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Abstract

We extend the convergence for mollifiers to that for differential forms
of arbitrary degrees.

1 Introduction

On a differential manifold, let c be a singular chain whose current of the inte-
gration is denoted by Tc. Let ωϵ be a smooth form that blows up as the real
positive number ϵ→ 0. G. de Rham in [2] explored the differential geometry in
the current Tc ∧ ωϵ for a particular situation. After decades of emerging of the
new techniques, de Rham’s original style is becoming old memory. However, it
is still necessary in some cases. For instance, the classical smoothing process
is necessary in modern cohomology theory. It is expressed as a weak limit of a
convolution with a mollifier. We formulate it in the differential form of top de-
gree as follows. Let x = (x1, · · · , xn) be the coordinates of Rn with the volume
form dx1 ∧ · · · ∧ dxn denoted by dµ. Let ωϵ for ϵ > 0 be the differential n-form,

1

ϵn
f(

x

ϵ
)dµ (1.1)

where f(x) is a function of a mollifier, i.e. a smooth bump function around the
origin such that ∫

Rn

f(x)dµ = 1.

Let c be an n-dimensional polyhedron in Rn that contains the origin as its
interior point. Then the current Tc ∧ ωϵ, as ϵ → 0, converges weakly to the δ
function at the origin (see chapter 3, [3]). In this paper we would like to show
that if the form ωϵ does not have the top-degree or does not meet the de Rham’s
requirement, the convergence in the sense of measures still holds. This measure
theoretical convergence suggests a direction other than de Rham theory. To
state the convergence as a theorem, we first extends the mollifier to differential
forms of lower degrees. *
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*G. de Rham did this for a particular type of ωϵ (see [2]).
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Definition 1.1. ( blow-up forms)
Let 𭟋ϵ for ϵ > 0 be a family of smooth forms of degree r in an Euclidean space

Rn. If there are an orthogonal decomposition Rn = Rr⊕Rn−r with coordinate u
for the subspace Rr and a smooth form 𭟋1(u) of degree r on Rr with a compact
support such that

𭟋ϵ = π∗𭟋1(
u

ϵ
) (1.2)

or abbreviated as
𭟋ϵ = 𭟋1(

u

ϵ
)

where π : Rn → Rr is the orthogonal projection, then 𭟋ϵ is called a blow-up
form along Rr at Rn−r.

Theorem 1.2. (Main theorem) Let c be a p dimensional regular cell in Rn.
Let ωϵ be a blow-up form of degree r ≤ p in Rn. Then the current

Tc ∧ ωϵ (1.3)

converges weakly to a current as ϵ→ 0.

Remark. Unlike the classical case, Main theorem does not provide a full
description of the weak limit.

In the rest of paper, we give the technical detail of the proof. It consists of
one lemma in set-theoretic limit and an estimate in functional analysis. The
appendix includes another lemma which is mainly for the estimate in analysis.
However, it extends the notion of topological degree of a map in the spirit
consistent with the main theorem.

2 proof

In the following, for an Euclidean space Rl with a coordinate z, we’ll abuse
the notation to denote the volume form of a subspace with the concordant
orientation and the volume density in Lebesgue integrals by the same expression
dµz. The argument starts with a definition and a lemma about points and sets.

Definition 2.1. Let W ⊂ Rp be a subset in an Euclidean space with the origin
o. A point a ∈ Rp is said to be a stable point of W if the line segment

{o+ t(−→oa), 0 < t ≤ 1}

either lies in W completely or in W c completely, where −→oa ∈ ToRp = Rp is the
vector from o to a, and W c is the complement Rp\W . We denote the collection
of stable points of W by W o

s .
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Recall a regular cell c is a couple: a) oriented polyhedron Πp ⊂ Rp, b) a
diffeomorphic embedding c of a neighborhood of Π to Rn. Let Rr,Rp−r,Rn−p
be subspaces of Rn with coordinates u, v1 and v2 respectively such that

Rn = Rr ⊕ Rp−r ⊕ Rn−p. (2.1)

Let
η : Rn → Rp = Rr ⊕ Rp−r

be the orthogonal projection to its subspace Rp. Let D 1
ϵ
for a positive ϵ be the

linear transformation of Rn defined by the map

(u,v1,v2) → (
u

ϵ
,v1,v2). (2.2)

In the context, we denote its restriction to subspaces also by D 1
ϵ
. All measures

in the following are the Lebesgue measures on Euclidean spaces.

Lemma 2.2. Denote W := η(C). There exists a subset Wfu ⊂ W of measure
0 such that the set-theoretic limit (§4, [1])

lim
ϵ→0

D 1
ϵ

(
W\Wfu

)
(2.3)

exists �.

