
A Framework for Automated Low Latency

Adverse Drug Reaction Reporting Using

Crowdsourced Reporting and Graph

Theory Analysis

Dr Jyotirmay Kirtania, Professor of Anesthesiology, Critical Care & Pain

MPMMCC & HBCH (Tata Memorial Centre) Varanasi, India

Email: jyotirmay@mpmmcc.tmc.gov.in

https://orcid.org/0000-0002-4426-6877

https://mpmmcc.tmc.gov.in/

Manuscript version 1.5, 15Sep2024

Abstract:

Adverse Drug Reactions (ADRs) are a leading cause of hospital admissions and healthcare

costs. Traditional methods of ADR reporting often rely on post-marketing surveillance, and

manual reporting of ADRs to the local or national pharmacovigilance agencies for causality

assessment and final reporting to the WHO. High-income countries have their own national

(i.e., USFDA) and regional (i.e., European Medicines Agency / EMA) pharmacovigilance

agencies. However, this process is slow and inefficient. This article proposes a novel

framework for integrating ADR detection into clinical workflows using Electronic Medical

Record (EMR) systems, crowdsourced reporting from patients and healthcare professionals,

and graph theory for generating automated ADR signals and reports to the local or national

pharmacovigilance agencies. The system leverages automated data collection from EMRs

(drug prescriptions, clinical notes) by EMR data scraping, integrating ADR dictionaries and

drug databases to automate the generation of ranked ADR signals. By applying graph theory,

the system filters and upranks connections between drugs and ADRs, considering the

temporal relationship between drug administration and ADR occurrence. This automated

approach offers a significant improvement in ADR reporting, enabling faster detection and

more accurate predictions. Methodologies, framework visualizations and python code

snippets are included to aid implementation.

1

mailto:jyotirmay@mpmmcc.tmc.gov.in
https://orcid.org/0000-0002-4426-6877
https://mpmmcc.tmc.gov.in/

Introduction

The International Conference on Harmonization of Technical Requirements for Registration

of Pharmaceuticals for Human Use, of which the World Health Organization (WHO) and the

United States Food and Drug Administration (FDA) are members, defines an ADR as "A

response to a drug which is noxious and unintended, and which occurs at doses normally

used for prophylaxis, diagnosis, or therapy of disease or the modification of physiologic

function." [1]

Adverse drug reactions (ADRs) present a significant challenge in the healthcare sector. In

2022, worldwide, there were over 1.25 million serious adverse events reported and nearly

175,000 deaths. [2] There are 6 emergency department (ED) visits for therapeutic and

nontherapeutic medication harms per 1,000 patients, and about 38% of such visits

subsequently require hospitalization.[3] Additionally, in 3 out of every 1000 hospital

admissions, a patient dies due to an ADR.[4]

ADR-related healthcare costs are significant—and preventable. In the United States and

Europe, the financial burden is estimated at $30.1 billion US dollars and €79 billion euros,

respectively [5, 6]. Despite improved access to medicines, the data on the impact of ADRs in

low-and middle-income countries is scarce and very likely underestimated.

Traditional ADR reporting systems, such as those implemented by the USFDA and other

regulatory agencies like the World Health Organization (WHO) and the European Medicines

Agency (EMA), often suffer from underreporting and delayed identification of drug-related

adverse events. A study assessing ADRs in hospitalized patients revealed that physicians

often overlook a significant portion of these reactions.[7] Too large a share of medicines risk

management remains limited to signal detection in big ADR databases (USFDA, EMA, WHO,

etc.) This resource allocation is antiquated and applied statistical signal detection

methodologies have reached their limits of usefulness. [8]

There is an unmet need to develop an automated, low latency ADR signal reporting system.

Recent studies [9, 10, 11, 12] have demonstrated the potential of computational models to

detect and predict ADR signals from EMR data using advanced machine learning algorithms

and graph neural networks.

