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Figure 1  The simplest model universe's scaled radius
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Figure 2  The simplest model universe's scaled radial velocity
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Abstract The James Webb Space Telescope has discovered a large population of bright compact galaxies in the
early universe. Their abundance suggests that the early universe may not have expanded as explosively as Big Bang
cosmology implies, that it may have been relatively more compact for a longer period of time. It is plausible that the
physical issue with the Robertson-Walker metric form in this regard is Friedmann’s 1922 coordinate condition, which
makes gravity effectively Newtonian, devoid of gravitational time dilation. Einstein’s successful 1915 coordinate
condition in contrast permits the metric to be Lorentz covariant and compels it to always have a matrix inverse, a
constraint which the Big Bang flouts. We exhibit a transformation of the Robertson-Walker metric form to Einstein
coordinates, and we study in detail the radial evolution, in respectively Friedmann and Einstein coordinates, of
the very simplest expanding-dust-sphere cosmology model. The deceleration of cosmic expansion in Friedmann
coordinates is changed in Einstein coordinates to its acceleration, and the Big Bang in Friedmann coordinates is
swapped in Einstein coordinates for a peak in that inflation.

* jonathan@jonathandickau.com
† skkauffmann@gmail.com
‡ stanrobertson@itlnet.net

1



1. Introduction and a review of the simplest cosmology model in Friedmann coordinates

The James Webb Space Telescope (JWST) has discovered a large population of bright compact galaxies in
the early universe (i.e., having redshifts z > 10), which are evolved enough to produce clear signatures of
ionized elements as heavy as oxygen.[1] The abundance of these early bright compact galaxies suggests that
the early universe may not have expanded as explosively as Big Bang cosmology implies, that it may have
been relatively more compact for a longer period of time.

In fact, Friedmann’s 1922 coordinate condition, g00(x) = 1 for all x, which is manifestly built into the
Robertson-Walker metric form,

(c dτ)2 = (c dt)2 − (R(t))2
[
(1/(1− kr2))(dr)2 + r2

(
(dθ)2 + (sin θ dφ)2

)]
, (1.1)

of Big Bang cosmology, turns out to completely eliminate gravitational time dilation because gravitational
time dilation is given by,[2]

[(the tick rate of a clock at x2)/(the tick rate of a clock at x1)] =
√
g00(x2)/g00(x1). (1.2)

Since Friedmann’s 1922 coordinate condition g00(x) = 1 for all x completely eliminates gravitational time
dilation, the explosive pace of the expansion of the early universe in Big Bang cosmology might conceivably
disagree with physical reality. The absence of gravitational time dilation in Big Bang cosmology dovetails
with the fact that its chief results follow from Newtonian gravitational dynamics [3].

Undoubtedly the simplest cosmological model for the universe is an Oppenheimer-Snyder-style radially-
expanding sphere of uniform-density “dust” whose constituent “dust particles” interact only gravitationally
with each other.[4] The Newtonian gravitational dynamics of the radius r(t) of such a radially expanding
sphere of uniform-density dust [3, 4] is governed, in light of the Birkhoff theorem, by the following two versions
of the same familiar Newtonian equation of a test body’s exclusively-radial outward-directed motion in the
gravitational field of a static point mass M fixed to the origin of coordinates,

d2r/dt2 = −GM/r2 and dr/dt =
√

(2GM/r) + v2, (1.3)

where M is the total conserved energy divided by c2 of the radially-expanding sphere of uniform-density
“dust”, and v > 0 is the r →∞ asymptotic outward-directed velocity of its radius.

One of the most distant galaxies which has been observed has a redshift z of 13.2, which corresponds to
a recession speed of 0.99c. Therefore it is reasonable to put the value of the dust-sphere model universe’s
asymptotic outward-directed radial velocity v to c in Eq. (1.3) above. After having done that, it is very
convenient to reexpress Eq. (1.3) in terms of the dust-sphere model universe’s dimensionless scaled “time”
variable u = t/(rs/c) and in terms of that model universe’s corresponding dimensionless scaled “radius”

variable q(u) = r(t)/rs, where rs
def
= 2GM/c2, that model universe’s Schwarzschild radius. Eq. (1.3) is

thereby simplified to the two closely-related dimensionless scaled equations,

d2q/du2 = −1/(2q2) and dq/du =
√

(1/q) + 1. (1.4a)

The solutions q(u) of the second differential equation dq/du =
√

(1/q) + 1 of Eq. (1.4a) can’t be expressed
in terms of elementary functions, but their inverse functions u(q) can be so expressed, i.e.,

uq0(q) =
∫ q
q0
dq′
√
q′/(q′ + 1) =[√

q(q + 1)− ln
(√
q +
√
q + 1

)]
−
[√

q0(q0 + 1)− ln
(√
q0 +

√
q0 + 1

)]
. (1.4b)

