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Abstract

The Michelson-Morley (MM) experiment and its resolution by the special theory of
relativity form a foundational truth in modern physics. In this paper we examine and
generalise the geometry of the sequence of events within a standard MM interferometer to
arrive at a geometry that merges the perspectives of the rest and moving frames within a
common stationary circle in space. Further we show that this theoretical approach leads
us into spherical trigonometry that supplies a simple solution of the Michelson-Morley
problem.

1 Introduction

Special relativity [1], formulated by Albert Einstein in 1905, fundamentally altered our
understanding of space, time, and motion. It provided a framework where the speed
of light remains constant in all inertial frames, leading to counter-intuitive but exper-
imentally verified concepts like time dilation and length contraction. A contemporary
work by Sommerfeld, On the Composition of Velocities in the Theory of Relativity [2]
was published just four years after Einstein. In his short paper Sommerfeld examines the
problem of relative velocity composition from the perspective of spherical trigonometry.
Restricting himself at first to two congruent right spherical triangles (shown later to be
equivalent to fig. 1 △ABQ and △CBQ), Sommerfeld arrives at the spherical equivalent
of Einstein’s addition theorem [3] for velocities. Proceeding further, they invoke the cosine
rule of spherical trigonometry to present a general solution to all triangles of the form
AB′C in fig. 1. Sommerfeld summarizes, “For the composition of velocities in the theory
of relativity, not the formulas of the plane, but the formulas of the spherical trigonometry
(with imaginary sides) are valid. By this remark the complicated transformation calculus
becomes dispensable, and can be replaced by a lucid construction on a sphere” [2].

The aim of this paper is to conduct an in-depth theoretical re-visitation of the paradigm
shifting Michelson-Morley (MM) experiment, its famous null result [4] and the resulting
paradox of space and time whose solution [1] forms the foundational basis of modern
physics. We will examine arguments that show that the event sequence within an MM
interferometer may be theorised by the rest frame in an unconventional fashion. This ap-
proach will demonstrate that under inertial conditions and independent of its orientation
or its relative velocity with respect to the rest frame, the locus of all points in space where
a reflection event can occur within an MM interferometer is a stationary circle in space.
Restricting the discussion to inertial conditions, we attempt to reconcile the MM paradox
through a generalisation of Sommerfeld [2] that retains this circular geometry.
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2 Euclidean Geometry

On a flat surface [1], we draw any angle θ at origin Q bounded by two equal length line
segments QB = QB′ = h. We join points B and B′ to points A and C such that the line
segment AC is perpendicular to QB and centred at Q. We will restrict our arguments to
the domain x < h. Fig. 1 illustrates.

Figure 1: Triangles ABC and AB′C rendered on a flat surface.

From fig. 1, we posit the following:

1. If x > 0, physical measurements will verify the theoretical statement AB + BC ̸=
AB′ +B′C remains true for all θ ̸= 0, π, 2π...

2. Since h is constant, curve BB′ will take the form of a circle as 0 ≤ θ ≤ 2π indepen-
dent of x.

3. If x > 0, physical measurements will verify the theoretical statement ̸ AB′Q ̸=
̸ QB′C remains true over all θ ̸= 0, π/2, π...

3 A Template of the MM Experiment

Now we turn to theoretical aspects of relativistic optical interferometry to demonstrate
that the geometry and sequence of events within an MM interferometer always templates
to that of fig. 1.

3.1 Frames of Reference

Consider two imaginary euclidean reference frames that are in relative motion with respect
to each other. Let us arbitrarily assume one of these frames is at rest and the other moves
with some velocity v with respect to the rest frame. Accordingly we refer to fig. 1 and
declare,

1. A rest frame I0 centered at point Q.

2. A moving frame I1 that translates from point A to point C with some velocity v
relative to rest frame I0.

3.2 Geometry and Sequence of Events

Now let us consider the structure of an MM interferometer [4](see fig. 2). By fixing
̸ B′

1QB′
2 = π/2, line segments QB′

1 and QB′
2 form the arms of the interferometer. Mirrors

B1 and B2 are aligned perpendicular to their respective arms. The apparatus may be
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rotated about its source and consequently each arm subtends its own angle θi measured
from a perpendicular to line segment AC. Let us affix moving frame I1 to the source of
the interferometer. Now let us imagine this interferometer moving through space under
inertial rules such that,

1. v remains constant (AQ = QC).

2. The interferometer orientation (θi) with respect to line segment AC remains con-
stant.

Reference frame I1 (affixed to the source) translates with constant velocity v from
point A to point C. From the perspective of the rest frame I0, a discrete event cycle
begins with the source at point A marking the simultaneous emission of a pair of photons
(wavelength=λ). As the entire apparatus moves with some constant (AQ = QC) velocity
v relative to origin Q along line segment AC, the photons are emitted at point A, reflect
from mirrors B1 and B2 to finally arrive simultaneously (in phase with each other) at
point C. This geometry and sequence of events remains true over all possible orientations
θ of an MM interferometer [5] and over all 0 ≤ v < c where c represents the velocity of
light in free space [6].