Methods:

Framework Overview

Input Data Sources:

The system integrates data from multiple sources

1. EMR Prescription and Drug Administration Data can be extracted from hospital EMR

systems at predefined intervals.

2

2. Barcode Scanning: Real-time drug administration tracking via barcodes of drugs

administered by nurses in the hospital (portable barcode scanner connected to the

EMR), or patients or caregivers at home (mobile phone’s barcode scanner

application).

3. ADR Dictionary: A comprehensive list of generic and proprietary drug names with

associated adverse drug reactions based on the drug’s Summary of Product

Characteristics (SPC) published by the manufacturers. This ADR Dictionary shall be

continuously updated.

4. Crowdsourced Clinical Notes: Adverse symptoms and signs collected from clinical

notes recorded by healthcare professionals in healthcare settings. Adverse symptoms

reported by patients and home caregivers through mobile application or phone call

to the physician or nurse.

Data Collection & Processing:

The system periodically scrapes prescription and drug administration data from EMRs. For

real-time administration, barcodes are scanned during drug administration, linking the drug

name and timestamp to the patient’s EMR record. Additionally, clinical notes are analyzed

using natural language processing (NLP) to extract potential ADRs based on a predefined

ADR keyword dictionary.

Graph Theory-Based ADR Detection:

The framework constructs a bipartite graph with two sets of nodes:

a) Drug Nodes: Each node represents a prescribed drug.

b) ADR Nodes: Each node represents a reported ADR.

c) Edges between these nodes are weighted based on several factors:

d) Timing: If the ADR occurred after the drug administration, the edge weight is higher.

Pre-existing conditions or symptoms (reported before drug administration) are down

ranked.

e) Frequency: The more frequent the ADR reports for a particular drug, the higher the

edge weight.

The following algorithms are employed:

a) Degree Centrality: Measures the strength of connections (edges) between drugs and

ADRs.

b) PageRank: A modified version ranks drug-ADR pairs based on the weighted edges,

prioritizing ADRs with the strongest links.

c) Downranking Pre-existing Symptoms: To reduce false ADR signals, the system checks

whether a symptom or clinical sign was recorded prior to drug administration. If

present, these connections are assigned lower edge weights. This prevents

3

pre-existing conditions from being incorrectly attributed as ADRs, improving the

system's accuracy.

Sample Code Implementation: The system is built using Python’s Flask for backend

operations and a frontend dashboard.

Backend: The Flask API handles data collection and analysis. Key functions include:

i) EMR Data Scraping: Extracts prescription and drug administration data from

the EMR.

ii) Barcode Scanning Integration: A REST API endpoint collects real-time barcode

data.

iii) Graph Theory Analysis: Using NetworkX, the API constructs a graph and

applies ranking algorithms.

Workflow Explanation:

1. Recording ADR Report: When an ADR is reported (either by a clinician or a patient),

the system now also records the time when the symptom/sign first appeared (i.e.,

symptom_timestamp).

2. Check Against Prescription Time: Before connecting the ADR to the drug, the system

checks if the symptom was recorded before or after the drug administration.

3. If the symptom was already present before the drug was prescribed/administered,

it’s less likely to be caused by the drug, and the connection is assigned a low weight

(e.g., 0.1).

4. If the symptom appeared after drug administration, the connection is given a normal

weight (e.g., 1.0).

5. Ranking ADRs: The connections between drugs and ADRs are then ranked based on

the edge weights in the graph. Pre-existing symptoms will naturally result in

lower-ranked connections, while new symptoms post-administration will rank higher.

6. Graph Theory-Based Ranking: The graph theory-based algorithm (e.g., degree

centrality) still runs, but it now takes into account the timing of symptoms. Drug-ADR

pairs where symptoms appeared after drug administration will rank higher, while

those with pre-existing symptoms will rank lower.