For the initial condition q(u = 0) = 1, namely that the expanding dust-sphere model universe attains its
Schwarzschild radius at time zero, the corresponding dimensionless scaled radius solution q(u) of the second
differential equation in Eq. (1.4a) is the inverse of the Eq. (1.4b) function uq0=1(q) because uq0=1(q = 1) = 0.
Thus the q(u) which satisfies q(u = 0) = 1, while not directly expressible in terms of elementary functions,
is readily plotted using Eq. (1.4b). Its plot is displayed as the red curve of Figure 1, and the corresponding
plots of its dimensionless scaled radial velocity dq(u)/du =

√
(1/q(u)) + 1 and its dimensionless scaled radial

acceleration d2q(u)/du2 = −1/(2(q(u))2) are displayed as the red curves of Figures 2 and 3 respectively.
These three red curves depict a Big Bang dust-sphere model universe whose dimensionless scaled radius
q(u) suddenly begins steeply increasing from the value zero at the finite initial dimensionless scaled time

u = ui
def
= uq0=1(q = 0) = −

√
2 + ln(1 +

√
2) = −0.53284 when the Big Bang occurs; the fact that q(ui) = 0
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implies that at the finite dimensionless scaled time u = ui when the Big Bang occurs the dust-sphere
model universe’s dimensionless scaled radial velocity dq(u)/du|u=ui

=
√

(1/(q(ui) = 0)) + 1 is infinite and
its dimensionless scaled radial acceleration d2q(u)/du2|u=ui

= −1/(2(q(ui) = 0)2) is infinite as well.
Furthermore, at the finite initial dimensionless scaled time u = ui = −

√
2 + ln(1 +

√
2) = −0.53284

when the Big Bang occurs the dimensionless function R(t) of the corresponding Robertson-Walker metric
form of Eq. (1.1) vanishes in concert with the vanishing of the dust-sphere model universe’s dimensionless
scaled radius q(u), so at the finite initial time when the Big Bang occurs the corresponding Robertson-Walker
metric’s matrix inverse is undefined. Consequently, at the finite initial time when the Big Bang occurs the
corresponding Robertson-Walker metric’s affine connection, namely its gravitational field, is undefined, as
are its curvature tensors.

In addition, as we see from the red curve of Figure 2, for all u ≥ ui = −
√

2 + ln(1 +
√

2) = −0.53284,
dq(u)/du > 1, i.e., from the time of the Big Bang onward, the dust-sphere model universe’s radial expansion
velocity exceeds c, which contradicts the very well-established basic physical principle that entities such as
“dust” (or even light) don’t travel at speeds exceeding c [5].

It is thus apparent that Big Bang cosmology, which incorporates Friedmann’s 1922 coordinate condition
g00(x) = 1 for all x in its Eq. (1.1) Robertson-Walker metric form, not only may be incompatible with
the early universe of abundant bright compact galaxies revealed by JWST, but that it as well challenges
well-established physical principles.

Friedmann’s 1922 coordinate condition g00(x) = 1 for all x doesn’t guarantee the existence of the
matrix inverse of the metric gµν(x) at all x, so it doesn’t guarantee the existence of the affine connection
(the gravitational field) or the curvature tensors at all x; we noted above that for the simplest model
cosmology the corresponding Robertson-Walker metric has no matrix inverse at the time of the Big Bang.
Furthermore, Friedmann’s 1922 coordinate condition g00(x) = 1 for all x manifestly doesn’t permit gµν(x) to
be Lorentz covariant; the red curve of Figure 2 shows that for the simplest model cosmology the corresponding
Robertson-Walker metric engenders arbitrarily-large violations of the Lorentzian speed limit c.

In contrast to these issues of physical principle regarding Friedmann’s 1922 coordinate condition g00(x) =
1 for all x, the coordinate condition det(gµν(x)) = −1 for all x which Einstein successfully applied to
Mercury’s remnant perihelion shift and also to the deflection of starlight by the sun’s gravity in his landmark
November 18, 1915 paper [6] compels gµν(x) to have a well-defined matrix inverse for all x and permits gµν(x)
to be Lorentz covariant. Therefore in the next section we work out a coordinate transformation of the Eq. (1.1)
Robertson-Walker metric form—whose virtue of course is that it is appropriate for Einstein equations whose
gravitational sources are spherically-symmetric and homogeneous [7]—such that the coordinate-transformed
Robertson-Walker metric form satisfies Einstein’s 1915 coordinate condition det(gµν(x)) = −1 for all x
instead of satisfying Friedmann’s 1922 coordinate condition g00(x) = 1 for all x, as the Eq. (1.1) Robertson-
Walker metric form itself does. We thereby take advantage of the fact that a coordinate transformation of a
metric solution of an Einstein equation is also a metric solution of the same Einstein equation.