Proof. We denote
L := Rp−r

The point o ∈ L should be viewed as the origin of the affine subspace Rr ⊕ o
where o ∈ Rp−r is a point, and partial scalar multiplication D 1

ϵ
acts on it as

the scalar multiplication. Let

W o =W ∩
(
Rr ⊕ {o}

)
.

Let Ro be the ray
{o+ t(−→oa) : a ∈W o, t > 0}

that starts at the origin in the affine plane. Let

W o
fu ⊂W o

denote the subset

{a ∈W o : Ro does not contain a stable point of W
o}.

�For a family of sets Sϵ, the existence of the set-theoretic limit means⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Sϵ2 =
⋃

ϵ1≤1

⋂
ϵ2≤ϵ1

Sϵ2
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We divide W to three disjoint parts.
1) Wfu = ∪

o∈L
W o
fu, called the set of fully unstable points,

2) Ws = ∪
o∈L

W o
s , called the set of stable points,

3) Wpu is W\(Wfu ∪Ws), called the set of partially unstable points.

Next we blow-up each part by the scalar multiplication D 1
ϵ
with ϵ→ 0.

For the fully unstable pointsWfu, we would like to show they are necessarily
on the “boundary” which gives the measure 0. The following is the detail. The
boundary of the polyhedron Πp is defined by multiple hyperplanes. Hence the
boundary of C is also defined by multiple hyperplanes Hj . On the other hand
in the its target space, we let

ν : Rr\{0} ⊕ Rp−r → Pr−1 × Rp−r
(u,v1) → ([u],v1)

(2.4)

be the map that is the product of the projectivization map and the identity
map (where Pr−1 can be regarded as the real projectivization of T0Rr, the set
of directions). Fix a point o ∈ L. Let a ∈ W o

fu other than o. Since a is a fully
unstable point, there are two sequences of points pn,qn on the ray Ro such
that

lim
n→∞

pn = o = lim
n→∞

qn

and
pn ̸∈W o,qn ∈W o.

Thus the directions −−→opn and −−→oqn, which are all parallel to the tangent vector
−→oa must lie on at least one nontrivial plane η∗(Hj). Since a subplane properly
contained in an Euclidean space has a measure 0, for each fixed o, P(W o

fu\{o})
has measure 0 in the manifold

P(Rr\{0})× {o} ≃ Pr−1

where o is fixed. Since
Rr\{0} → Pr−1

is a bundle’s projection, the inverse W o
fu also has measure 0. To go further, we

take the union over L to obtain ν(Wfu\L) = ∪
o∈L

P(W o
fu\{o}) has measure 0 in

the manifold
Pr−1 × Rp−r.

Due to the fibre bundle structure of the projectivization, we conclude Wfu in
Rp has measure 0. Notice that D 1

ϵ
is a linear transformation, D 1

ϵ
(Wfu) which

is equal to Wfu also has measure 0. Therefore the limit is of 0. �

�But the set Wfu is not on the boundary of W .
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For stable points Ws, we consider the set Bϵ = D 1
ϵ
(Ws). We would like to

show Bϵ as ϵ→ 0 is a decreasing set. So it converges to a measurable set. The
following is the detail. Let Ro be the ray starting at o ∈ L and through a stable
point a ∈ W o

s of W o for an o ∈ L. Since a is stable, the dilation by the scalar
multiplication D 1

ϵ
yields

D 1
ϵ
(Ro ∩Ws) ⊂ D 1

ϵ′
(Ro ∩Ws), for ϵ′ < ϵ < 1.

Now taking the union over all the rays through stables points, we obtain

D 1
ϵ
(Ws) ⊂ D 1

ϵ′
(Ws), for ϵ′ < ϵ.

Therefore Bϵ is a decreasing family of measurable sets. Let

B0 := ∪ϵ∈(0,1]

(
D 1

ϵ
(Ws)

)
. (2.5)

Then set-theoretically the decreasing family yields

lim
ϵ→0

Bϵ = B0

and B0 is measurable.

For partially unstable point Wpu, we consider the set Aϵ = D 1
ϵ
(Wpu). We

would like to show Aϵ as the set multiplied by
1

ϵ
will be pushed to ∞ as ϵ→ 0.

