinear estimates following the work by Klainerman and
Machedon [6] on R x R?, Klainerman, Selberg [8], Foschi and Klainerman [3] on R x R? when d > 2.
A similar results for bilinear estimates on compact manifold without boundary can be found in Hani’s
work [5].

Define the operator w® and w¢ on scaling torus T as

(4.3) Frow® (u) = (2m) "5 3 (7] - [el|” a(r,€)
gezd

and

(4.4) Frowg (w) = 2m)72 3 [J7] + €| a(r,€),
£ez4d

where o € R. The proof starts with re-prove a subset of wave operator bilinear STrichartz estimates
on torus and use the bilinear Strichartz estimates to obtain (3.5). In this section, the bilinear estimates
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are performed on the extra time variable ¢’, where (¢, x) € [f%, %} x T<. The original equation u (¢, x)
11

on RT x T? is extended to a new domain [—3,1] x R x T? with the equation

(4.5) u(r,t,x) :=cos(r|V|))u(t,z),

where the operator is defined by F cos (r |V]) u (x) = cos (r |£]) f(ﬁ) . It is obvious that O,u = 0 and
u(0,t,x) = u(t,z), where O, := 92 + A. Let ur (r,x) = u(r,T,z) be the function of r,x at a fixed
time T', ur (r, z) is a homogeneous wave function on [—%, %] x T¢. The initial data for the equation is
given by ur (0) = u (7T'), Orur (0) = 0. Taking integral on both side of the differential equation with

respect to r and =
IP (wr - Vaur) (0)[2 = [P (ur - V) ()2 —/ O [Pur - Vur ()2 dr”,
0

a bound for P (ur - Vur) at r = 0 can be obtained.
The following theorem for wave operator bilinear estimates can be found in [3]: Let d > 2 on R x R4,

Of =0g =0,{f(0),f: (0)} = {fo, f1}, and {g (0) , 9: (0)} = {go, 91}. We have

V|50 P+ P ‘
(4.6) H| e

Sa (ol s oy + 1all e gy ) (190022 ey + ol 1 )

if and only ifay, as, By, B1, Bosatisfy the following conditions:

d—1
(4.7) ﬁo+ﬁ++ﬁ—=a1+a2—72 ;
d—3
(4.8) go>-2-3
4
d—1
d—1
(4.10) aigﬁ,—&—?, 1=1,2,
1
(411) a1 + o Z 5,
d+1 d-—
(4.12) (anf )+ (L _d=3)
4 4
1 d-3
(4.13) (4o, B)# | z,—— .
2 4
We expect that the bilinear estimates on [—%, %] x T? follow the same inequalities as the well known
estimates on R x R?. Since in the later section only the case T = 0, f_ = %, and By > 0 are
considered, we only prove the special cases of the bilinear estimates on [—%, %] x T¢.

Lemma 8. Ford >3, f =¢€'lVIfy, g =eVlgy and we have

(4.14) w79

Sa [l foll g2 ray ||90|\H§(Td :

LiLz([-3:3)71) )

. d
or all fo € L, (T9) , g0 € HZ :
for all fo € Ly (T4) , go € F2 (T9)
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Proof. The Fourier transformation v (t) fg can be written as

ft,mw(t)fg:(27r)7%//Z%(5_77).66(77)6(7/_‘77|)6(7:_T/_‘5_77|)’$(T_7:)d7-/d7-

nezd
=207 fole—m) @ )b (r—Inl — 1€ ).
nezd

We follow a similar argument in [6], Here define A’ := {T : 7 =1&1] + |&|, where &,& € Zd}. Also
define S(7,¢) := {n € Z* : ||¢ — n| + |n| — 7| = 0}, which forms an ellipsoid. Using the inequality

[w? (.9) <19 O Q (£.0)ll 22 mere)

we have the following estimate:
(4.15)

r213([-4.4]1)

2

Hw% (fg)’

~ R 1
it S | [BE—m|ig mlir - el
iz (l-22)m) gezd TeN | neS(r,€)

2

2

Y| Y Jmneseons, it Y )]%(e—mf(m?|gz<n>|)2p-d||f|—|f|

cezd TeN | reR(r,€) nesS(r,£)NSy (p

Here S, (p) = {n € Z* : |n| = p}, and we define the counting measure for the intersection of the sphere
and the ellipsoid as

(4.16) By (7,€,p) :=={n:ne ST, NS, (p)}.