Figure 2: Geometry of the Michelson-Morley experiment depicting the general case v ̸= 0 and
θi ̸= 0, π/2, π.... Point Q is chosen as the origin. Only the events within the interferometer
that are relevant to relativistic discussion are shown. Independent of the orientation of the
interferometer, rest frame I0 will find triangle AB′

iC is a generalisation of triangle AB′C in
fig. 1. Identical to fig.1, physical measurements of the geometry of events will confirm that
AB

′
i+B

′
iC ̸= AB

′
j+B

′
jC for all sin θi ̸= sin θj (inequality in path lengths) and ̸ AB′Q ̸= ̸ QB′C

(inequality in angles of incidence and reflection) for all θi ̸= 0, π/2, π... By setting v = 0 (x = 0),
the figure represents the observational perspective of moving frame I1. By setting v > 0 (x > 0),
the figure represents the observational perspective of rest frame I0. It is evident from fig. 1
that curve BB′ will take the form of a stationary circle of radius h about point Q independent
of θi (i.e. orientation) and v (i.e. frame of reference).
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4 Special Relativity

At this stage of investigation, rest frame I0 recognises the inequalities in path lengths
depicted in fig. 1 coupled with the experimental null result of the MM experiment to
arrive at a well understood paradox of space and time that is traditionally reconciled by
selecting point A as the origin followed by the application of special relativity [7]. Let us
examine the process by which this paradox and its resolution occur:

1. Rest frame I0 observes a single cycle of an MM interferometer moving from point A
(the origin) to point C under inertial rules and draws a diagram of the events on a
flat surface (see fig. 2).

2. The rest frame uses a stopwatch to count the observed time interval t between
emission and null result events.

3. The rest frame uses a measuring rod to measure the distance AC to determine x.

4. From x and t, the rest frame determines the relative velocity v = 2x/t.

5. Rest frame employs a measuring rod to determine AB′
i +B′

iC and AB′
j +B′

jC and
finds them unequal in all cases where v > 0 and sin θi ̸= sin θj .

6. For subsequent computation purposes and rest frame I0 determines the cartesian
coordinates of points B′

i = (b1, b2) and B′
j = (b3, b4) in fig. 2 by analytical means or

by measuring rod.

From the above steps rest frame I0 concludes that if x > 0 (equivalent to v > 0), the
observed null result conflicts with the application of the wave equation [8] to the geometry
under consideration. This leads rest frame I0 into a paradox of space and time that is
resolved by special relativity [1] in the following manner:

1. Rest frame I0 invokes the lorentz factor:

γ =
1√

1− v2/c2
(1)

2. From their physical observations of x and t, rest frame determines γ:

γ =
1√

1− (2x/t)2/c2
(2)

3. The rest frame now determines b′1 and b′3 according to the rule:

b′i = γ(bi − vt) (3)

4. Leaving b2 and b4 unchanged, the rest frame redraws fig. 2, on this occasion setting
(i) mirrors Bi and Bj in positions (b′1, b2) and (b′3, b4) and (ii) AC = γ(2x − vt).
If x > 0 (equivalently v > 0), this procedure results in a “shortening” [1] of the
observed distance AC and of the physical dimensions of the interferometer along the
AC axis.

5. The rest frame also determines t′ = γ(t − 2vx/c2) to observe a lengthening of the
time interval between emission and null result events.

Importantly, it may be noted here that in order to apply special relativity to the MM
interferometer geometry, rest frame I0 must determine the co-ordinates of mirror Bi and
Bj in fig. 2 by some means i.e. the orientation of the interferometer must be known to
the rest frame.
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5 Selecting a New Origin

By imagining afresh the sequence of events within an MM interferometer, we may also
posit that by selecting instead point Q as a common origin (refer fig. 2), rest frame I0 and
any moving frame Ii moving with velocity vi along the AC or CA directions are all assured
that over all 0 ≤ θi ≤ 2π and 0 ≤ vi < c, the locus of all points in space where a reflection
event can occur is a common stationary circle of radius h about point Q. Invoking the
symmetry of the circle, a rest frame I0 may also rotate fig. 2 in entirety about point Q by
any angle 0 ≤ ϕ ≤ 2π and may incorporate any number of moving frames I1, I2, I3, ...Ii,
each moving in any possible direction ϕi and each set an any orientation 0 ≤ θi ≤ 2π for
all 0 ≤ vi < c within a single common stationary circle i.e. curve BB′. Further, invoking
the superposition property of waves [8], we may posit [9] that this single circle BB′ is
capable of hosting an infinite number of MM null result cycles moving at all possible
velocities, in all possible directions, simultaneously [10]. To this end, let us theorise a
model of space upon which rest frame I0 is able reconcile the paradox of unequal path
lengths presented above in a manner that retains the circular geometry of curve BB′.
Since special relativity leads to distortions in curve BB′ (refer sec. 4), it is unsuitable for
this manner of theoretical exploration.