Various Graph Theory Models can be considered for this ADR signaling framework:

1. Bipartite Graph Model

a. A bipartite graph consists of two distinct sets of nodes. In the context of ADR

detection, one set of nodes represents drugs, and the other represents

adverse drug reactions (ADRs). Edges are drawn between drugs and ADRs

based on reports or observations of adverse reactions after drug

administration.

4

b. Each edge connects a drug to a reported ADR. This model is well-suited for

visualizing the relationships between prescribed drugs and the adverse

reactions they may cause.

c. This model is ideal for tracking the connections between drugs and ADRs

while maintaining the separation between drug nodes and ADR nodes,

making it easy to map and analyze the relationships.

2. Weighted Graph

a. A weighted graph assigns a numerical value (weight) to the edges between

nodes. In this ADR detection system, the weights represent the strength of

the connection between a drug and an ADR. This weight could be influenced

by the frequency of reports, severity of the ADR, or the time elapsed between

drug administration and the occurrence of the ADR.

b. Weights are assigned to reflect the frequency or severity of ADRs associated

with each drug. For instance, higher weights are assigned to ADRs that appear

after drug administration, and lower weights to ADRs reported before.

c. This model helps quantify the strength of the association between a drug and

an ADR, improving the accuracy of ranking ADR signals based on their

relevance.

3. Directed Graph (Digraph)

a. In directed graphs, edges between nodes have a direction, indicating a causal

relationship. For ADR detection, a directed edge would point from a drug

node to an ADR node if the ADR was reported after the drug administration.

b. Directed edges capture the temporal relationship between drug

administration and ADR occurrence, allowing for the modeling of

cause-and-effect relationships.

c. This is particularly valuable when analyzing time-sensitive data, ensuring that

only ADRs that occur post-administration are ranked as significant.

4. Degree Centrality

a. Degree centrality measures the number of edges connected to a node. For

ADR detection, it could measure how many ADRs are linked to a specific drug

or how many drugs are linked to a specific ADR.

b. Drugs with a high degree of centrality are those with frequent ADR

associations, and ADRs with high centrality affect many different drugs.

c. Effective for ranking drugs based on their overall connection to ADRs, helping

identify high-risk medications or highly common ADRs.

5. PageRank Algorithm

a. PageRank is a graph algorithm used to rank the importance of nodes in a

graph based on their connections. In the ADR detection system, it can rank

drugs and ADRs by not only counting the number of connections but also

considering the weight and significance of these connections.

5

b. Drugs and ADRs are ranked based on their overall impact in the graph, where

connections with high weights and frequent reports are given more

importance.

c. This is particularly useful in prioritizing which drugs are most likely to cause

significant ADRs and which ADRs require immediate attention.

6. Graph Attention Networks (GAT)

a. Graph Attention Networks (GAT) use attention mechanisms to focus on the

most relevant parts of the graph. In the context of ADR detection, the

network would focus on the most important connections between drugs and

ADRs based on factors such as frequency, timing, and severity.

b. GAT assigns different levels of attention to different edges, allowing the

model to prioritize the most important drug-ADR relationships for more

accurate predictions.

c. GAT can dynamically identify and prioritize critical ADRs, improving the

system's ability to focus on the most significant drug-ADR interactions.

7. Graph Isomorphism Networks (GIN)

a. Graph Isomorphism Networks (GIN) are used to extract patterns and features

from graph data, often employed in deep learning for classification tasks. In

ADR detection, GIN could help classify different types of ADRs based on their

association with various drugs.

b. GIN could be applied to predict new ADRs by learning from past associations,

providing a powerful tool for proactive drug safety monitoring.

c. This approach is useful for predicting future ADRs based on historical data

and recognizing patterns that suggest high-risk drugs or combinations.

