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INTRODUCTION
Since the monumental Riemann’s article of 1859 the demonstration of what will9[ ]
become the Riemann hypothesis,it was and still is the central problem of number theory
and all mathematics,having profound implications in various fields of it,and even in
quantum mechanics .From Riemann onwards, a great number of famous2[ ]
mathematicians have tried in vain to prove it.Just to nome a few
Hardy,Littlewood,Hilbert,and in more recent times,Weil and others . Furthermore the2[ ]
Riemann hypothesis is one of seven “Millennium Problems” .In this article the author1[ ]
tackles the problem of proving the Riemann hypothesis in a completely new different way
from previous attempts,in fact in this article we will use some fundamental concept of non
standard analysis founded by mathematical logician Abraham Robinson in the sixties of
twenty century .Subsequently it was greatly simplified,without losing in mathematical10[ ]
rigor,by Jerome Keisler which is the approach used in this article.6[ ]

DEFINITION AND PRELIMINARIES
We give here some concept and definition that we will use for the continuations of this
article.Foundamentally Keisler approach is based on the following two principles [7].6[ ]

THE EXTENSION PRINCIPLE
a) The real numbers form a subset of the hyperreal numbers, and the order relation x< 𝑦
for the real numbers is a subset of the order relation for the hyperreal numbers
b)There is a hyperreal number that is greater than zero but less than every positive real
number
c) For every real function f of one or more variables we are given a corresponding
hyperreal function of the same number of variables , is called the natural extension of𝑓* 𝑓*

(in this article is called the extension of at non standard model of analysis) .𝑓 𝑓* 𝑓
Furthermore with each relation X on there is corresponding relation X* on *𝑅 𝑅
called the natural extension of X 7[ ]

THE TRANSFER PRINCIPLE
Every real statement that hold for one or more particular real function holds for the
hyperreal natural extensions of these functions, the transfer principle is equivalent to
Leibniz' principle ,which is the property that for each real bounded sentence ϕ ∈ L,is true
if and only if ϕ* is true . L is the language of the first order predicate we still7[ ]
give the following definitions always of Keisler :6[ ]
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DEFINITIONS
A hyperreal number b is said to be:
positive infinitesimal if b is positive but less than every positive real number,
negative infinitesimal if b is negative but greater than every negative real number.
A hyperreal number b is said to be:
finite if b is between two real numbers,
positive infinite if b is greater than every real number,
negative infinite if b is less than every real number.
Finally in the text we will assume that zeta function is an analytic function throughout C

,and monodromous as demonstrated by Riemann in 1859 − 1 9[ ]

ABSTRACT

By a simple extension of rearrangement definition of a simply converging series, at non
standard model of analysis, the author finds a new formula for ζ* ( ) with𝑠 𝑠 ϵ 𝐶 *

with *> 0 and with ≠1 .𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ℎ𝑦𝑝𝑒𝑟𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑠𝑒𝑡 𝑎 𝑠
However this new formula is very easily extendable at the whole complex plane with ≠1 .𝑠
Notable result  is that with the definition of " non standard rearrangement " the
commutative property of addition continues to hold even for simply convergent series
(such as harmonic series with alternate signs). 
Moreover the author, by means of the new formula of ζ*( ) and the corresponding𝑠
functional equation, gives a proof of the Riemann hypothesis.

TEXT

The new formula (for the zeta function of Riemann) is the follower:

= (I)ζ*(𝑠)
1

ω

∑ 𝑛−𝑠 − ω−𝑠+1

−𝑠+1

and 0  𝑠 ϵ  𝐶 *  𝑤𝑖𝑡ℎ 𝑓𝑜𝑟𝑚 𝑎 + 𝑖𝑏  ( 𝑎  𝑎𝑛𝑑 𝑏 ℎ𝑦𝑝𝑒𝑟𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ) 𝑠 ≠1 𝑎 *>
( hyperreal order relation ). (I) has a simple pole at = 1 where :*> 7[ ] 𝑠

ω=infinite number positive (see definitions and preliminaries)

asterisk indicates the extension of ζ( ) at non standard model of analysis*= 𝑠
(see definitions and preliminaries):

for the demonstration of Riemann’s hypothesis we also use the functional
equation of ζ( ):𝑠

ζ(1- ) = sin( ζ( ) (II) .𝑠  21−𝑠π−𝑠 1−𝑠
2 π) 𝑠 − 1( )! 𝑠 2[ ]

