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Abstract

The free-fall behaviour of a test object near a static point mass has
been calculated for two cases: the �rst is the usual black-hole solution
in general relativity resulting from using Schwarzschild coordinates,
and the second is for a model described in previous papers, in which
spacetime is completely regular with no event horizon. The predictions
are presented and discussed.

1 Introduction
Albert Einstein's theory of general relativity GR [1] has been hailed
as the greatest intellectual achievement of the twentieth century and
one of the two pillars of modern physics [2], and countless books have
been written about it, e.g. [3]. It involves a great deal of mathemat-
ical physics, which I fear is inaccessible to most people, since some of
the theoretical concepts are often shrouded in abstract mathematics.
Furthermore, Einstein himself seems to have modi�ed some of its ideas
as time passed, while others may have interpreted GR di�erently from
how Einstein anticipated. There has indeed been some confusion his-
torically about the exact meaning of GR, whether it should be regarded
as just a theory of gravity or whether it really is a generally covariant
theory as Einstein wanted [4]. At the other end of the spectrum, there
are even those who consider it to be entirely wrong, in that it disobeys
the laws of pure mathematics [5]. Nevertheless, GR does seem to de-
scribe some aspects of gravitational physics that Newton's classical law
of gravity does not describe correctly, such as the perihelion rotation
of the planet Mercury and the bending of starlight, whereas Newton's
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inverse-square law of gravity is perfectly adequate for describing plan-
etary motion and the ordinary day-to-day gravity we all experience.

For some considerable time I have wanted to understand GR from
what you could call a simplistic point of view: to boil it down to
something I could in principle explain to my grandchildren or someone
who has not studied mathematics to a higher degree. However, this
is probably impossible, since it does inevitably require a lot of mathe-
matics, including di�erential calculus and non-Euclidean geometry as
a pre-requisite to a full understanding.

Einstein himself was very fond of so-called thought experiments.
These are quasi-experiments that do not actually take place in the
laboratory or even in outer space, but in the mind. In doing so, how-
ever, many unrealistic situations can arise. You can invent measur-
ing devices that do not exist in reality, such as ideal clocks that have
no mass, rigid rods for measuring distances, and frames of reference
encompassing large volumes of the universe that are equipped with
countless idealized, synchronized clocks. It is questionable sometimes,
whether deductions made from such thought experiments actually do
tell us anything practical about the way the universe works. Never-
theless, I am fascinated by them, and so in this paper I shall devise
and describe my own thought experimental set-up to try to understand
free-fall in the context of GR.

2 My thought experiment
Consider the behaviour of a probe or test object (i.e. an object of
negligible mass that does not a�ect the gravitational �eld it �nds itself
in), as it free-falls directly along a radial coordinate towards a point
mass causing gravitation.

To do this I need to construct some sort of experimental set-up to
measure physical quantities, such as velocity and acceleration. So, I
imagine out in space somewhere, where there is no other mass in the
region, there is a rail-track made out of a very light rigid material,
which cannot deform in any way. At every unit of distance along the
track, such as per kilometre, there is an ideal clock and light switch
positioned at the side of the track that will record the time at which
an object passes by. I am an observer a very long way from this track,
so I imagine having to use a telescope to make any measurements.
Next, I put another ideal clock onto a trolley, which acts as the above-
mentioned test object, and someone gives it a push along the track from
one end, which is at an in�nite - or let's say very large - distance away. I
also imagine there is no friction at all, so the trolley with its own clock,

2



called a proper clock or co-moving clock, will travel along the track at
a constant speed. The constant speed results from a postulate usually
referred to as Newton's �rst law of motion (or Galileo's principle), i.e.
a body moves at a constant speed if there is no force on it.

Thus far, there is no gravity involved in any of this, but there is
already a huge (possibly non-intuitive) issue, for the clock in the proper
frame is observed to tick at a di�erent rate from the clock in the ob-
server frame, called the coordinate frame, even though all clocks are
deemed to be identical. This insight comes from Einstein's postulate
that light travels at the same speed irrespective of the frame of refer-
ence - this being the essence of his other theory, special relativity [6].
A time interval dt′ between two events in the proper frame is related
to the time interval dt between the same two events as observed in the
coordinate frame, by the expression:

dt′2 = (1− v2/c2) dt2 (1)
where v is the velocity of the test object (or co-moving clock) relative
to the coordinate frame, and c is the speed of light. This is likely to
be almost the �rst equation one encounters in every book on relativity,
e.g.[7]. If I write the velocity as v = dr/dt, which is the radial dis-
tance increment dr moved in the coordinate frame divided by the time
interval dt on the coordinate clocks, we then have:

ds̃2 = c2dt′2 = c2dt2 − dr2 (2)
where I have introduced the idea of a spacetime interval ds̃, which is
invariant, or the same in both frames.