Also define the set R(7,€) can be viewed as the ellipsoid S (7,€) project to a 2 dimensional plane
contains the vector £, and contains all the possible p value, R (7,¢) := {p e Rt : S(1,£) NS, (p) # ¢} .
To simplify the notation, let

—~ 2 a
(4.17) Aren= > |be-n| |l mm
neS(1,6)NSy (p)
By Cauchy’s inequality the equation (4.15) has the bound,
- 2

1 1
SIS S oIl = [€llF Bu(r,€.0) A7, p)
¢ezd TeEN | rER(T.€)

gz Z Z p_d||T|_|£HBl (T7§ap) Z A(T,f,p)

gezd TEN [reR(.) PER(T.E)

‘ 2

SIS

It is suffice to prove that

(418) BZ (7—7 5) = Z pidBl (7_,57[7) ||T| - |£H S 1
pER(T,€)

for all 7, €.

Since the intersection of the ellipsoid S (7,&) and the d — 1 dimensional sphere S, (p) is a d — 2
dimensional sphere, and the radius is psin 6 (&, 1), we have By (7,€, p) ~q p*2sin?=26 (¢,1),

Yoo B E T —ENS Y] 7 lIrl = 1Ellsin? T2 6 (&, m)
PER(T.E) PER(T:E)
We may rewrite r as a function of 7,¢ and w,
2
% —[¢]

(4.19) p= Sr—tw)
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Since all possible 7 are of distance at least 1, hence the summation can be bounded by the arc length

of the ellipse and denote the arc length by s’. To simplify the notation, we denote 6 (¢,7n) by 6, i.e.
taking the £ direction to be the positive z-axis direction, we obtain

B [ gt el ellsin® 2 6as
R(7,£)
In (4.19) we have £ - w = || cos 6, hence

ap (72— 1€1) kelsing
do 2(r — |¢|cos )

Hence we have

2 gip2 7 — |€] cos0)* + |¢]? sin® @
o de, v 8 0 oot 4 e nle
d9 (1 — |€| cos B) T — €| cos 6

p can be view as a function of a := ? w, and it is easy to verify that p decreasing as a increasing
from —1 to 1. By using the substitution da = sin 6d6

& _ T—§COSQQ+£ZSin29
325/ 2 (r |gcose)|7|_|£”¢( €lcoso)” +[efsin®0

—x T2 ¢ T — || cos @
La/72 4+ [P =27 ¢ a d-3
5/ \/ il il (1-a*) ? da <1
T+ [¢]

Therefore we obtain the desired inequality

syl 2o 2 EZ(gA(r,e,m S Wollza ooy ool g -

¢ezd reN | peR(r,€)

Lemma 9. Ford >3, and f = eVl fy, g = e "IVlgy we have

(4.20) |0k (r9)] < gz e o

13([-4.4m) ~ o’

for fo € L, (Td) go € Hx (']I‘d).

Proof. The Fourier transform is given by

Fra (1) fg = (2m) %//Zfof n)Go ()8 (v + n) 8§ (F =7/~ |€ =) ¥ (7 — 7) dr'dF

nezd

=) S fo €@ D +Inl—le ).

nezd

Following a similar argument, defining S(7,&) := {n € Z%: |[¢ —n| — |n| — 7| = 0}, which forms an
hyperboloid by rotating the hyperbola in 2 dlmensmnal space. Since for the counting measure of the
intersection of the sphere and the hyperboloid has the same bound as in Lemma 8, B (7,&,p) =
H{n:n e S, NS, ()} < pt2sin?26 (& n). Tt is suffice to prove the following bound

Yo o BT —lENS D I - s P S 1,

PER(T,E) PER(T.E)
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where R(7,£) is the hyperbola from projecting S (7, &) on 2 dimensional space containing £. Following
the similar argument, we can rewrite p as a function of w :=n/|n|

¢° — 7
4.21 =
(4:21) P=3 (T4+¢ w)
for p > 0, and
g° =7
4.22 =
(4.22) P e w)
for p < 0, and we can take w to —w’. The proof can be obtained by following a similar argument in
Lemma 8. 0

Lemma 10. Let d > 3, let f = eIVl f,, and g = e1Vgy, we have

(4.23) |91 w? (79)|

< o o
r22([~4.3]7) ~d ”fOHHIl(’]I‘d) ||90||H12(1rd)

if ar, as, By satisfy the following conditions:

d
(424) ﬂo + 5 = Q1 + g,
(4.25) By >0,
(4.26) a; < g, i=1,2.