Applying to (I) the Euler-Maclaurin formula (E.M.F) we have:



ζ*( )= + +𝑠  
1

𝑅

∑ 𝑛−𝑠 − (𝑅+1)−𝑠+1

−𝑠+1
1
2 (𝑅 + 1)−𝑠 − 1

12 − 𝑠(𝑅 + 1)−𝑠−1[ ]  

+ +….. (III)1
720 − 𝑠 − 𝑠 − 1( ) − 𝑠 − 2( )𝑅 + 1)−𝑠−3[ ]

R ∈ =1,2,3…𝑁

In this article by convention we will indicate this formula (E.M.F) without
distinction with its extension at non standard model of analysis (see
definitions and preliminares), therefore also when this formula is applied in R*
(hyperreal numbers set) or in C* complex hyperreal numbers set or with form

= + ib (with and b hyperreal numbers).𝑠 * 𝑎 𝑎

It is easy to see that (I) with 1 ( hyperreal order relation [7])𝑎 *> *>
becomes:

=ζ*(𝑠)
1

ω

∑ 𝑛−𝑠

that is the extension at non standard model of analysis of the classical
definition:

= with 1 .ζ (𝑠)
1

∞

∑ 𝑛−𝑠 𝑎 > 1[ ] 2[ ] 3[ ] 9[ ]

Therefore by principle of identity of analytic functions (and for the transfer
principle,see definitions and preliminaries)

(I) is the analytic continuation of

= (with 1)ζ*(𝑠)
1

ω

∑ 𝑛−𝑠 𝑎 *>

In fact it is not difficult to prove with the (E.M.F) that (I) converges with 0.𝑎 *>

We can formalize and generalize this in the following way.Let F( ) and G( )𝑠 𝑠
be two analytic functions in a region R1 and R2 respectively with R1 ∩𝑜𝑓 𝐶
R2 ≠ Ø (a small arc in common is sufficient)

∈ (R1∧R2) (F( ) =G( ))→( ∈ (R1V R2 ) (F( ) =G( )).(∀𝑠 𝑠 𝑠 ∀𝑠 𝑠 𝑠
estendit it at non standard model we have:

* ∈ (R*1∧R*2) (F*( ) =G*( ))→( *∈(R*1V R*2 ) (F*( ) =G*( )).(∀𝑠 𝑠 𝑠 ∀𝑠 𝑠 𝑠



since the first formula written is true in C ( set of complex numbers), in fact it
is represents the principle of identity of analytic functions which also
guarantees that the zeta function admits a unique analytic continuation, the
last formula is true too in C * (complex hyperreal numbers set) according to
the transfer principle or Leibniz' principle , in fact standard and non standard
models are elementary equivalents ,it is not possible to find a formula ( of the
first order language) that is true in one model that is not true in the other
model ( see the transfer principle).
Moreover (III) permits to find all values of ζ( )𝑠

for example:

ζ(0) = ? using (III) and R=1

ζ(0) = 1 2+ =− 1
2 ( 1

2 )
0

− 1
2

ζ( 1) = ? (R=1)−

ζ( 1) = 1 +− − 22

2
1
2 ∙2 − 1

12 (1∙20) = −1
12

ζ( 2) = ? (R=1)−

ζ( 2) = 1 + (the first trivial zero of ζ( ))− − 23

3  1
2 22 − 1

12 2∙2( ) = 0   𝑠

ζ( ) = ? (R=3)1
2

ζ( ) = 1+ + +1
2 2

− 1
2 + 3

− 1
2 − 4

1
2

1
2

1
2 4

− 1
2 − 1

12  − 1
2 • 4−1,5⎡

⎣
⎤
⎦

+ …=1
720 − 1

2 ∙ − 1, 5∙ − 2, 5∙4−3,5⎡
⎣

⎤
⎦

= 1,460354…−

To deduce (III) it was taken into account that it is the primitive of theω−𝑠+1

−𝑠+1

(non standard ) function calculates at the ω point.If you want to find the𝑛−𝑠

same formula (III),but obtained with methods of classical analysis,and in ways
very different from those of this article see .Moreover for the error term to3[ ]
be attributed to (III),where the derivatives of odd order do not vanish,as in the
last example seen above, following Edwards “it’s a general rule of thumb3[ ]



in applying the (E.M.F.) that as long as terms are decreasing rapidly in
size,the bulk of the errors is in the term omitted".

Now we prove (I).