2. Transformation of the Robertson-Walker metric form to Einstein coordinates

Following arbitrary non-interdependent transformations t′(t) and r′k(r) of its time t and radius r coordinates,
the Eq. (1.1) Robertson-Walker metric form becomes,

(c dτ)2 = (dt(t′)/dt′)2(c dt′)2−

(R(t(t′)))2
[(

1/
(
1− k(r(r′k))2

))
(dr(r′k)/dr′k)2(dr′k)2 + (r(r′k)/r′k)2(r′k)2

(
(dθ)2 + (sin θ dφ)2

)]
, (2.1)

whose determinant will be −1, which is required of metrics expressed in Einstein coordinates, if both,

(dt(t′)/dt′)2(R(t(t′)))6 = 1 and
(
1/
(
1− k(r(r′k))2

))
(dr(r′k)/dr′k)2(r(r′k)/r′k)4 = 1 are satisfied. (2.2)

The first Eq. (2.2) requirement implies that,

(dt(t′)/dt′)2 = (R(t(t′)))−6, (2.3)

and it furthermore implies the following unique time transformation t′(t) that satisfies t′(t = 0) = 0,

t′(t) =
∫ t
0
|R(w)|3dw, (2.4)

while the second Eq. (2.2) requirement implies that,
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(1/(1− k(r(r′k))2))(dr(r′k)/dr′k)2 = (r′k/r(r
′
k))4, (2.5)

and it furthermore implies the following unique radius transformation r′k(r) that satisfies r′k(r = 0) = 0,

r′k(r) =
(

3
∫ r
0

(
1− ks2

)− 1
2 s2 ds

)1
3

. (2.6)

Inserting the results given by Eqs. (2.3) and (2.5) into Eq. (2.1) yields the following transformation of the
Eq. (1.1) Robertson-Walker metric form to Einstein coordinates,

(c dτ)2 = (R(t(t′)))−6(c dt′)2 − (R(t(t′)))2
[
(r′k/r(r

′
k))4(dr′k)2 + (r(r′k)/r′k)2(r′k)2

(
(dθ)2 + (sin θ dφ)2

)]
, (2.7)

where the function t(t′) in Eq. (2.7) is the inverse of the specific time transformation t′(t) which is explicitly
given by Eq. (2.4), while the function r(r′k) in Eq. (2.7) is the inverse of the specific radius transformation
r′k(r) which is explicitly given by Eq. (2.6). The Eq. (2.7) transformation of the Eq. (1.1) Robertson-
Walker metric form to Einstein coordinates is readily verified to satisfy the Einstein coordinate condition
det(gµν(x)) = −1 for all x.

However, to work out the motion r(t) in Einstein coordinates of only the radius of an Oppenheimer-
Snyder-style radially-expanding sphere of uniform-density “dust” whose constituent “dust particles” interact
only gravitationally with each other, i.e., the simplest cosmological model, it definitely isn’t necessary to
actually insert the metric form described by Eqs. (2.7), (2.4) and (2.6) above into the appropriate Einstein
equation. In light of the Birkhoff theorem, one can instead use the gravitational geodesic equation to work
out a test body’s exclusively-radial motion in the Einstein-coordinate static metric for a static point mass
M fixed to the origin of coordinates, where M is equal to the total conserved energy divided by c2 of
the Oppenheimer-Snyder-style radially-expanding sphere of uniform-density “dust” whose constituent “dust
particles” interact only gravitationally with each other, i.e., the simplest cosmological model.

We next briefly touch on the selection of the appropriate Einstein-coordinate static metric for a static
point mass M fixed to the origin of coordinates, following which we use the gravitational geodesic equation
to work out a test body’s exclusively-radial motion in that static metric.

3. The appropriate Einstein-coordinate static metric for a static point mass

In his November 18, 1915 paper [6] Einstein obtained for the coordinate condition det(gµν(x)) = −1 for all x
a unique second-order approximation to the static, spherically-symmetric metric of a static point mass (the
sun) fixed to r = 0. However, in his January 13, 1916 paper [8] Karl Schwarzschild obtained for the coordinate
condition det(gµν(x)) = −1 for all x a one-parameter family of static, spherically-symmetric seemingly exact
metric solutions for a static point mass M fixed to r = 0. This one-parameter family of seemingly exact
static, spherically-symmetric metric solutions for the coordinate condition det(gµν(x)) = −1 for all x for a
static point mass M fixed to r = 0 can be presented as,

(c dτ)2 =
(
1− rs

/(
r3 − r3a + r3s

)1
3

)
(c dt)2 −

(
1
/(

1− rs
/(
r3 − r3a + r3s

)1
3

))(
r
/(
r3 − r3a + r3s

)1
3

)4
(dr)2−((

r3 − r3a + r3s
)1
3

/
r
)2
r2
(
(dθ)2 + (sin θ dφ)2

)
, (3.1)

where rs
def
= 2GM/c2 is the Schwarzschild radius for a static point mass M , and ra is the metric-family

parameter, which has the dimension of length.
If the static point mass M fixed to r = 0 is replaced by a static, spherically-symmetric smooth mass

distribution of nonzero extent and total mass M centered at r = 0, the resulting static, spherically-symmetric
metric is expected to be nonsingular everywhere (as is the case for the corresponding static Newtonian
gravitational potential). As that static, spherically-symmetric smooth mass distribution of nonzero extent
and total mass M centered at r = 0 shrinks to the static point mass M fixed to r = 0, the resulting
static, spherically-symmetric metric is expected to develop a singularity at r = 0 (exactly as occurs for the
corresponding static Newtonian gravitational potential), but is expected to still be nonsingular at all r > 0
(also exactly as occurs for the corresponding static Newtonian gravitational potential). The only member of
the Eq. (3.1) metric family which has those two properties is the one with ra = 0, namely,