Proof. For the ellipsoids case it is suffice to prove when f = eIVIfy, and g = e'IVlgy. Recall that
the definitions S, (p) = {n € Z?: || = p}, and By (7,&,7) = [{n:n € S(1,§) NS, (p)}|. Let Fy =
IV fo and Gy = [V|** go, we have

2

< Bo
r2r2([-4,4)e) ™ Z Z Z [3

1917 w2 (£9) Fo (€ = m|ldo ()l 171 = lell®
gezdTeN | nesS(r.€)

(4.27) 142

SZ Z Z By (7,€:p) Z ‘F\o(f—n)mé\o(n)rWW)

& — >t n[**2
¢ezd TEN | reR(r.€) nES(7,€)NS, (p) e

On the intersection S(7,&) N S, (p), the quantities have the values|n| = p, |¢ —n| = 7 — p, and
By (1,6,p) <a p?2sin?"20(¢,n). Also due to the symmetry, we can assume that || ~ | — 5| >
Inl. IEfE| ~ Il 2 |&—nl let p' = |g¢=n|, 7 —p' = |n[ and By (1,&,p) = B1(1,{,7—p') Za
(p')d*2 sin?=20 (¢,€ — 1), the same argument can be applied.

(125) awen= Y [Re-a||Gm

neS(7,6)NSy(p)

’ 2

By Cauchy’s inequality the equation (4.27) has the bound,

— N /B 2
Tl — g 2 5 ’ o4

SY | X A e n et e

¢ezd TN [reR(r€) ™=l

~ 20 ‘p‘2a2 {76, P 1S P

gezdTeN | reR(r.€) [T =l PER(T,E)

N
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It is suffice to prove that

. 280
(4.29) B; (1,€) == > M&(T,f,p)sl-

2041 20&2
rer(ror<r/2 1T =PI 1P

By the conditions £y + g = o1 + oy and ag < %, 2c17 — 28y > 0 and d — 2 — 2a5 > 0. Applying the

inequalities ‘T‘flpl <1 and % ~ 1, we have

2 d—2—-2 d—2—-2
o P

~
=

d—2—2 —2 —+2 —2
1 A

2011 2041—260
ol

|7 —pl

Therefore following the same substitutions in Lemma 8, the following bound holds

2Bo
Biros Y AT e gy e

2041
reR(7,£),r<7/2 | o |

S > el = st o (g ) S 1

rER(T,§),r<r/2

For the hyperboloid case f = e "IVl fy, g = elVigy, we separate the estimate into two parts, where
[n| < 2|¢Jand where || > 2|€|. For where |n| < 2¢|, the same argument used in the ellipsoid case
can be applied. For | —n| = |n| > 2], if By > 0, we can also apply the argument use in the ellipsoid
case. 0

In the following section, we are going to prove the estimates for the quadratic form. Suppose f,g
are two divergence free vector value functions from R™ to R™. The quadratic nonlinearities P (f - Vg)
can be written symbolically in the form

(4.30) P(f-Vg)=Q(IVI™" f.9).
Here Q (f, g)represents arbitrary linear combinations of the null forms

Q99 = Y [ae-nnic-rE-namar

nezd
where ¢ is a linear combination of the symbols g¢;;
aij (&) = &nj — &ni-
See Lemma 2.1 in [7] for details of the following bounds. For any vectors £, n € R™ we have
1,1 1
(4.31) [EAnl S 1€ 2 1€+ 02 W2 (1,6 A,m),

where W (7,&; A\, n7) is the maximum of the weights ||7| — |¢]], ||A| — nll, [|7 + Al — |€ + n||. Since in the
paper only linear wave functions are considered, f (7,€), g (7,€) are supported on |r| —|£| = 0. The
equation (4.31) can be reduced to the case

1011 1
I(E=m) Anl S 1E—nl2 nl? €2 |Ir] — €% .

Also there is the bound
1 1
< Inl €+ nl?
~ 1
(I +1€1)2

Applying (4.32), and f(T7 €), §(7,&) supported on |7] — ] =0 to Q (|V\71 f g), the estimate can be
reduced to the case

(4.32) ‘é' /\n‘ W (7.6 Am).