Stated harmonic series with alternate signs :

= 1 ln2 (1)𝑆  
1

∞

∑ (−1)𝑛+1

𝑛 = − 1
2 + 1

3 − 1
4 + … =  

extending it at “non standard model” we have

1 ln2 (1)*
1

ω

∑ (−1)𝑛+1

𝑛 = − 1
2 + 1

3 − 1
4 + … =

with ω = infinite number positive .

We call “non standard rearrangement” series of (1)*

a series with both the conditions following :

1)The rearranged series of (1)* must consist of all the same standard terms
(finite numbers) contained in (1)* and no other terms.

2) The rearranged series of (1)* must consist of all the same terms non
standard (infinitesimal numbers) contained in (1)* and no other terms.

Since real numbers are a subset of hyperreals ( see extension principle) the non
standard rearrangement could be defined by a single condition ,but to Better
highlight the difference between two rearrangements two were written.

We give an example of standard rearrangement (using only (1) condition) and
correspondent “non standard rearrangement” (using (1) and (2) conditions).

It knows that:

(1 )+( )+…..=− 1
2 − 1

4
1
3 − 1

6 − 1
8 ) + ( 1

5 − 1
10 − 1

12

= = = = (2).
𝑛=1

∞

∑ ( 1
2𝑛−1 − 1

4𝑛−2 − 1
4𝑛 )  𝑆 1

2 𝑆 𝐿𝑛2
2

(2) is an example of “standard rearrangement "of (1).



According to Riemann-Dini ‘s theorem the result of (2) is different from result
of (1),

on the contrary using the first and second condition we rewrite * as :(2)

1

ω
2

∑ 1
2𝑛−1 −

1

ω
4

∑ 1
4𝑛−2 −

1

ω
4

∑ 1
4𝑛

considering that:   
1

ω
4

∑ 1
4𝑛−2 = 1

2  
1

ω
4

∑ 1
2𝑛−1

we have:

( ) + * with :1
2

1

ω
4

∑ 1
2𝑛−1 −

1

ω
4

∑ 1
2𝑛

ω
4 +1

ω
2

∑ 1
2𝑛−1 (2)

( = ln2
1

ω
4

∑ 1
2𝑛−1 − 1

2𝑛 ) = 𝑆 

and using E.M.F.(Euler-Maclaurin formula):

sign of equivalence that is the two members
ω
4 +1

ω
2

∑ 1
2𝑛−1 ~

ω
4

ω
2

∫ 1
2𝑛−1 𝑑𝑛 = 1

2 𝐿𝑛2 (~

are equal to less than infinitesimals)

therefore we have:

ln2 + ln2 = = ln2 *.1
2  1

2 𝑆 (2)

This result confirms validity of commutative property of addition in opposition
to Riemann-Dini’s theorem (or Riemann's rearrangement theorem) in fact:

ln2 ( *
ω
2 +1

ω

∑ 1
2𝑛−1 −

ω
4 +1

ω

∑ 1
4𝑛−2 −

ω
4 +1

ω

∑ 1
4𝑛 =− 1

2  3)

Since ( * does not include in ( we must remove it (according to the3) 1)*

second conditions before seen) from the simple extension at non standard
model of (2) that is :



) (
1

ω

∑( 1
2𝑛−1 − 1

4𝑛−2 − 1
4𝑛 2𝑏𝑖𝑠) *

therefore we have :

( ln22𝑏𝑖𝑠) *− (3) *= (2) *= 𝑆 =  

Now we generalize and formalize the two previous condition which together
constitute the new concept of "non standard rearrangement"of a series,for the
first condition that characterize the classical standard rearrangement of a
series we have:

give the series with real or complex terms and one bijective function
𝑘
∑ 𝑎

𝑘

: it’s called rearranged series of according , the series .π  𝑁→𝑁  
𝑘
∑ 𝑎

𝑘
π

𝑘
∑ 𝑎

π(𝑘) 

The second condition is the following:

given the series with non standard and complex terms (infinitesimal 
𝑘
∑ 𝑎

𝑘
*

complex and infinitesimal real numbers) and one bijective non standard
function (see definition and preliminaries)

( are also called infinite hypernatural numbers ).π*: 𝑁* → 𝑁* 𝑁* 6[ ]

It is called rearranged series according to the series:π*

𝑘
∑ 𝑎

π*(𝑘) 

The biunivocity of and ensure in particular that the number of terms ofπ π*

the rearranged series have the same number of terms as the originals series

respectively in and in .Note that Riemann - Dini theorem concerns simply𝑁 𝑁*

convergent series in R, while the concept of "non standard rearrangement" is
easily extendable at C and C*.