My idealized rail track runs from minus in�nity to the left to plus
in�nity on the right, with the coordinate origin in the middle, directly
in front of us. Via some miracle I now place a very large point mass
M at the origin. This is essentially intended to represent a very dense
star with spherical symmetry. The (rigid) track itself does not change
its dimensions in any way as a consequence of this. This is, after all,
only a thought experiment! My friend at plus in�nity now takes the
trolley and releases it along the track. It starts o� with zero speed, but
gradually accelerates due to the gravitational attraction caused by M .
In classical physics this accelerated motion is described by Newton's
inverse-square law of gravitation, which may be written:

a = −GM

r2
(3)

where a = d2r/dt2 is the acceleration of the object (trolley and clock)
in terms of Newton's gravitational constant G, the mass causing grav-
itation M , and the radial distance r. The velocity v from a stationary
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state at r = ∞ is found by integrating Equation 3, to give

v2 =

(
dr

dt

)2

=
2GM

r
(4)

There is no concept of proper or coordinate time in classical physics,
so t here is just "time", as though it were the same everywhere under
all conditions and instantaneously measurable.

What causes the gravitational force or acceleration is not speci�ed
by Newton; his law is a phenomenological law. In Einstein's theory of
general relativity, however, gravity is considered to be a geometrical ef-
fect due to the curvature of spacetime, i.e. the distortion of both space
and time by the mass M , where time now has the mathematical char-
acteristics of a fourth dimension. A spacetime interval ds̃ - also called
a metric line element - for a spherically symmetrical spacetime outside
a point mass may be written in terms of spherical polar coordinates
(t, r̃, θ, φ) as

ds̃2 = c2dt′2 = A(r̃) c2dt2 −B(r̃) dr̃2 − r̃2 dΩ2 (5)

(see, e.g. [8]), where ds̃ as a spacetime increment, dt′ an increment
of proper time, dt an increment of coordinate time, dr̃ an increment
of the radial coordinate r̃, and dΩ2 = dθ2 + sin2 θ dφ2; A and B are
radially dependent functions describing the curvature of the time and
radial metric coe�cients, respectively, while r̃ is the Schwarzschild ra-
dial coordinate, which is not a priori exactly the same as the radial
distance r in the coordinate frame. The next step is to try to �nd
A and B by solving Einstein's �eld equations of GR for the vacuum
outside a point mass. So-called geodesic equations are found for the
four variables from the metric by extremising the path length between
two points in spacetime, using a well known method called Lagrangian
formalism, which is based on Hamilton's principle of least action. This
is tantamount to extremising the proper time. The resulting solution
satisfying Einstein's �eld equations of general relativity for the vacuum
outside the point mass is well known, and given by:

A(r̃) =
1

B(r̃)
= 1− α

r̃
(6)

where α is a constant of integration [8].
Back to my thought experiment: for the case we are considering of

radial free-fall, the angular terms in the metric in Equation 5 disappear,
since dθ = dφ = 0, and we have just

ds̃2 = c2dt′2 = A c2dt2 −B dr̃2 (7)
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This is the same as Equation 2 in special relativity for motion without
gravity, with A = B = 1 for a �at spacetime. In a gravitational �eld in
GR the time intervals dt and distance intervals dr̃ have been distorted
by the radially dependent factors A and B, respectively. Inserting the
solution from Equation 6, we have

ds̃2 = c2dt′2 = (1− α/r̃)c2dt2 − (1− α/r̃)−1dr̃2 (8)

From the radial geodesic equation, the free-fall equation of motion may
be written [8]:

r̈ +
A′c2

2B
ṫ2 +

B′

2B
ṙ2 = 0 (9)

where r̈ = d2r̃/dt′2 is the proper radial acceleration, ṙ = dr̃/dt is the
proper velocity, A′ = dA/dr̃ and B′ = dB/dr̃, and using the metric,
the quantity ṫ = dt/dt′ can be eliminated to give

r̈ +
A′

2AB
c2 +

(
A′

2A
+

B′

2B

)
ṙ2 = 0 (10)

