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Abstract
The Hamiltonian operator of a one-dimensional nonrelativistic quantum system, consisting
of a particle of mass m subjected to a periodic potential energy V (z) in the coordinate x, admits
exclusively eigenfunctions in the improper sense. In this work, we show that a sufficient condition
for the Hamiltonian to be endowed with eigenfunctions in the proper sense is constituted by a
suitable local violation of the periodicity of the function V (z).

1 Periodic Potential. Bloch Theorem

Let S, be a non-relativistic quantum system consisting of a particle of mass m constrained to move
on the z-axis, the seat of a conservative force field and periodic potential energy V' (z) with period
a>0:V(r+na) =V(x), Vn € Z. Abstracting from the spin degrees of freedom, the Hilbert
space associated with S, is H = £? (R) and therefore, the Hamiltonian of the particle is

n2

H0:2ile+v<:z) (1)
In the z-representation: A 2

Oi_Qme@_‘_V(aj) (2)
By Bloch’s theorem [1], the eigenfunctions of H, (i.e. of the energy) are:

uy, () = i (x) € (3)

where k € R is the quasi-momentum of the particl [1] and ¢ (x) is a periodic function with period
a > 0. In other words, the energy eigenfunctions are amplitude-modulated plane waves with a
periodic modulation envelope with the same period as the potential (Bloch waves). It follows that
the operator (1) admits only eigenfunctions in the improper sense, so its spectrum o <f{()> is purely

continuous. The corresponding eigenvalues depend on k& which therefore represents a good quantum
number:

Houwy () = < (k) ux () (4)

More precisely, o <f]0> has a band structure [2]:
7 (o) = Ure ()

which in general are disjoint o, <I—A[0) N oy (1%) = () and separated by forbidden intervals (gaps).

Without loss of generality, consider a potential V' (x) such that o (f[()) consists of a single band. A

notable one-dimensional case [3] is one in which the only conduction band is:

e (k) = Ey — 2A cos (ka) (5)
with 0 < A < Ej/2 and these parameters have the dimensions of an energy. The function (5) is
periodic with period 27 /a, so it is sufficient to consider its restriction to the interval [—g, g] which

in solid state physics is called the first Brillouin zone. In Fig. 1 we report the graph of ¢ (k), from
which we see that the width of the band is 4A.



Figure 1: Trend of the function (5).

2 The Born-Von Karman conditions

In applications to solid state physics, we consider an “effective” segment of length L = Na, where
N € N\ {0}, and then apply the Born-Von Karman (BVK) conditions which consist in replicating
the segment of length L infinitely many times by imposing the connection condition:

ug (x 4+ Na) = uy (x) (6)
Taking into account the (3)and the periodicity of ¢y (z):

. 2T de
eZkN“:1<:>cos(kNa):1<:>k:N—7rld:fkl, Viez
a

ke [—%, ﬂ so assuming N is even:
2m N N N N
kk=—I, l=——,—+1,...,0,...,——1,— 7
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that is, the quasi-momentum of the particle can only assume N discontinuous values. The uniform
decomposition of the first Brillouin zone follows:

I=N/2
T
[_E’ E] = U [kl
I=—N/2
From (5):
2m
er=¢ (k) = Ey— 2Acos (ka) = Ey — 2A cos (Wl) (8)
[ = NN +1 0 N 1 N
- 2a 2 IR I IR 2 ) 2
By (5) we have ¢ (k) = e (—k) and since k_; = —k; = £, = g, i.e. the discretization preserves the

double degeneracy of the continuous spectrum of Hy. In Fig. 2 we report the case N = 10.



Notation 1 The discretization of o <[:[0> 1s not a quantization in the physical sense of the term,

since it is generated by the BVKs or by a mathematical artifice to be able to reconstruct the periodicity
of V(x) in a way that does not invalidate Bloch theorem. It follows that the discrete values (eq. 8)
are not energy levels of a bound system. In fact, each of them corresponds to a Bloch wave, therefore
an eigenfunction in an improper sense. Therefore, the degeneracy of the discrete levels should not
be surprising, while in the case of a one-dimensional bound system, the discrete spectrum of the
Hamiltonian is never degenerate by virtue of the Wronskian theorem [/].