8. Community Detection Algorithms

a. Community detection algorithms, such as Louvain or Girvan-Newman,

identify clusters or communities within a graph where nodes are more

densely connected to each other than to the rest of the graph. This would

group drugs that have similar ADR profiles or ADRs that frequently co-occur

with the same set of drugs.

b. Group drugs that cause similar ADRs or identify clusters of ADRs that are

common across several drugs.

c. Useful for identifying patterns and correlations in drug safety data that may

not be apparent through individual reports, helping to cluster drugs or ADRs

for further investigation.

9. Shortest Path Algorithms

a. Algorithms like Dijkstra's or Bellman-Ford calculate the shortest path between

nodes in a graph. For ADR detection, these algorithms can be used to

determine the shortest time interval between drug administration and the

appearance of an ADR.

6

b. Calculate the shortest time between drug administration and ADR reporting,

which could help prioritize urgent or acute ADRs for further investigation.

c. Allows the system to focus on ADRs that occur soon after drug administration,

identifying fast-acting adverse reactions that may require immediate clinical

attention.

10. Multi-Relational Graphs

a. Multi-relational graphs allow edges to represent different types of

relationships between nodes. In the ADR detection system, one type of edge

could represent direct drug-ADR interactions, while others could represent

indirect influences, such as comorbidities or polypharmacy.

b. Multi-relational graphs could model more complex interactions in healthcare,

including how other factors like patient history or interactions between

multiple drugs contribute to ADRs.

c. This model would enable more detailed analyses of complex drug-ADR

relationships, taking into account a variety of factors that influence ADR

occurrence.

In this framework, to optimize the balance between efficacy, latency, signal to noise ratio of

the ADR signaling system the following graph models and algorithms are implemented:

1. A bipartite weighted graph is implemented as the base structure for the ADR

detection system, as it allows for clear separation between drugs and ADRs while

incorporating the strength of connections.

2. Degree centrality and PageRank algorithms are employed for ranking the most

significant ADRs and drugs, focusing on the frequency and severity of ADR reports.

3. Incorporating Graph Attention Networks (GAT) and Graph Isomorphism Networks

(GIN) enhanced the system’s ability to predict new ADRs based on historical patterns,

helping to proactively detect potential risks before they become widespread.

4. Directed graphs and shortest path algorithms ensure that ADRs occurring shortly

after drug administration are prioritized, reducing the likelihood of misclassification

of pre-existing conditions as ADRs.

5. Implementing community detection algorithms help identify clusters of drugs and

ADRs, offering insights into common drug interactions and patterns that may be

indicative of broader safety concerns.

6. Training and Validation of Machine Learning Models (GAT, GIN) will be required

before real world deployment.

By integrating these graph theory models and algorithms, this framework of ADR detection

system will provide a robust framework for low latency monitoring, analysis, and prediction

of adverse drug reactions in a clinical setting.

7

Integrating the Proposed APIs with Hospital EMR Systems (e.g., HL7 FHIR): For effective

deployment of the ADR detection system in real-world hospital environments, it is essential

to integrate the API endpoints (for EMR data scraping and barcode scanning) with the

hospital’s existing Electronic Medical Record (EMR) systems. A widely used standard for

healthcare data interoperability is HL7 FHIR (Fast Healthcare Interoperability Resources).

FHIR uses standard RESTful API practices with support for OAuth 2.0 for authentication and

authorization. It is essential to ensure that patient data is securely accessed using encrypted

HTTPS connections; and Role-based access control (RBAC) is implemented to ensure only

authorized personnel can access sensitive medication and ADR data. For secure

communication between the ADR system and the EMR, the hospital’s FHIR server should

support SMART on FHIR authentication, which provides an additional layer of security.

The framework implementation guide is clarified by the following figures and python code

snippets: Figure 1, Figure 2, Figure 3, Figure 4, Python code snippet 1, Python code snippet

2, Python code snippet 3, Python code snippet 4, Python code snippet 5, Python code

snippet 6

Use Case Scenarios

This framework is designed to be deployed across multiple healthcare settings:

1. Domiciliary Care: Patients report ADRs via a mobile application, and these reports are

linked to their prescribed drugs in the EMR. The system can automatically filter and

rank ADRs based on their temporal relationship to the drug prescription.