(c dτ)2 =
(
1− rs

/(
r3 + r3s

)1
3

)
(c dt)2 −

(
1
/(

1− rs
/(
r3 + r3s

)1
3

))(
r
/(
r3 + r3s

)1
3

)4
(dr)2−((

r3 + r3s
)1
3

/
r
)2
r2
(
(dθ)2 + (sin θ dφ)2

)
, (3.2)
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which has been shown to be the appropriate exact static metric solution for a static point mass M fixed to
r = 0 [9], and is precisely the metric Karl Schwarzschild selected in his January 13, 1916 paper [8].

For both Mercury’s remnant perihelion shift and the deflection of starlight by the sun’s gravity the
results of Schwarzschild’s January 13, 1916 Eq. (3.2) metric are only negligibly different from the results of
Einstein’s November 18, 1915 second-order approximation to that metric.

Although the parameter value ra = 0 in Eq. (3.1) produces the appropriate exact static metric solution
for a static point mass M fixed to r = 0 [9], the parameter value ra = rs in Eq. (3.1) produces by far the
algebraically-simplest metric form of the Eq. (3.1) metric family, namely,

(c dτ)2 = (1− rs/r)(c dt)2 − (1/(1− rs/r))(dr)2 − r2
(
(dθ)2 + (sin θ dφ)2

)
. (3.3)

The Eq. (3.3) inappropriate seemingly exact static metric solution for a static point mass M fixed to r = 0,
which has an inappropriate and entirely unnecessary event-horizon singularity at r = rs, was explicitly
exhibited for the first time in a May 27, 1916 paper by J. Droste [10], who apparently was attracted to it
because of its relative algebraic simplicity. Its algebraic simplicity relative specifically to Schwarzschild’s
January 13, 1916 Eq. (3.2) appropriate exact static metric solution for a static point mass M fixed to
r = 0 [9] also appealed to the mathematician David Hilbert, who strongly promoted it, with the consequence
that textbooks almost universally very prominently feature the inappropriate Eq. (3.3) seemingly exact static
metric solution for a static point mass M fixed to r = 0 which has an inappropriate and entirely unnecessary
event-horizon singularity at r = rs. Those textbooks furthermore very mistakenly attribute the Eq. (3.3)
metric to Schwarzschild instead of to Droste or Hilbert. The upshot of this confluence of two severe mistakes
in virtually all textbooks was that Schwarzschild’s January 13, 1916 Eq. (3.2) appropriate exact static metric
solution for a static point mass M fixed to r = 0 [9] fell into almost complete obscurity [8].

Disregarding these two ubiquitous textbook gaffes, we next use the gravitational geodesic equation to
work out a test body’s exclusively-radial motion in Schwarzschild’s January 13, 1916 Eq. (3.2) appropriate
exact static metric solution for a static point mass M fixed to r = 0 [9]. In conjunction with the Birkhoff
theorem, that will permit us to replace the second Eq. (1.4a) dimensionless scaled Newtonian gravitational
equation of motion dq/du =

√
(1/q) + 1 for the dimensionless scaled radius q(u) of an Oppenheimer-Snyder-

style uniform-density expanding dust-sphere model universe in Friedmann coordinates by the corresponding
dimensionless scaled equation of motion for the dimensionless scaled radius q(u) of an Oppenheimer-Snyder-
style uniform-density expanding dust-sphere model universe in Einstein coordinates.

4. Radial test-body motion in the actual Schwarzschild static metric for a static point mass

To conveniently apply the gravitational geodesic equation to radial test-body motion in Schwarzschild’s
January 13, 1916 Eq. (3.2) metric, it is very useful to initially reexpress that metric in Schwarzschild’s

compact representation [8]. Given the three abbreviations R(r)
def
=
(
r3 + r3s

)1
3 , B(R(r))

def
= 1 − rs/R(r) and

A(R(r))
def
= 1/B(R(r)), it is readily shown that dR(r)/dr = (r/R(r))2, and consequently that the Eq. (3.2)

metric has the compact representation,

(c dτ)2 = B(R(r))(c dt)2 −A(R(r))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
. (4.1)

The Eq. (4.1) metric representation itself immediately yields the following first-order equation of test-body
gravitational motion,

c2 = c2B(R(r))(dt/dτ)2 −A(R(r))(dR(r)/dτ)2 − (R(r))2
(
(dθ/dτ)2 + (sin θ (dφ/dτ))2

)
. (4.2)

Since the test body we consider moves exclusively radially, its angular frequencies dθ/dτ and dφ/dτ are both
equal to zero, which reduces Eq. (4.2) to,

c2 =
[
c2B(R(r))−A(R(r))(dR(r)/dt)2

]
(dt/dτ)2. (4.3)