Figure 2: Discretization of energy levels for N = 10.

3 Local periodicity violation

A local violation of the periodic behavior of the potential V' (z) is represented by a potential energy
term w (x — &) appreciably different from zero only in a neighborhood of the point £ € (nga, (no + 1) a)
for a given ny € Z think of a Gaussian centered at £). It follows that in the time-independent per-
turbation theory, the Hamiltonian (1) plays the role of unperturbed Hamiltonian (for |w (x — &)| <
V' (x)), then setting:

H=Hy+ (9)

In Dirac notation, the eigenvalue equation for ﬁo, is written:

Ho |k) = () |k) (10)
Applying the BVK i.e. discretizing:
- N N N N
H(]|kl> :gkl |kl>, l:—E,—E—Fl’...,o,...’?—l,g (11)

resulting in |k;) € H™Y), the latter being the subspace of H subtended by N, so limy_, 4o HWY) = H.
In the z-representation:

ur () = (alk) = i, (x) € (12)



The system of N vectorsi {|k;)} is a complete orthonormal system in H®™):

w/a

S k) (il = 1, (alkf) = G (13)

klzfﬁ/(l

where 1Y) is the identity operator in H™). If 1 is the identity operator in #

N—+o0

+oo
lim 1<N>:i:/ dk | k) (k|

Given this, the eigenvalue equation for the Hamiltonian (9) has the form:
A fay = W |a) (14)

where |u) are the eigenkets of the energy in the presence of the perturbative term w (x — &), and
W € Rthe corresponding eigenvalues. Since {|k;)} is a basis of V) we can expand |@) as a linear
combination of the eigenvalues |k;):

w/a

) = > ex k), cn = (kld) (15)

ki=—m/a

Let’s rewrite (14)
<[:[0 + ’lf)) chl ’kl> = chkl ’kl> — chlékl ‘k’l> + chlﬁ) |/{Zl> = chkl |kl>
/Cl kl kl kl kl

Multiplying by (k]|

chl5k15k/kl + chl k;l|w]kl Wchl(Sk "k,

h\,_/ wk Ty h\,_/
=Cry k) ki
So
T/a
(W —ex)) ey = Z Cly Wk, (16)
ki=—7/a

which is a system of N algebraic equations in W. Let us make explicit the matrix elements of the
perturbative term. To this end, we observe that in the z-representation the unitary operator 1V) of
HN) s (n0+1 “da|z) (z] =1 ™) so denoting with - the Hermitian product in H™):

o ——
=w(z—&)(zlki)

- oo (no+1)a ) (no+1)a A
Wi, = (K| lk) = (k] D) - / muﬂﬂ-wwz%a/ delz) (xlilk)
n noa

1.e.

(no+1)a
wg = [ @ € (o) (17)

oa

By the mean theorem:
n0+1
3¢' € [noa, (ng + 1 |/ w(zx—E&)dr=(w)a
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where (w) = w (¢ — &) is the integral mean (i.e. the average value) of w (x — &) at [nga, (ng + 1) a.
Since w (z — ) is an extremely sharp momentum around &, we expect £’ ~ £. Assuming uy, (x) to
be appreciably constant in (nga, (ng + 1) a), we have by (17)

wign, = ufy (€) wy (€) (w) a (18)

Performing the change of variable 2’ = x — £’:

Wiy = gy (0) ug, (0) (W) a (19)
which replaced in (16):
(W = 1) cay = uiy (0) () 03 iy, (0) = it (0) @ (0) i a (20)
N
(15)—i(0)
S0 . R
uf, (0) @ (0) (w) a -
Crr =
& W — &Tk;
Replacing (21) in (16) and taking into account (19):
w/a
3 ju, O _ 1 (22)
beaa W —er, a(w)
It is clearly evident |uy, (0)|* = |¢k, (0)]> = b, ~ b > 0,50 the previous one becomes:
1
bd (W) = —— 23
W) = 7 (23)
having defined the real function of the real variable W:
w/a 1
O(W)=0 24
m=r Y G (24)
1=—7/a