6 Spherical Trigonometry

Before we dive into spherical trigonometry, recall Sommerfeld, “it apparently better cor-
responds to the meaning of the theory of relativity, to calculate and (by consideration of
the reality relations) to construct by rotation angles, instead of only using its tangents,
the velocities” [2]. With this in mind, let rest frame I0 project fig. 1 onto the surface of
an imaginary sphere of arbitrary radius R such that the shortest distance path between
any two points are described by great circles on the sphere [11]. Thus the magnitude of
physical distances x, h,AB′, B′C in fig. 1 are measured analytically as rotations in radians
subtended at the centre of this sphere. The angles depicted in fig. 1 are measured on the
surface of the sphere and curve BB′ takes the form of a small circle on the surface of this
sphere having radius h radians and centred at point Q. Since Sommerfeld has already
provided the cosine rule as a solution to all triangles of the form AB′C, let us generalise
further and invoke instead the sine rule of spherical trigonometry to see where it leads us.

Figure 3: Spherical Trigonometry. Angles h, x,AB′, B′C are measured analytically at the
centre of an imaginary sphere. Angles i, r, A, C, θ are measured analytically on the surface of
the sphere.

6.1 Analysis of Spherical Model

From fig. 3 and the rule of sines for spherical triangles [12], rest frame I0 finds in △AB′Q:
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sinAB′

sin (π/2 + θ)
=

sinh

sinA
=

sinx

sin i
(4)

where i = ̸ AB′Q. Similarly for △CB′Q:

sinCB′

sin (π/2− θ)
=

sinh

sinC
=

sinx

sin r
(5)

where r = ̸ CB′Q.
From equations, 4 and 5 rest frame I0 finds in all spherical triangles of the form AB′C:

sin(AB′)

sin(CB′)
= 1 (6)

From eq. 6, we find AB′ and B′C are supplementary angles i.e. rendering the same
result when subjected to the sine function. Referring now to fig. 2, eq. 6 guarantees that
by interpreting the MM null result geometry with this analytical approach, rest frame I0
is assured the theoretical statement AB′

i +B′
iC = AB′

j +B′
jC remains true independent

of v, h, θ. Thus the paradox of unequal path lengths presented by physical measurements
of fig. 1 vanishes independent of frame of reference vi or orientation of the interferometer
θi, and the solution to the null result retains the MM geometry verbatim. Further by
selecting point Q as a common origin, every frame of reference I0, I1, I2...I∞, whether
at rest or moving are all assured that the commonality and the circularity of curve BB′

(refer sec. 4) remain unaffected if projected onto this theoretical model of space.

Equations 4 and 5 also show that:

sin i

sin r
=

sinA

sinC
= ρ (7)

From eq. 7 and by physical measurements of ̸ ABQ and ̸ CBQ in fig. 1, rest frame I0
finds that under inertial conditions, the constant ρ = 1 and recognises that in Sommerfeld’s
analytical space, independent of x, h, θ, surface angles ̸ i and ̸ r (also ̸ A and ̸ C) are (i)
equal if θ = 0 or (ii) supplementary angles if θ ̸= 0.

6.2 Duality in Space

Consider a function Polar() that takes an element-wise spherical triangle as its argument
and returns the corresponding polar spherical triangle [13]. Under Sommerfeld’s model,
rest frame I0 will find in all analytical triangles of the form AB′C:

Polar(AB′Q) = [π −A, π −AB′, π − i, π − h, π/2 + θ, π − x] (8)

and,

CB′Q = [C,B′C, r, h, π/2− θ, x] (9)

Recalling the relationships from eq. 6 and 7 rest frame I0 finds that spherical trian-
gles Polar(AB′Q) and CB′Q are analytical duals of each other and their corresponding
elements of △AB′C form pairs of supplementary angles. By invoking the reversibility
[14] of the Polar() function, we may conclude that under this model of space, triangles
AB′Q and CB′Q are also analytical duals of each other and render identical results when
subjected element-wise to the sine function.
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7 Conclusion

Equation 6, demonstrates that in a spherical model of space and independent of frame of
reference I1, I2, I3...Ii, the total analytical light path in an MM cycle, AB′+B′C is always
equal to the maximal value i.e. π radians and this remains true independent of h, θ and
over all 0 ≤ x/h < ∞. Further, unlike special relativity, this solution of the MM problem
does not mandate distortions in the structure of curve BB′. Thus Sommerfeld’s model
of analytical space respects the circularity and commonality of curve BB′ and is valid
over all 0 ≤ v/c < ∞ as compared to special relativity, which Einstein himself recognizes
is “meaningless” [1] except within the domain v < c. Thus the continued exploration
of Sommerfeld’s model would allow physics discussions in the domain 1 < v/c < ∞ to
become meaningful. Also, the property of duality in space presented above is intriguing
given its symmetry with the widely accepted concept of duality in particle-wave theory.
Further, it is noteworthy that this generalisation of Sommerfeld, being independent of θ,
is also applicable in the discipline of quantum mechanics, an identical problem of space
and time where the orientation of the “interferometer” is hidden from rest frame I0 [15].
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