It is shown in standard analysis (Ohm’s rearrangement theorem) that in (1)

taking positive and negative terms we have the sum :𝑝 𝑞



= ln(2) (1/2)ln( / ).In the previous standard example it was = 1 and = 2𝑆 + 𝑝 𝑞 𝑝 𝑞

instead with our definition of "non standard rearrangement" it is always =𝑝* 𝑞*

both infinite numbers in the previous non standard example it was

= ω/2 and = ω/4 ω/4 = ω/2 .𝑝* 𝑞* +

The validity of the commutative property in (1)* should not be surprising as
this property is obviously valid for real numbers,according to the transfer
principle it is also valid for hyperreal numbers in fact we have:

( x y)∈ R (x+y=y+x)∀ ∀
it is true in R,extending it at non standard model we have :

( x y*) ∈ R* (x*+y*=y*+x*)∀ * ∀
(R*= set of hyperreal numbers)
( Following common usage we omit the asterisk for the sum between
hyperreal numbers).

Why is Riemann -Dini theorem valid with " standard rearrangement" despide
the commutativity of addition?The answer is simple in fact formalizing this

theorem (by the first order predicate logic) we have: let a simply
𝑘
∑ 𝑎

𝑘

convergent series

( x ∈ R ∪{ ∞, ∞} ∃ : ↔ ):∀ − + π 𝑁 𝑁

lim →∞ = x𝑁
𝑘=1

𝑁

∑ 𝑎
π(𝑘) 

Extending at non standard model we have:

( x* ∈ R* ∃π* : *↔ *) :∀ 𝑁 𝑁

= x*
𝑘=1

ω

∑ 𝑎
π*(𝑘) 

It is precisely the limit with → ∞ or in non standard model𝑁
𝑘=1

𝑁

∑ 𝑎
π(𝑘) 

that introduces an infinite quantity of infinitesimals whose sum is 
𝑘=1

ω

∑ 𝑎
π*(𝑘) 



different from zero not existing in the original series (1)* these quantities are
excluded only with the" non standard rearrangement" as seen in (3)*.

Now we study the following series with alternate signs:

η( ) = 1 ( )𝑠 − 1

2𝑠 + 1

3𝑠 − 1

4𝑠 + … 𝑠 ∈ 𝐶

it is convergent (with 0) and we have𝑎 > 2[ ]

η( ) = (1 ( ….) =𝑠 + 1

2𝑠 + 1

3𝑠 + …) − 2 1

2𝑠 + 1

4𝑠 + 1

6𝑠 +

= ζ( ) = (1 ζ( ) (4)𝑠 − 2ζ(𝑠)

2𝑠 − 2

2𝑠 ) 𝑠

but extending (4) at non standard model we have:

η*( ) (4)*𝑠 =
1

ω

∑ 𝑛−𝑠 − 2(
1

ω

∑ 2𝑛( )−𝑠)

but the last series on the right following the second condition of the " non
standard rearrangement" seen before is not correct because all terms of:

are not in ( )=
ω
2 +1

ω

∑ (2𝑛)−𝑠 ζ* 𝑠  
1

ω

∑ 𝑛−𝑠

therefore the correct formula is:

( )= ) (η*
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑠  
1

ω

∑ 𝑛−𝑠 − 2

2𝑠 (
1

ω

∑ 𝑛−𝑠 −
ω
2 +1

ω

∑ 𝑛−𝑠 5)*

that is:

= with our correction isζ*(𝑠) η*(𝑠)
1− 2

2𝑠

 ζ* 𝑠( ) =
η*(𝑠)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡

1− 2

2𝑠

=

1

ω

∑ 𝑛−𝑠 + 1

2𝑠−1−1
•

ω
2 +1

ω

∑ 𝑛−𝑠

using ( E.M.F.) we have:



=
ω
2 +1

ω

∑ 𝑛−𝑠~‖ 𝑛−𝑠+1

−𝑠+1 ‖
ω

ω
2

  ω−𝑠+1

−𝑠+1 −
( ω

2 )
−𝑠+1

−𝑠+1

with 1𝑠 ≠

at last we have (after simple calculations):

( ) (I)ζ*
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑠 = ζ* 𝑠( ) =
𝑛=1