Note that GR directly delivers proper quantities, i.e. in terms of the
proper time. Using part of the solution where B = 1/A one then
obtains from the previous equation:

r̈ +
A′c2

2
= 0 (11)

which can be integrated to give

ṙ2

c2
= 1− A (12)

where I have used the asymptotic condition: A → 1 and ṙ → 0 for
r → ∞. Then, using the rest of the solution, A = 1 − α/r̃, we obtain
for the proper velocity relative to the speed of light:

ṙ2

c2
=

α

r̃
(13)

This expression predicts that ṙ → c for r̃ → α, and ṙ →∞ for r̃ → 0.
By comparing this with Newton's law of gravity and making several ap-
proximations (usually referred to as a weak-�eld approximation), which
involves ignoring the di�erence between r and r̃, and equating New-
ton's absolute velocity v with ṙ, we obtain the following correspondence
between the parameters in Newton's law and GR:

α =
2GM

c2
(14)
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As α turns out to be a positive quantity, called the Schwarzschild (or
gravitational) radius, this leads to the idea of a black hole and event
horizon, because the functions A and B become negative, if r̃ < α,
and a coordinate discontinuity would then occur at this distance r̃ = α
from the point mass.

Another expression for velocity can be obtained by rearranging the
radial metric in Equation 7 to give

u2

c2
=

Aṙ2/c2

(1 + Bṙ2/c2)
(15)

where u = dr̃/dt is the radial coordinate velocity. Using Equation 12
and B = 1/A then gives

u2

c2
= (1− A)A2 (16)

from which one obtains

u2

c2
=

α

r̃

(
1− α

r̃

)2

(17)

This quantity shows the characteristics, u → 0 for r̃ → α and u →∞
for r̃ → 0.

The above analysis has introduced some tricky conceptual issues,
apart from some moderately di�cult mathematics. According to SR,
i.e. in the absence of gravity, the proper clock (co-moving with the
test object along the imagined track) ticks more slowly than stationary
coordinate clocks (placed beside the track). But when a mass is present,
the coordinate clocks themselves tick locally at a reduced rate that
depends on the distance from M , since A becomes less than unity in
a gravitational �eld, i.e. coordinate time intervals become

√
Adt in

the presence of a mass, whereas a long way from the mass, coordinate
time intervals are still dt. We thus have in essence three di�erent
time quantities: proper time, local coordinate time, and coordinate
time at in�nity. In addition, space is stretched by the factor

√
B dr as

the trolley approaches the central mass, while the track itself remains
rigid with radial spatial intervals dr. According to GR, then, time is
"squashed" as r decreases, i.e. A falls from 1 to zero as r̃ decreases
from in�nity to α. This e�ect is known to be experimentally correct:
a clock above the Earth at a higher gravitational potential ticks more
quickly than on Earth itself, due to the e�ect called gravitational time
dilation. Thus, a clock approaching a massive body slows down, and
will stop altogether at r̃ = α.
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3 Regular spacetime
The analysis in the previous section is correct mathematically, but I be-
lieve it to be misleading, due to the non-speci�c nature of the Schwarz-
schild radial coordinate � so misleading, in fact, that generations of sci-
entists and non-scientists have come to believe in the actual existence
of black holes, rather than thinking of them as just a mathematical
curiosity. We should remember that the quantity r̃ is a mathematical
expediency that was introduced in order to enable Einstein's GR �eld
equations to be solved - but it isn't speci�ed or determined by GR. In
other words, the solution for A and B in Equation 4 is expressed in
terms of r̃, but this is not necessarily the same quantity as the true
radial coordinate distance r from the point mass.

The question therefore remains, whether or not we can �nd a unique
relationship between r̃ and r, or is it really unspeci�able? Other au-
thors have indeed addressed this issue. Abrams [9] and Crothers [10]
have shown that r̃ is related to r via an in�nite set of possible solutions:

r̃ = [|r − r0|n + kn]1/n (18)

where n is an integer, and r0 and k are arbitrary constants. For exam-
ple, Schwarzschild's original solution for the �eld due to a point mass
has n = 3 [11].