‘5—77

1 1
An‘ <l il — Jell
1€ — 7]
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Lemma 11. Letd > 3, and Of = 0, with f (0) = fo, f: (0) = 0 and Ug = 0, with g (0) = go, g:(0) = 0.
Let the pair { fo, g0} be either {fo, g0} or {go, fo}. Then we have the following bounds:

4.33 P(f-V <d |[fo
(4.33) B VDN 1y g0y 52 10l ) 101
4.34 P(f-V 1 90 ,
(431 ORI PRI 1 PN -
and
(1.35) UM 3 g gy S0 Wty I
. <Aty
(436) H]P)(f vgt)HL?H?_%([—%,%],Td) ~d ||f0||H?(Td) ||go||H2(Td)’
whenever fo, go satisfying HfoHH2 ()’ ||90|| (’Jr'i)
Proof. Let f(t) = % ( V| 4 e—zt|V|) fos fr (1) = @ (eit\w _ e-z’t\w) fo, g (t) = % (ezt\w + e—it|V|) 9
g (t) = ’lg‘ (e vl _ ”'V‘) go. Let I =[—1, 1], we have
a s|fu? (s191%9)
HQ (|V| f’g))wy;([md) S ez (FIVIEg L2Hs(1;14)

The following inequalities for homogeneous wave equations f, g with suitable parameters

(]

by applying Lemma 10. Not that s = g -1, g — %,

(4.36) respectively.

o

< s s
2L (1) ~ ”fOHH;El(Td) HgOHHIQ(’H‘d)

43 4 _ 3 in the case (4.33), (4.34), (4.35),

For (81, 02) = ( ) the parameters are choose as the following table,
equation (4.33) (4.34) (4.35) (4.36)
m | g1 | 4% | g3 | #-3
a1 + Qg d— d—3 d—3 d—3
e G0 [ B0 [E-11-D][GI-
oo [ D] GD | 39 | G

Notice that for (4.33) estimates, we use the property ||gol .

proof.

d_
2
H

1
2(T4)

to finish the
O

< 9ol ;4

Proposition 12. Let d > 3 and the pair {u,v} be either {u,v} or {v,u},w € HZ (Td), T e HZ (Td),

we have

(4.37)

P .
RO

(T4)

1y Sl g

PO PP

. d
Proof. Note that if u,v € L?Hz? (I; ']Td) for some time interval I, then for a fixed time t € I, u (t),v (¢) €

ch% (T9) for a.e. t. Let u(r) be a solution to the linear wave equation O,u = 0 and u (0) = u (t),

u, (0) = 0. Define v (r) in the same manner. We want to bound the quantity ||P (u - Vv) (¢)| .

d
B2 (T4)

by ||P (u and its derivative in time,

Vol g ra)

(-3

1
50 [P (- Vo)

d
Hm2 (Td)

to\»—-

=Re(P(u-Vbo),P(u,. Vo) +P(u-Vo,))

d
sz

59

2 (T
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L1 1 .
Using the H? — H, ? duality ’Re <f7g>H§71xHx%71 = ‘Re <f7g>H§7%XH§,% ,we have
(4.38)
1 2
30 PG Ty <P Tol gy (1P Tl gy P Tol gy ).

Using Cauchy’s inequality on the righthand side of (4.38), there is the bound for r € I* = [—

" 2
| oo ol
(I*;W)) '

N
N
—

dr‘
(T4)

3
2

wjeo

SIPG w0l g (1 Vo

By (4.34), (4.35), and (4.36) we have

/OT O, P (- Vo) ()|, 4 dr

P (u, -
S+ PG Vo))

_d_ Ld_
L2H2 2 (I*;Td 2F2

SalB(0)% s w0’

(4.39) < ¥ .
H2 (T4) HZ2 (T4)

2 H(T9)
Applying (4.41) and (4.39) to the equation

0
4.4 P (u- > = ||IP(u- ; / [P (u - 2
@a0) PO g =P O g+ [ R
there is the bound

(4.41) [P (- Vo) (0)] SIEOI ¢ llE0)]

2 2
L4y . . d .
HZ ~(T%) HZ2 (T4) HZ2 (T%)
By substitution u (0) = u (¢), v (0) = v (¢) on both side of (4.41),
|

(442) Bw(®)- o)l g, SITO)

<

Iy gy T O

for a.e. time t € 1. O

.4 )
HE (T4)
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