ω

∑ 𝑛−𝑠 − ω−𝑠+1

−𝑠+1

with * and (with 0).𝑠 ∈ 𝐶 ≠1 𝑎 *>

Now we demonstrate using (I) and (II) Riemann hypothesis (RH).However,
let us first prove some facts concerning the zeros of ζ( ) (such facts can be𝑠
extended to ζ*( ) in a trivial way).𝑠

In (II) replacing with 2n+1 we have :𝑠

ζ( 2n)= sin( n )( 2n) ζ(2n (6).− 2−2𝑛π−2𝑛−1 − π − ! + 1)  

The only factor that can be canceled at the second member of (6) is

sin( n ) = 0− π ∀𝑛∈𝑁

therefore (6) admits zeros with = 2n ( 2, 4, 6,… they are called𝑠 − − − −  − 2𝑛),
trivial zeros of ζ( ),and they do not concern the (RH) .𝑠 2[ ]

It is easy to prove using the Euler’s product formula 1[ ] 2[ ] 3[ ] 8[ ]

ζ( ) = with , )𝑠
𝑝=𝑝𝑟𝑖𝑚𝑒𝑠

∏ 𝑝𝑠

𝑝𝑠−1
𝑎 > 1 (𝑠 ∈ 𝐶

(p = primes = 2,3,5,7,….) that doesn’t exist for which =0 (since the𝑠 ∈ 𝐶 𝑝𝑠

numerator never vanishes).

Therefore ζ( ) with does not admit zeros,and using (II) we have that ζ(𝑠 𝑎 > 1
) does not admit zeros with (except for the trivial zeros).𝑠 𝑎< 0   

Therefore all non trivial zeros of ζ( ) are in the range 0 .𝑠  ≤ 𝑎 ≤1

In 1896 La Vallée’ Poussin and Jacques Hadamard independently8[ ] 4[ ]
proved that ζ( ) has not zeros with = 1,and therefore using (II) it has not𝑠 𝑎
zeros even with = 0, so all non trivial zeros are in the range 0𝑎 < 𝑎 < 1



(this range is called “the critical strip” ) and we can use in this range the2[ ] 3[ ]
formula (I) and the corresponding equation below:

ζ*(1 ) with (IV)− 𝑠 =
1

ω

∑ 𝑛𝑠−1 − ω𝑠

𝑠 𝑠 ∈ 𝐶 * 𝑎𝑛𝑑  𝑠 ≠0

(IV) has a simple pole at ,obtained from (I) replacing with 1𝑠 = 0 𝑠 −𝑠 

in fact (IV) is valid with .Now let be the ( non trivial ) zeros of ζ*( )𝑎 *< 1 𝑠
𝑘

𝑠

(with ∈ N=1,2,3,...) by (II)* we obtain:𝑘

ζ*( ζ*(𝑠
𝑘
) = 1 − 𝑠

𝑘
) = 0.                      (𝑉)                                                                          

Since in the critical strip the only factor of (II)* than can be canceled is
precisely ζ*( .Obviously by (II)* we mean the extension of (II) at1 − 𝑠

𝑘
) 2[ ]

non- standard model i.e.

ζ*(1- ) = sin*( * ζ*( ) ∈ C* (II)*𝑠  21−𝑠*π−𝑠* 1−𝑠
2 π) 𝑠 − 1( )! 𝑠 𝑠

For (II)* as for all complex functions extended to the non- standard model,the
obvious property applies f *( )= f ) ∈ C ( if f( x) is real function f* (x)=f𝑠  (𝑠   ∀ 𝑠
(x) x ∈ R).∀

By means of we have that if is a zero of ζ*( ) then also(𝑉) 𝑠
𝑘
 = 𝑎

𝑘
+ 𝑖𝑏

𝑘 
 𝑠

will be a zero of ζ*( ) , the non trivial zeros therefore arrange𝑠
𝑘
 = 𝑎

𝑘
 − 𝑖𝑏

𝑘 
𝑠

themselves in pairs of conjugate complex ( hyper) real numbers.