So it is empty. Here is the detail. If
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 is non-empty, there is a point

x ∈
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2

i.e. x ∈
⋃

ϵ2≤ϵ1
Aϵ2 for any ϵ1 < 1. So, there is a sequence of numbers ϵn such

that lim
n→∞

ϵn = 0 and Dϵn(x) lies in Wpu. Suppose that N is a number in the

sequence such that DϵN (x) ∈Wpu. By the definition of Wpu, there is a smaller
ϵN ′ ̸= 0 such that DϵN′ (x) is a stable point, i.e. DϵN′ (x) ∈WS . Then all points
Dϵn(x) are stable whenever ϵn < ϵN ′ . But this contradicts the assertion above:
there is a sequence of partially unstable points ϵnx with ϵn → 0. Thus

lim
ϵ→0

supAϵ =
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 = ∅. (2.6)

Therefore
lim
ϵ→0

infAϵ ⊂ lim
ϵ→0

supAϵ

is also empty. Hence lim
ϵ→0

Aϵ exists and is equal to an empty set.

Combining the results for Wfu, Ws and Wpu, we complete the proof.
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Proof of Theorem 1.2. We continue with all notations in Lemma 2.2. Let ϕ
be a test form of degree p− r in Rn. It amounts to show the convergence of the
integral ∫

c

ωϵ ∧ ϕ (2.7)

as ϵ → 0. Let Rr be the subspace with coordinates u such that the blow-up
form is written as

ωϵ =
1

ϵr
g(

u

ϵ
)dµu (2.8)

where g(u) is a C∞ function of Rr. Notice that the form ωϵ ∧ ϕ is the sum of
simple forms in the coordinates of Rn that can be explicitly expressed. So, we’ll
focus on the integral of a single simple form.

We work with the simple form written as

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

(2.9)

where the volume forms dµu, dµv1
determine two coordinate’s planes

Rr,Rp−r

with coordinates u,v1 respectively, and ψ is a C∞ function on

Rn = Rr ⊕ Rp−r ⊕ Rn−p

that is the coefficient of the simple form ψdµv1 in the test form ϕ. Then the
integral of (2.7) over C := c(Π) is∫

D 1
ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1 (2.10)

where u is the new variable obtained from the old u divided by ϵ. Let K1 be
the support of g(u), and K2,K3 be the bounded sets of Rp−r,Rn−p such that
C is contained in Rr ⊕ K2 ⊕ K3. Then ψ(ϵu,v1,v2) uniformly converges to
ψ(0,v1,v2) in the bounded K1 ⊕K2 ⊕K3. So, for any positive δ, we can find
sufficiently small ϵ such that

|ψ(ϵu,v1,v2)− ψ(0,v1,v2)| ≤ δ. (2.11)

Let cϵ be the composition

Πp
c−→ Rn

D 1
ϵ−−→ Rn. (2.12)

Notice
D 1

ϵ
(C) ∩ (K1 ⊕K2 ⊕K3)
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is a bounded set. Thus all coefficients of the form c∗ϵ
(
g(u)dµu ∧ dµv1

)
are

bounded uniformly for all sufficiently small ϵ. Hence

|
∫
D 1

ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1 −
∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1 |

≤ δM

(2.13)

where M is a constant. For the integral∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1
(2.14)

we make a change of variable from u to
u

ϵ
to find (2.14) is equal to

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1 (2.15)

Now we apply Lemma A.1, there is a compactly supported integrable function
ξ̃ϵ(u,v1) on Rp such that

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1

=
1

ϵr

∫
W

g(
u

ϵ
)ξ̃ψ(u,v1)dµudµv1 (2.16)

where W is the measurable set defined as in Lemma 2.2, and the right hand
side is a Lebesgue integral with the density measure dµudµv1

, and ξ̃ψ(u,v1) in
the integrand is a compactly supported L1 function on Rp. Furthermore, since
ψ(0,v1,v2) is a pullback function from Rp−r ⊕ Rn−p, then ξ̃ψ(u,v1) is also a
pullback of function ξψ(v1) from Rp−r. So, in the following, we express the

pullback function ξ̃ψ(u,v1) as ξψ(v1). Now changing the variables from
u

ϵ
back

to u, we have

right hand side of(2.16) =
∫
Rp
χ
D 1

ϵ
(W )

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

=
∫
Rp
χ
D 1

ϵ
(W\Wfu)

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

(2.17)

where χ
•
denotes the characteristic function of the set •. Next for the Lebesgue

integrals, we’ll omit the notations for variables for the dominant convergence
theorem. We’ll see that the integrand in (2.17) satisfies

|χ
D 1

ϵ
(W\Wfu)

gξ
ψ
| ≤ |gξ

ψ
|

and |gξ
ψ
| is an L1 function on Rp. The set-theoretic convergence in Lemma 2.2

implies the χ
D 1

ϵ
(W\Wfu)

gξ
ψ
point-wisely converges to the function

χ
B0
gξ
ψ
.
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By the dominant convergence theorem

lim
ϵ→0

∫
Rp

χ
D 1

ϵ
(W\Wfu)

gξ
ψ
dµ

u
dµ

v1
=

∫
Rp

χ
B0
gξ
ψ
dµ

u
dµ

v1

=

∫
B0

gξ
ψ
dµ

u
dµ

v1

(2.18)