2. Outpatient Department (OPD): During follow-up visits, physicians or patients report

ADRs, and the system automatically links these reports to the patient's medication

history. The system can flag high-risk ADRs based on the timing and frequency of

reports.

3. Daycare: In daycare settings, where drugs are administered for short-term treatments,

the system can track real-time administration via barcode scanning and reports ADRs

in real time. Delayed ADRs can be reported via telemedicine platforms.

4. Inpatient Department (IPD): In inpatient settings, real-time drug administration is

recorded, and the system can continuously monitor for ADR signals. This allows for

near-real-time detection and ranking of ADRs, providing clinicians with immediate

insights.

5. Acute Care (Intensive Care Units, Emergency Room, Operating Rooms): In acute care

settings, such as the ICU or operating rooms, the system can track critical drugs and

their immediate effects. Rapid detection of ADRs in these settings is crucial for

patient safety, and the system ensures that fast-acting ADRs are prioritized for

review.

Use Case Flow for API Integration:

8

A. Prescription Data Flow:

1. The ADR system periodically queries the hospital's FHIR-enabled EMR system to

retrieve patient prescriptions using the MedicationRequest resource.

2. The ADR system parses the prescription data and stores it locally for further analysis.

3. Whenever an ADR is reported, the ADR system correlates the ADR with the patient’s

prescriptions and medication history.

B. Drug Administration Data Flow (real-time or near-real-time):

1. When a drug is administered to a patient (either manually or via barcode scanning),

the event is recorded in the FHIR-based EMR system using the

MedicationAdministration resource.

2. The ADR detection system queries this resource periodically or in real-time to gather

drug administration events.

3. This data is integrated into the system to monitor for potential ADRs occurring after

the drug administration.

Data Privacy:

By ensuring that the ADR detection system complies with global data privacy regulations such as

HIPAA and GDPR, and by implementing best practices for encryption, access control, and

anonymization, patient data can be safeguarded. Additionally, patient trust can be maintained by

securing informed consent and offering transparency in the data collection and analysis process.

Conclusion

This novel system offers an automated scalable solution for integrating ADR detection into

healthcare workflows. By leveraging near-real-time data collection, crowdsourced reporting,

and advanced graph theory algorithms, this system can significantly improve the coverage

and time latency of ADR reporting. The system's ability to predict ADRs before they become

widespread, combined with its capability to identify complex interactions between drugs

and ADRs, can make it a valuable tool for improving drug safety. Future work could focus on

enhancing the system’s natural language processing capabilities for more sophisticated ADR

detection and expanding the system to detect interactions between multiple drugs.

References:

1. International drug monitoring: the role of national centres. Report of a WHO

meeting. World Health Organ Tech Rep Ser. 1972;498:1-25

9

2. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in

hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998 Apr

15;279(15):1200-5.

3. Budnitz DS, Shehab N, Lovegrove MC, Geller AI, Lind JN, Pollock DA. US Emergency

Department Visits Attributed to Medication Harms, 2017-2019. JAMA. 2021 Oct

05;326(13):1299-1309.

4. Manasse HR. Medication use in an imperfect world: drug misadventuring as an issue

of public policy, Part 1. Am J Hosp Pharm. 1989 May;46(5):929-44.

5. Sultana J, Cutroneo P, Trifiro G. Clinical and economic burden of adverse drug

reactions. J Pharmacol Pharmacother. 2013;4(Suppl1):S73–S77.

6. Commission of the European Communities. Commission staff working document

Annex 2 of the Report on the impact assessment of strengthening and rationalizing

EU Pharmacovigilance. 2008.