Using (I) and (IV) into we obtain (with ):(𝑉) 𝑠 = 𝑠
𝑘

(VI).
1

ω

∑ 𝑛
−𝑠

𝑘 − ω
−𝑠

𝑘
+1

−𝑠
𝑘
+1 =

1

ω

∑ 𝑛
𝑠

𝑘
−1

− ω
𝑠

𝑘

𝑠
𝑘

= 0

Since the zeta function is a monodromous function [9] that is one value in the
domain corresponds to one and only one value in the codomain,by the means
of ( ) we have that the four elements of (VI) are also monodromous.𝑉

It is easy to prove that (VI) is solved with

or− 𝑠
𝑘
 = 𝑠

𝑘
 − 1 − 𝑎

𝑘
±  𝑖𝑏

𝑘
= 𝑎

𝑘
− 1 ± 𝑖𝑏

𝑘

Separating the (hyper)real and the imaginary part we have:



)− 𝑎
𝑘
 = 𝑎

𝑘
 − 1 → 𝑎

𝑘
 = 1

2  ;   ±𝑏
𝑘
𝑖 = ±𝑏

𝑘
𝑖    (𝑖𝑡 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 𝑤𝑎𝑙𝑖𝑑 

Therefore (VI) is solved precisely by value admitted by the RH ( for𝑎
𝑘

= 1
2 )

the non trivial zeros of ζ*( ) ,naturally also the real number R* (it is a finite𝑠  1
2 ∈

hyperreal).

But of course the (RH) absolutely demands that all non-trivial zeros must lie
on the critical line ,in this regard it is good to recall a work of Hardy𝑎

𝑘
= 1

2   

in which he demonstrates that ζ( ) with admits infinitely many5[ ] 𝑠 𝑎
𝑘

= 1
2

zeros.But infinitely many zeros do not mean all!

Alternatively (and equivalently) the (RH) can thus be stated “no zero of ζ*( )𝑠
with can exist in the critical stripe” and this will be what we will 𝑎

𝑘
*≠ 1

2

prove.Note that is invariant under substitution : this(𝑉) 𝑠
𝑘

= 1 − 𝑠
𝑘

substitution admits as the only possible value for as we𝑠
𝑘
 =  1

2  ± 𝑏
𝑘
𝑖 (𝑉)

will now demonstrate ( that is we demonstrate the Riemann hypothesis).Now let
with real number 0 ( the case with positive𝑠

𝑘
 = 1

2 + ε  ±𝑏
𝑘
𝑖 ε ≤  ε < 1

2  ε

infinitesimal we will see later)

If (VI) admits with as the only one solution𝑠
𝑘
 =  1

2  + ε  ± 𝑏
𝑘
𝑖 ε = 0

then (RH) is valid,if instead (VI) admits also only one solution with

ε certainly false.Let therefore be fixed≠0,  𝑡ℎ𝑒𝑛 𝑅𝐻( ) 𝑖𝑠 

with ( 0 (VII).𝑠
𝑘
 = 1

2 + ε ±𝑏
𝑘
𝑖  ≤ ε < 1

2 )                     

(VI) in addition to trivial solution given equalizing (I) and (IV) to zero, admits
another simple solution,it is easy to see that the other simple solution of (VI)
is given by following chain of equalities :

(VIII).
1

ω

∑ 𝑛
−𝑠

𝑘 = ω
−𝑠

𝑘
+1

−𝑠
𝑘
+1 =

1

ω

∑ 𝑛
𝑠

𝑘
−1

= ω
𝑠

𝑘

𝑠
𝑘

                

Since into (VIII ) no element can be zero, because we are in the critical strip,the
(VIII) is the last possible solution of (VI) as it is easy verify, in fact for graphic



simplicity we denote the four elements of (VI) in an orderly manner with
A,B,C,D we can write (VI) as:

A B=C D=0 ⇒− −

A=B & C=D in particular from chain of equalities (VI) we have:

A B=C D putting B and C to the other member :− −

A C =B D that admits as ulterior solution (equalizing both members to zero)− −

A=C & B=D together the two solution can be writer as:

A=B=C=D that is (VIII).

and considering that by (VIII) in particular is : = (IX)ω
−𝑠

𝑘
+1

−𝑠
𝑘
+1

ω
𝑠

𝑘

𝑠
𝑘

dividing both the members of (IX) by the first member and inserting (VII) into

(IX) we have : = 1. (IX)
1
2  −ε ± 𝑖𝑏

𝑘( )
1
2  +ε ±𝑖𝑏

𝑘( )  ω2ε

To the first member of (IX) the term withω2ε = 𝑒2ε𝑙𝑛ω ε > 0

is always infinite number ( this result for the extension principle is valid also
for every positive hyperreal numbers excluding the case with infinitesimalε
numbers that for definition is smaller than every positive real numbers even if
>*0 this case will be seen later) while the other term is finite term non -zero,
therefore (IX) ( and therefore (VI) too) is not satisfied with

For this the only admissible value for (IX) ( andε  𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑒𝑎𝑙 > 0.

therefore for (VI) too ) is in fact with isε = 0,  ω2ε ε = 0 𝑒0𝑙𝑛ω = 𝑒0 = 1.