Finally, combining (2.13) and (2.18), we obtain that

lim
ϵ→0

∫
C

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

=

∫
B0

g(u)ξψ(v1)dµudµv1

(Note the left hand side is an integral of a differential form but the right is a
Lebegue integral). We conclude

Tc ∧ ωϵ

converges to a functional as ϵ → 0. For the continuity of the functional, we
see that if ϕ varies in a bounded set of forms to any orders, then in particular
ϕ varies in the bounded set to the order of 0. Hence the formula (2.14) (as a
number) is bounded. Then∫

B0

g(u)ξψ(u,v1)dµudµv1

as a number is bounded. So, the evaluation

lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

is also bounded. Hence the functional

ϕ→ lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

defines a current. The proof is completed.
□

Appendix A Orthogonal projection of a cell

The integration of forms (2.7) is impossible in geometric analysis since the man-
ifold structure for cells does not exist at the ϵ = 0. Our idea is to convert it
to a Lebesgue integral (see the right hand side of (2.16)) for the measure still
exists at ϵ = 0. The following measure-theoretical lemma provides the basis to
this key conversion.
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Lemma A.1. Let p ≤ n be two whole numbers. Let Rp,Rn−p be subspaces of
Rn such that Rn = Rp ⊕ Rn−p. Let π : Rn → Rp be the orthogonal projection.
Let c be a p-dimensional regular cell in Rn, ψ a smooth function on Rn. Then
there is a compactly supported L1 function ξψ on Rp such that

π(Tc ∧ ψ) = ξψ (A.1)

where π(currents) denotes the pushforward on compactly supported currents,
and ξψ represents a current of degree 0.

Proof. Let µ be the Lebesgue measure on Rp, ϕ a test function. Let C =
c(Πp). We should note that since Tc is a current with a compact support, the
pushforward π(Tc∧ψ) is a well-defined 0-current. Hence it is both a distribution
and a 0-current. So it can be evaluated in two different ways, and the evaluation
of the distribution π(Tc ∧ ψ) at ϕ is equal to the current’s evaluation at forms,

π(Tc ∧ ψ)[ϕdµ] (A.2)

which has the integral estimate∣∣∣∣π(Tc ∧ ψ)[ϕdµ]∣∣∣∣ ≤ ∣∣∣∣∫
C

ψ ∧ π∗(ϕ) ∧ π∗(dµ)

∣∣∣∣
≤M ||ϕ||∞

(A.3)

whereM is a constant independent of the test function and || • ||∞ = esssup| • |.
Thus, π(Tc ∧ψ) as a distribution has order 0. Therefore it is a signed measure.
Let A ⊂ Rp be a set of measure 0. Let π = π|C . So, π is a differential map
between two manifolds of the same dimension p. Let

π−1(A) = E1 ∪ E2

where E1 is a set of critical points of π, and E2 = π−1(A)\E1. By the same
estimate (A.3), we have∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤M ′|

∫
E1+E2

dµ| (A.4)

where M ′ is a constant, the integral is of the differential form dµ. Since E1

consists of critical points, the Jacobian of π is 0. Thus
∫
E1
dµ = 0. We let

E2 = ∪∞
i=1E

i
2 such that

π|Ei
2
: Ei2 → π(Ei2) (A.5)

is diffeomorphic. Then each π(Ei2) is contained in A. Thus µ(π(Ei2)) = 0. Then

|
∫
Ei

2

dµ| ≤ |
∫
π(Ei

2)

Jdµ| ≤ kiµ(π(E
i
2)) = 0

where J is the Jacobian of the map π|Ei
and ki is the upper bound of |J |. Hence∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤ ∞∑
i=1

|
∫
Ei

2

dµ| = 0.
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Thus the signed measure π(Tc ∧ψ) is absolutely continuous with respect to the
Lebesgue measure of Rp. The Radon-Nikodym theorem ([1]) implies that the
density function between the signed measure and the positive measure,

ξψ =
π(Tc ∧ ψ)

µ
(A.6)

is an L1 function. The numerator π(Tc ∧ ψ) in the formula (A.6) indicates ξψ
has the bounded support π(C). We complete the proof.

Example A.2. If π|C : C → Rn is proper, then ξ1 = deg(π)χπ(C).
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