(23) is therefore an algebraic equation in W of degree N, and therefore admits N roots which are the
new eigenvalues of the energy. This equation must be solved graphically /numerically, distinguishing
the two cases (w) > 0 (potential barrier since w (x — §) > 0) and (w) < 0 (potential well). Let us
study the function (24) which is defined in R\{J,, {ex, } on the whole real axis excluding the N points

ek,- The graph intersects the ordinate axis in ¢ (0) = _bZkﬁi;l < 0. It turns out then:

lim ® (W) = —o0, lim @ (W) =400

W—)e,;l W—>akl
so the graph has N vertical asymptotes. Furthermore

lim ®(W)=0" lim ®(W)=0"
W—+o00 W——o00

By substituting (24) with (8) we obtain the graph of fig. (3) in the case N = 10. For (w) < 0 the
roots of (23) are arranged as in the graph of fig. 4, from which we see
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In solid state physics is N ~ 10® so the set of levels approximates a continuous band. The result is
that for (w) < 0 the lowest level Wy «detachess from the continuous band. Fig. 5 illustrates the
search for roots in the case where w (x — ) is a potential barrier i.e. (w) > 0. Here we see that

Wi> ey, nggja J=0,1,2,3
For each N < +oc0

<w> <O:>W0<<80, VVj’iz‘;‘j, j21,2,,N—1
<w> >O:>WN—1 > EN-1, VVJ =&y, ]:Oala7N_2
For N — 400, if (w) < 0 the levels centered in Wy (obtained for N < +o00) «detach> from

the continuous band, resulting more depressed in energy. If (w) > 0 the levels centered in Wy_;
(obtained for N < +00) «detach> from the continuous band, resulting in more energized excitement.
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Figure 3: Trend of the function ® (W).
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Figure 4: Roots of the equation (23) for (w) > 0.

Let us move on to the determination of the perturbed eigenfunctions. In the coordinate z’:

w/a

g, (2') = Z Cryug (')



Figure 5: Roots of the equation (23) for (w) < 0.

It must be Hiiy, = Wy, iy, By (21)-(3):

i (a') = a (w) i, (0) S

We observe that )
i (0) ng (2) = 9y (0) gy (0) = lor (0)]" = ag, >0

Considering the real constants ay, to be independent of k; i.e. ay, = o, Vk; € [—%, g] : 4,022 (0) Pk, (') ~
a. It follows

m/a eik;x’

Uy, (') = a{w) By, Z W, —en

I__
k= a

1

where Sy, = @, (0) a and also considering this constant independent of k; i.e. @y, (0) v =~ 3, we finally
get it

m/a eik{x’
U = _ 25
o @) =) B3 (25)

I__m
k=

a

Let’s start with the case (w) < 0 (potential well). In fig. 6 we report the behavior of the probability
amplitude|ig (z)|° not normalized and in dimensionless units, from which we see that @ (') is a
bound state. More precisely, recalling that ' = = — £, the particle is localized in the ng-th interval
[noa, (ng + 1) a]. In fig. 7 we plot the graph of the eigenfunction @, (z), from which we see that it
has the appearance of a Bloch wave, so the particle is not a bound state (delocalized particle). In
fig. 8 we plot the graph of the eigenfunction s (x); here too we see that it is a Bloch wave. Similar
behavior for the remaining eigenfunctions.

Let’s now move on to the case (w) > 0 (potential barrier). In figs. 9-10-11-11 the graphs of
o ('), 1y (2') , s (2') , U (2") which are now Bloch waves.

4 Physical interpretation of results

The physical interpretation is immediate: for (w) < 0 we have a potential well, and g (x) is the
corresponding bound state. Mathematically, it is an eigenfunction of H in the proper sense. For



Figure 6: Andamento di |ig (z)|* per (w) < 0.

Figure 7: Trand of @, (x), (w) < 0.
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Figure 8: Trand of @y (x), (w) < 0.
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Figure 9: Trand of g (x), (w) > 0.

Figure 10: Trand of @; (x), (w) > 0.
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Figure 11: Trand of s (x), (w) > 0.
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Figure 13: Trand of 4 (x), (w) > 0.
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(w) < 0 there are no bound states, since we now have a potential barrier and since we have assumed
|w (z —&)| < |V (x)], this barrier is penetrable through a tunneling process.
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