To turn Eq. (4.3) into an equation of test-body radial motion, i.e., a differential equation for dr/dt, we need
to evaluate the Eq. (4.3) factor (dt/dτ)2. Doing so requires integrating the time component of the test body’s
second-order in τ four-vector gravitational geodesic equation of motion,[11]

d2xκ/dτ2 + (1/2) gκλ(x)
[
∂gλν(x)/∂xµ + ∂gλµ(x)/∂xν − ∂gµν(x)/∂xλ

]
(dxµ/dτ) (dxν/dτ) = 0. (4.4)
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For the particular metric form given by Eq. (4.1), the time component of the Eq. (4.4) test-body gravitational
geodesic equation of motion is,[12]

d2t
dτ2 + dt

dτ
dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (4.5a)

which can be written,

1
dt/dτ

d(dt/dτ)
dτ + dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (4.5b)

which in turn can be written,

d
(
ln
(
dt/dτ

)
+ ln

(
B(R(r))

))/
dτ = 0, (4.5c)

which implies that,

ln
(
(dt/dτ)(B(R(r)))

)
= −C, (4.5d)

where C is an arbitrary dimensionless constant. Eq. (4.5d) implies that,

dt/dτ = 1/(KB(R(r))), (4.5e)

where K = exp(C) is an arbitrary dimensionless positive constant. Inserting Eq. (4.5e) into Eq. (4.3) yields,(
A(R(r))

/
(B(R(r)))2

)
(dR(r)/dt)2 −

(
c2
/
B(R(r))

)
= −c2K2. (4.6a)

The object dR(r)/dt in Eq. (4.6a) is of course equal to (dR(r)/dr)(dr/dt), and we have pointed out above
Eq. (4.1) that dR(r)/dr = (r/R(r))2. Inserting this result along with B(R(r)) = 1− rs/R(r) and A(R(r)) =
1/B(R(r)) into Eq. (4.6a) yields,(

(r/R(r))4
/

(1− rs/R(r))3
)
(dr/dt)2 −

(
c2
/

(1− rs/R(r))
)

= −c2K2, (4.6b)

where R(r) = (r3 + r3s)
1
3 and rs

def
= (2GM/c2). We are now able to write down the Einstein-gravity analog

of the Newtonian-gravity equation of motion (dr/dt)2 = (2GM/r) + v2 of a test body which moves only
radially relative to a static point mass M that is fixed to r = 0,

(dr/dt)2 = c2
(
(R(r)/r)2(1− rs/R(r))

)2 [
1−K2(1− rs/R(r))

]
, (4.6c)

where R(r) = (r3 + r3s)
1
3 . Defining the dimensionless variable q as q

def
= (r/rs), we note that (R(r)/r) =(

(q3 + 1)
1
3 /q
)

and (1− rs/R(r)) =
(
1−

(
1/(q3 + 1)

1
3

))
, so Eq. (4.6c) becomes,

(dr/dt)2 = c2
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))2 [
1−K2

(
1−

(
1/(q3 + 1)

1
3

))]
, (4.6d)

where q
def
= (r/rs). In the Newtonian-gravity case where (dr/dt)2 = (2GM/r) + v2, (dr/dt)2 grows without

bound as r → 0. Indeed, in the Newtonian-gravity case, |dr/dt| is asymptotic to
√

2GM/r as r → 0.
To work out the asymptotic behavior of (dr/dt)2 as q → 0 in Eq. (4.6d), we note that as q → 0,

(q3 +1)
1
3 /q ' 1/q and

(
1−
(
1/(q3 +1)

1
3

))
' q3/3, so

(
(q3 +1)

1
3 /q
)
2
(
1−
(
1/(q3 +1)

1
3

))
' q/3, which together

with Eq. (4.6d) yields that ((dr/dt)/c)2 ' (q/3)2 as q → 0. Thus |dr/dt| ' c(q/3) as q → 0, so,

the test body’s radial speed |dr/dt| is asymptotic to (c/(3rs))r as r → 0, (4.6e)

which is precisely the opposite of the unbounded speed of the test body as r → 0 in the Newtonian-gravity
case. In the Einstein-gravity case, the gravitational time-dilation effect of very strong gravity reduces speeds.

We next verify that (dr/dt)2 < c2. We first show that d
((

(q3 + 1)
1
3 /q
)
2
(
1 −

(
1/(q3 + 1)

1
3

)))/
dq > 0

when q > 0. Since d
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))/
dq =

[
2 + q3 − 2(q3 + 1)

1
3

]/[
q3(q3 + 1)

2
3

]
, we must

show that 2 + q3 > 2(q3 + 1)
1
3 when q > 0. We do so by exhibiting a chain of inequalities which are logically

equivalent to 2 + q3 > 2(q3 + 1)
1
3 , where the final inequality in the chain is clearly valid when q > 0,

2 + q3 > 2(q3 + 1)
1
3 ⇐⇒ 1 + (q3/2) > (1 + q3)