Although there may be an in�nite number of possible mathematical
forms for r̃(r), I would say they are not all physically equivalent, and
that there can surely be only one solution that corresponds correctly to
physical reality? The key to solving the problem lies in the realisation
that Newton's law relates strictly to the curvature of time, while space
curvature plays no part in that law. This is an undeniable fact, but if
the reader wishes to disagree, I will simply call it a new axiom that I
am introducing. Applying this axiom then enables a completely precise
solution to be obtained, as I have already shown in a previous paper
[8], leading to the very simple linear relationship:

r̃ = r + α (19)

which is the �rst and simplest of the set of solutions posited by Abrams
and Crothers, with n = 1. Using Equations 6 and 19 we then have

A =
1

B
= 1− α

r̃
=

(
1 +

α

r

)−1

(20)

which gives
ṙ2

c2
= 1− A =

α

(r + α)
(21)
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and
u2

c2
= (1− A)A2 =

α r2

(r + α)3
(22)

I have called this a regular model, since the function A does not show
a discontinuity for any value of r from 0 to ∞. There is therefore no
event horizon, and the mass M is not a black hole, i.e. the spacetime
is completely regular for all values of r. The derived proper and co-
ordinate velocities for both models (black hole and regular) are shown
plotted in Figure 1 for comparison.

Figure 1: Free fall velocity for black hole and regular solutions: proper and
coordinate velocities

4 Discussion

We can now proceed further and analyse some predictions and conse-
quences. As mentioned, the regular model in my paper is based on the
fact that Newton's inverse-square law is a manifestation of time cur-
vature. When space curvature is added as an ingredient, this modi�es
the law governing the radial free-fall velocity and acceleration of a test
mass. Using Equation 21 we obtain for the proper acceleration:

r̈ = ṙ
dṙ

dr
=
−1

2
c2α

(r + α)2
(23)
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as opposed to −1
2
c2α/r2 in the black-hole model. As r → 0, r̈ now

tends to a constant value given by r̈ → −1
2
c2/α, rather than to in�nity.

This behaves like Newton's law for r >> α, but predicts that gravity
falls o� as masses approach each other closely and r is of the order of
α. But what do these proper quantities actually describe? They can
be understood as the speed and acceleration of a test object from the
point of view of an observer that is co-moving with the test object: in
terms of the observer's own clock, with distances determined from the
markings on the rigid track as it passes by. The speed increases up to
the speed of light c, but is limited to c when the object impacts the
point mass at r = 0. The black-hole solution is di�erent, of course. It
predicts the proper velocity reaches the speed of light at r = α, and
in�nite speed at r = 0 - which is profoundly incorrect, in my mind.

Figure 2: Coordinate acceleration.

Next, the coordinate velocity is the speed of the falling object mea-
sured according to times and distances recorded by an observer at in-
�nity (or a long way from M where spacetime can be regarded as �at).
In my model, u is given by Equation 22, and the commensurate coor-
dinate acceleration ac is:

ac =
d2r

dt2
= u

du

dr
= −1

2
c2α

[
r(r − 2α)

(r + α)4

]
(24)

This expression is plotted in Figure 2 as a function of the radial coordi-
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nate r for small values of r. For large distances r >> α from the point
mass, Newton's law is recovered, i.e. ac ∼ 1/r2, but as r decreases,
a discrepancy occurs that progressively widens, e.g. for r/α = 104

we have only a relative di�erence from Newton's law of 6 × 10−4; for
r/α = 103, the di�erence is 6 × 10−3; for r/α = 102, it is 6.8 × 10−2

or 6.8%, and for r/α = 10, it is 47% lower. Then, at r = 2α the at-
tractive gravitational force or acceleration disappears completely, and
becomes repulsive. The falling object is then observed to decelerate
until it �nally comes to rest when it reaches the point mass M . Thus,
there is a soft landing from the point of view of a distant observer. In
the black-hole model, on the other hand, the prediction is extremely
strange, in that u → 0 for r̃ → α. In the early days of relativity, this
led to the idea of a frozen star, because that model suggests test objects
would come to rest in space, queue up at the event horizon at r = α,
and never actually disappear from view.

Finally, in this paper I have proposed a modi�ed law of gravita-
tion that deviates from Newton's law for very small distances from the
mass causing gravitation. The modi�cation to gravity is not in the
same scale as to be able to account for the presence of dark matter in
spiral galaxies. However, it provides a much more realistic and intu-
itive solution to the way bodies may behave when they come in close
proximity to each other. Gravity actually decreases as the separation
decreases to zero, and becomes repulsive from the viewpoint of a dis-
tant observer. This remarkable prediction also removes the singularity
that is conventionally thought to occur at the origin of coordinates.
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