But this condition is necessary but not yet sufficient.In fact for (IX) to be
satisfied it,must have for solution also the following finite term no-zeroε = 0
before seen:

which admits
1
2  −ε ±𝑖𝑏

𝑘( )
1
2  +ε ±𝑖𝑏

𝑘( ) = 1    

effectively exactly the solution with ε = 0

(just substitute the value in the above equation).ε = 0



Since as just demonstrated there are no zeros of ζ*( ) with𝑠
with then for (II)* there can be no zeros of ζ( ) with𝑠

𝑘
 = 1

2 + ε  ± 𝑖𝑏
𝑘

ε≠0 𝑠

with 0 *< <1𝑠
𝑘
= 1

2  − ε   ± 𝑖  𝑏
𝑘
    𝑤𝑖𝑡ℎ ε≠0  ,     𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝑛𝑜𝑤  ∀ 𝑠

𝑘
 𝑎

𝑘
*

(excluding the case with positive infinitesimal in (VII) and therefore inε
(IX)).The hypothesis remains that (IX) is also resolved with positiveε
infinitesimal ,but this is not possible since the ratio of the two quantities in
brackets in the first member of (IX) can never be a non- complex hyperreal
number (i.e. without imaginary unit i) as instead is the second member of (IX) (
or the number 1),except in the case before seen with =0,or in the case with ε

non trivial zero for zeta function with =0 ), while  𝑏
𝑘

= 0 (𝑏𝑢𝑡 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑏 

using Taylor series expansion for the extension principle we have :ω2ε = 𝑒2ε𝑙𝑛ω

= 1+ + + ....... is not a complex number ( it is a pure   𝑒2ε𝑙𝑛ω 2ε𝑙𝑛ω 2ε²𝑙𝑛²ω
hyperreal number or R*). For this reason finally the Riemann hypothesis is∈
proven to be true, more precisely we have demonstrate that an extension at
non standard model of ζ( ) admits all its non trivial zeros only with = ,this𝑠 𝑎

𝑘
 1

2

result can be transferred to the standard function ζ( ) . We in fact can write :𝑠

be * ∈ C* and 1 =0)→  𝑠
𝑘

   0 *< 𝑎
𝑘
*<   ( ∀ 𝑠

𝑘
*  :   ζ*(𝑠

𝑘
)    𝑎

𝑘
*= 1

2

or in standard model : be ∈ C and 1  𝑠
𝑘

   0 < 𝑎
𝑘
<

( : =0)→ Since the first proposition is demonstrate true in∀ 𝑠
𝑘

 ζ (𝑠
𝑘
)    𝑎

𝑘
= 1

2 .
C* the second proposition is true in C therefore Riemann hypothesis is
demonstrate true also in C.Furthermore according to (VIII)
the demonstration of the Riemann hypothesis is also equivalent to
demonstration that the following equalities :

(X)
1

ω

∑ 𝑛
−𝑠

𝑘 =  
1

ω

∑ 𝑛
𝑠

𝑘
−1

                      

is valid only with the value given by (VII) with , orε = 0 𝑠
𝑘
 =  1

2  ± 𝑏
𝑘
𝑖 ∀𝑠

𝑘

with 0 *< <1 . In fact (X) is equivalently by means (VIII) to (IX) where we𝑎
𝑘
 *

already have demonstrated that the only admissible value is precisely that
required for the validity of the Riemann hypothesis .It 's immediate to see by



(VIII) that the two series of (X) are divergent since they are evaluated in the
critical stripe . However (X) can be written equivalently if you prefer as :

( ) = 0. (X).
1

ω

∑  𝑛
−𝑠

𝑘−𝑛
𝑠

𝑘
−1

So this one series has a finite value. (X) finally in standard model becomes:

( ) = 0. with ∈ C and 1
1

∞

∑ 𝑛
−𝑠

𝑘−𝑛
𝑠

𝑘
−1

  𝑠
𝑘

   0 < 𝑎
𝑘
<
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