7. Classen DC, Pestotnik SL, Evans RS, Burke JP. Computerized surveillance of adverse

drug events in hospital patients. JAMA. 1991 Nov 27;266(20):2847-51.

8. Le Louët H, Pitts PJ. Twenty-First Century Global ADR Management: A Need for

Clarification, Redesign, and Coordinated Action. Ther Innov Regul Sci. 2023

Jan;57(1):100-103.

9. Ying Zheng and Shibo Xu. 2024. Predicting Frequencies of Drug Side Effects Using

Graph Attention Networks with Multiple Features. In Bioinformatics Research and

Applications: 20th International Symposium, ISBRA 2024, Kunming, China, July

19–21, 2024, Proceedings, Part II. Springer-Verlag, Berlin, Heidelberg, 14–25.

https://doi.org/10.1007/978-981-97-5131-0_2

10. Li S, Zhang L, Wang L, Ji J, He J, Zheng X, Cao L, Li K. BiMPADR: A Deep Learning

Framework for Predicting Adverse Drug Reactions in New Drugs. Molecules. 2024;

29(8):1784. https://doi.org/10.3390/molecules29081784

11. Yang J, Hu Z, Zhang L, Peng B. Predicting Drugs Suspected of Causing Adverse Drug

Reactions Using Graph Features and Attention Mechanisms. Pharmaceuticals. 2024;

17(7):822. https://doi.org/10.3390/ph17070822

12. Kwak H, Lee M, Yoon S, Chang J, Park S, Jung K. Drug-Disease Graph: Predicting

Adverse Drug Reaction Signals via Graph Neural Network with Clinical Data. Advances

in Knowledge Discovery and Data Mining. 2020 Apr 17;12085:633–44.

https://doi.org/10.1007/978-3-030-47436-2_48

10

https://doi.org/10.1007/978-981-97-5131-0_2
https://doi.org/10.3390/molecules29081784
https://doi.org/10.3390/ph17070822
https://doi.org/10.1007/978-3-030-47436-2_48

Figures and Code Snippets

Figure 1: Visualization of a Bipartite graph, showing the relationship between drugs and

their associated ADRs (Adverse Drug Reactions).

Note: The blue nodes represent drugs, while the green nodes represent ADRs. The edges

indicate the connections between specific drugs and the ADRs they cause.

11

Figure 2: Visualization of Degree Centrality in a bipartite graph of drugs and ADRs

Note: The node size in the bipartite graph represents its centrality. Nodes with more

connections (higher degree centrality) are larger.

12

Figure 3: Visualization of Graph Attention Network (GAT) of drugs and ADRs

Note: This diagram demonstrates how attention weights are assigned to edges, focusing on

the most important connections between a drug and ADRs.

13

Figure 4: Visualization of Graph Isomorphism Networks (GIN) of drugs and ADRs

Note: This diagram illustrates two isomorphic graphs (with similar structures) to show how

GIN recognizes patterns in graph structures.

Python sample code 1: Backend API using Flask to handle data collection and analysis with

end points for EMR Data Scraping and Barcode Scanning Integration

Sample code for the backend API using Flask to handle data collection and analysis.
The API will include endpoints for EMR Data Scraping and Barcode Scanning Integration.

from flask import Flask, jsonify, request
import datetime

app = Flask(__name__)

Sample data structure for storing scraped EMR data and barcode scanning records
prescriptions = []
barcode_scans = []

Endpoint for EMR Data Scraping (simulating data extraction from EMR)
@app.route('/emr_data_scraping', methods=['POST'])
def emr_data_scraping():

Simulate receiving data from the EMR system (POST request)
data = request.json
prescription_data = {
"patient_id": data['patient_id'],
"drug_name": data['drug_name'],
"prescription_time": datetime.datetime.now(),
"doctor_id": data['doctor_id']

14

}
prescriptions.append(prescription_data)

return jsonify({"status": "Prescription data received", "data": prescription_data}),
201