1
3 ⇐⇒ 1 + 3(q3/2) + 3(q3/2)2 + (q3/2)3 > 1 + q3

⇐⇒ (1/2)q3 + (3/4)q6 + (1/8)q9 > 0 when q > 0. (4.6f)

Therefore
((

(q3 + 1)
1
3 /q
)
2
(
1 −

(
1/(q3 + 1)

1
3

)))
is a strictly increasing function of q when q > 0, so when

q > 0, it is less than its q →∞ limit, which has the value unity. Consequently, from Eq. (4.6d), (dr/dt)2 <
c2
[
1 − K2

(
1 −

(
1/(q3 + 1)

1
3

))]
< c2 when q > 0, because K2 > 0 and

(
1 −

(
1/(q3 + 1)

1
3

)
> 0 when
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q > 0. Thus, (dr/dt)2 < c2 when q > 0, and, when q = 0, Eq. (4.6e) implies that (dr/dt)2 = 0, so
(dr/dt)2 < c2 under all circumstances; the test body never has a speed as great as c. This gravitational result
in Einstein coordinates is physically sensible [5]; the speeds exceeding c which the Newtonian gravity equation
(dr/dt)2 = (2GM/r) + v2 permits in Friedmann coordinates aren’t physically sensible [5].

We next investigate the asymptotic radial speed |dr/dt| of the test body as r → ∞. From Eq. (4.6d)
we see that as q →∞, (dr/dt)2 → c2

(
1−K2

)
. Therfore,

|dr/dt| → c
√

1−K2 as r →∞, (4.6g)

so K2 =
(
1 − (v/c)2

)
, where v ≥ 0 is the test body’s asymptotic radial speed. Upon inserting K2 =(

1− (v/c)2
)

into Eq. (4.6d), it becomes,

(dr/dt)2 = c2
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))2 [
1−

(
1− (v/c)2

)(
1−

(
1/(q3 + 1)

1
3

))]
. (4.6h)

To apply Eq. (4.6h) to the motion of the radius of the Oppenheimer-Snyder-style uniform-density expanding
dust-sphere model universe (the simplest model universe) via the Birkhoff theorem, we again note that one of
most distant known galaxies has a redshift z of 13.2, whose corresponding recession speed is 0.99c, so again
it is reasonable to put v to c in Eq. (4.6h), which yields,

(dr/dt)2/c2 =
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))2
, (4.7a)

Since this model universe is expanding, not contracting, Eq. (4.7a) becomes.

(dr/dt)/c = +
(
(q3 + 1)

1
3 /q
)2(

1−
(
1/(q3 + 1)

1
3

))
= (1 + q3)

1
3

(
(1 + q3)

1
3 − 1

)/
q2, (4.7b)

and since the dimensionless scaled time u is t/(rs/c), and q = r/rs is the dimensionless scaled radius, then
in terms of the dimensionless scaled radius q and the dimensionless scaled time u Eq. (4.7b) becomes,

dq/du = (1 + q3)
1
3

(
(1 + q3)

1
3 − 1

)/
q2. (4.7c)

Eq. (4.7c) is the Einstein-coordinate replacement of the Friedmann-coordinate second differential equation of
model-universe radius motion dq/du =

√
(1/q) + 1 of Eq. (1.4a). Here we again see that as q → 0, the model-

universe dimensionless scaled radial velocity dq/du→ +∞ in Friedmann coordinates, but that as q → 0, the
model-universe dimensionless scaled radial velocity dq/du → 0 in Einstein coordinates, which reflects the
absence of gravitational time dilation in Friedmann coordinates, and the dominance of gravitational time
dilation in Einstein coordinates when gravity is sufficiently strong.

The Einstein-coordinate replacement of the Friedmann-coordinate first equation d2q/du2 = −1/(2q2) of
Eq. (1.4a) is obtained from the Eq. (4.7c) Einstein-coordinate expression for dq/du as follows,

d2q/du2 = {d[(dq/du)]/dq} (dq/du) =(
q3 − 2

(
(1 + q3)

1
3 − 1

))(
(1 + q3)

1
3 − 1

)/(
q5(1 + q3)

1
3

)
. (4.7d)

Analysis of Eq. (4.7d) shows that the radial acceleration d2q/du2 of the model universe is positive for all
q > 0 in Einstein coordinates, in contrast to the negative values −1/(2q2) of the radial acceleration d2q/du2

of the model universe for all q > 0 in Friedmann coordinates. Such an unexpected positive acceleration of the
universe’s expansion has indeed been observed, and its discoverers awarded a Nobel prize. Here we see that
positive acceleration of the universe’s expansion is an entirely natural gravitational phenomenon in Einstein
coordinates, which doesn’t require ad hoc insertion of a “dark energy” cosmological-constant term λgµν(x)
into the Einstein equation.

In Einstein coordinates the evolution in dimensionless scaled time u of the model universe’s dimensionless
scaled radius q is given by the solution q(u) of the Eq. (4.7c) equation of motion. For the initial condition
q(u = 0) = 1, i.e., that the model universe attains its Schwarzschild radius at time zero, the numerical solution
q(u) of the Eq. (4.7c) equation of motion is displayed as the blue curve of Figure 1. Its corresponding
dimensionless scaled radial velocity dq(u)/du and dimensionless scaled radial acceleration d2q(u)/du2 in
Einstein coordinates are displayed as the blue curves of Figures 2 and 3 respectively. These three blue curves
show that in Einstein coordinates the model universe exists at all values of the dimensionless scaled time
u, but the blue curve of Figure 1 shows that at dimensionless scaled times u which are much less than −1
the model universe in Einstein coordinates is exponentially small relative to its Schwarzschild radius, and
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correspondingly has its physical processes and radiation frequencies so greatly gravitationally time-dilated
that it can aptly be colloquially described as being in a state of “suspended animation”. The fact that in
Einstein coordinates the model universe has always existed removes the need to account for the universe’s
excess of particles over antiparticles, which has been an awkward issue for the Big-Bang origin at a finite
time of the model universe in Friedmann coordinates.

The blue curve of Figure 2 shows that the radial expansion velocity of the model universe in Einstein
coordinates never exceeds c, in accord with the very thoroughly tested precepts of Lorentzian relativity [5],
whereas the red curve of Figure 2 shows that the radial expansion velocity of the model universe in Friedmann
coordinates is unbounded and always exceeds c, in extreme violation of those precepts [5].

The red curve of Figure 3 shows unbounded deceleration of the expansion of the model universe in
Friedmann coordinates, whereas the blue curve of Figure 3 in contrast shows perpetual acceleration of the
expansion of the model universe in Einstein coordinates, with a pronounced peak in that inflation near u = 1.

We now reflect on the reasons why Einstein-coordinate gravity, which doesn’t suppress gravitational
time dilation and respects the test-body speed limit c, may cause acceleration opposite to that caused by
Friedmann-coordinate Newtonian gravity, as evidenced by the stark contrast between the blue and red curves
of Figure 3. The effect of gravitational time dilation is to decrease the speed of a test body which is moving
toward a gravitational center (e.g., a static point mass), and to increase the speed of a test body which is
moving away from that gravitational center. This type of acceleration is indeed opposite to that caused by
Newtonian gravity; it becomes important for gravitational fields which are so strong that this effect of their
gravitational time dilation dominates the opposite effect of their Newtonian gravity.

Even a weak gravitational field, however, turns out, in Einstein coordinates, to repel rather than attract
a test body which is moving close enough to the speed c. Consider a light packet which is moving toward a
gravitational center, but is distant enough from that center that the gravitational field at the light packet’s
position is weak. If the light packet is accelerated toward the gravitational center the same way that a test
body at rest at the light packet’s position is, then the light packet’s speed immediately exceeds c ! In fact, in
Einstein coordinates such a light packet is accelerated away from the gravitational center twice as strongly
as a test body at rest at the light packet’s position is accelerated toward the gravitational center.

In Einstein coordinates the presence of gravity always slows light to a speed less than c, so the effect of
gravity on light is refractive. Astronomers cleverly exploit the refractive effect of gravity on light by using
the gravitational field of a foreground galaxy as a lens which magnifies the image of a more distant galaxy.

In Einstein coordinates it isn’t only light which is accelerated away from a gravitational center; a test
body which is moving at a speed greater than c/

√
3 = 0.57735c is also accelerated away from a gravitational

center, although to a lesser extent. Since the speed c/
√

3 corresponds to a redshift z of approximately 1, in
Einstein coordinates there exist many telescope-visible galaxies which are gravitationally accelerated away
from an observer by the sphere of cosmic matter whose radius is the observer’s distance to such a galaxy.

These nonintuitive aspects of radial gravitational acceleration in Einstein coordinates can be worked
out from Eq. (4.6h), which it is convenient to reexpress for that purpose as,

(dr/dt)2 = c2
(
χ(q)−

(
1− (v/c)2

)
ξ(q)

)
, (4.8a)

where,

χ(q) =
(
(q3 + 1)

1
3 /q
)
4
(
1−

(
1/(q3 + 1)

1
3

))
2 and ξ(q) =

(
(q3 + 1)

1
3 /q
)
4
(
1−

(
1/(q3 + 1)

1
3

))
3. (4.8b)

Differentiating both sides of Eq. (4.8a) with respect to t yields,

2(dr/dt)(d2r/dt2) = c2
(
dχ(q)/dq − (1− (v/c)2)dξ(q)/dq

)
(dq/dr)(dr/dt), (4.8c)

where,

dχ(q)/dq =
(
4/q5

)(
1−

(
1/(q3 + 1)

1
3

))(
1 + (q3/2)− (q3 + 1)

1
3

)
and

dξ(q)/dq =
(
4/q5

)(
1−

(
1/(q3 + 1)

1
3

))
2
(
1 + (3q3/4)− (q3 + 1)

1
3

)
. (4.8d)

Since q = (r/rs) and rs = 2GM/c2, Eq. (4.8c) can be rexpressed as follows,

d2r/dt2 = 1
2

(
c2/rs

)
(rs/r)

2q2
(
dχ(q)/dq −

(
1− (v/c)2

)
dξ(q)/dq

)
=(

GM/r2
) ((

q2 dχ(q)/dq
)
−
(
1− (v/c)2

) (
q2 dξ(q)/dq

))
. (4.8e)

8



From Eq. (4.8d) we see that as q →∞, (q2 dχ(q)/dq)→ 2 and (q2 dξ(q)/dq)→ 3, so from Eq, (4.8e),

the test body’s radial acceleration d2r/dt2 is asymptotic to −
(
GM/r2

)(
1− 3(v/c)2

)
as r →∞, (4.8f)

which agrees with the Newtonian-gravity acceleration result d2r/dt2 = −(GM/r2) only when the test body’s
asymptotic radial velocity v � c. On the other hand, when the test body’s asymptotic radial velocity
v > c/

√
3 = 0.57735c, the test body’s asymptotic radial acceleration becomes positive. Since the speed c/

√
3

corresponds to a redshift z of approximately 1, in Einstein coordinates galaxies whose redshifts exceed 1 are
in the process of increasing their redshifts (i.e., their acceleration is in the same direction as their recession
velocity). This is an entirely natural gravitational phenomenon in Einstein coordinates which doesn’t require
ad hoc insertion of a “dark energy” cosmological-constant term λgµν(x) into the Einstein equation.

For a radially-traveling packet of light, v = c, so Eq. (4.8f) tells us that its asymptotic radial acceleration
is +2

(
GM/r2

)
, which is opposite in direction and double in magnitude the radial acceleration −

(
GM/r2

)
of a test body at rest (i.e., v = 0) at the same radius r as that packet of light. It is therefore apparent, as
Einstein came to realize in his landmark November 18, 1915 paper [6], that straightforward application of
the Principle of Equivalence fails altogether for light.

Furthermore, putting the value of v to c in Eq. (4.8a) yields,

(dr/dt)2 = c2χ(q), (4.8g)

where χ(q) increases monotonically from zero at q = 0 toward unity as q → ∞, as can be verified by
analyzing Eqs. (4.8b) and (4.8d). Therefore in Einstein coordinates a radially-traveling light packet’s speed
in the gravitational field of a point mass is less than c, and the closer the light packet is to the point mass,
the slower its speed is. Thus the effect of gravity on light is refractive, as astronomers are well aware.

The red and blue q(u) curves of Figure 1 show the growth of the expanding model universe’s dimension-
less scaled radius q as a function of its dimensionless scaled time u in Friedmann and Einstein coordinates
respectively. Although the Einstein-coordinate blue q(u) curve increases exponentially from very slightly pos-
itive values when u is much less than −1, it nevertheless is very quickly overtaken by the Friedmann-coordinate
red q(u) curve, which only increases from zero when u is greater than ui = −

√
2 + ln(1 +

√
2) = −0.53284.

That occurs because the initial rate of increase of the Friedmann-coordinate red q(u) curve is unbounded (see
the dq(u)/du red curve of Figure 2).

The extremely gravitationally time-dilated “suspended animation” state of the model universe in Ein-
stein coordinates dissipates around u = 1, after q(u) passes the value 1 and its inflationary acceleration of
expansion peaks (see the blue curve of Figure 3), immediately following which its radius and radial expansion
velocity are quite appreciably less than those of the model universe in Friedmann coordinates (compare the
blue to the red curves of Figures 1 and 2 during the era of values of u which are roughly between 1 and 5).
This makes the model universe in Einstein coordinates more amenable to galaxy formation during that early
era of values of u roughly between 1 and 5 than that model universe in Friedmann coordinates is.

Furthermore, the nature of the model universe in Einstein coordinates at values of u much less than −1
is that of an extremely slowly expanding zero-angular-momentum extremely gravitationally time-dilated black
hole. (Recall, however, that physical black holes, no matter how extremely gravitationally time-dilated, don’t
have event horizons.) It seems reasonable that the inflationary-peak breakdown at values of u around 1 of
such an expanding zero-angular-momentum extremely gravitationally time-dilated black hole produces a great
many nonzero-angular-momentum extremely gravitationally time-dilated black holes which are individually
stable, along with a considerably lesser amount of matter not organized into such nonzero-angular-momentum
extremely time-dilated stable black holes. The existence of such constituents of a relatively compact, not-too-
rapidly-expanding universe would be favorable to early gravitational condensation of compact galaxies, and
such compact galactic environments would have promoted the rapid birth of stars, including very short-lived
ultraviolet giants, from those galaxies’ considerably lesser amount of matter not organized into nonzero-
angular-momentum extremely time-dilated stable black holes. These compact early galaxies would have been
bright and hot well into the ultraviolet; their frequency-downshifted black-body radiation may be the cosmic
microwave background of the present era.

The unbounded-radial-velocity explosive Big-Bang birth of the model universe in Friedmann coordinates
contrariwise is highly unfavorable to early formation of nonzero-angular-momentum extremely gravitationally
time-dilated stable black holes or consequent early gravitational condensation of compact galaxies.
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