Endpoint for Barcode Scanning Integration
@app.route('/barcode_scan', methods=['POST'])
def barcode_scan():

Simulate receiving barcode scan data
data = request.json
scan_data = {
"drug_name": data['drug_name'],
"scan_time": datetime.datetime.now(),
"administered_by": data['administered_by'], # nurse, caregiver, etc.
"patient_id": data['patient_id']
}
barcode_scans.append(scan_data)

return jsonify({"status": "Barcode scan data recorded", "data": scan_data}), 201

Endpoint to retrieve all prescription data
@app.route('/prescriptions', methods=['GET'])
def get_prescriptions():

return jsonify({"prescriptions": prescriptions})

Endpoint to retrieve all barcode scans
@app.route('/barcode_scans', methods=['GET'])
def get_barcode_scans():

return jsonify({"barcode_scans": barcode_scans})

Start the Flask application
if __name__ == '__main__':

app.run(debug=True)

Notes:

/emr_data_scraping: This endpoint simulates data scraping from an EMR system. It

accepts POST requests with JSON payload containing patient information, drug name, and

prescription details.

{
"patient_id": "12345",
"drug_name": "Drug A",
"doctor_id": "D001"

}

15

/barcode_scan: This endpoint simulates receiving real-time barcode scan data (e.g.,

when a nurse or caregiver scans a drug before administering it). It accepts POST requests

and stores the scan information, including drug name and the person administering the

drug.

{
"drug_name": "Drug A",
"administered_by": "Nurse B",
"patient_id": "12345"

}

/prescriptions: This GET endpoint returns all stored prescription data.

{
"prescriptions": [
{
"patient_id": "12345",
"drug_name": "Drug A",
"prescription_time": "2024-09-14T10:30:00",
"doctor_id": "D001"
},
{
"patient_id": "67890",
"drug_name": "Drug B",
"prescription_time": "2024-09-14T12:00:00",
"doctor_id": "D002"
}
]

}

Python code snippet 2: Ranking ADRs Using Degree Centrality and PageRank

import networkx as nx

Create a graph (can be bipartite or standard graph)
G = nx.Graph()

Sample Data: Adding drugs (nodes) and ADRs (nodes) with edges (drug-ADR
relationships)
G.add_edges_from([

("Drug A", "ADR 1"),
("Drug A", "ADR 2"),
("Drug B", "ADR 1"),
("Drug C", "ADR 3"),

])

16

1. Calculate Degree Centrality: Rank nodes based on the number of direct connections
degree_centrality = nx.degree_centrality(G)
print("Degree Centrality Ranking:", degree_centrality)

2. Calculate PageRank: Rank nodes by their overall influence, considering edge weights
Weights in this case can represent factors like frequency of ADR reports or severity
page_rank = nx.pagerank(G, alpha=0.85)
print("PageRank Ranking:", page_rank)

3. Downranking Pre-existing Conditions:
Example logic - downrank edges (Drug-ADR relationships) if the ADR was reported
before the drug was administered
for drug, adr in G.edges():

if adr_was_reported_before(drug, adr): # Custom logic to check condition
G[drug][adr]['weight'] = 0.1 # Assign lower weight
else:
G[drug][adr]['weight'] = 1.0 # Assign normal weight

4. Recalculate PageRank based on new weights after downranking
weighted_page_rank = nx.pagerank(G, alpha=0.85, weight='weight')
print("Weighted PageRank Ranking:", weighted_page_rank)

Helper function (Pseudo-code):
def adr_was_reported_before(drug, adr):

Logic to determine if ADR was present before drug administration
For example, compare timestamps of drug administration and ADR report
Return True if ADR was pre-existing, otherwise False
pass

Python code snippet 3: Shortest Path Algorithm (Dijkstra's Algorithm)

import networkx as nx

Create a weighted graph
G = nx.Graph()

Add nodes and weighted edges (drug-ADR relationships with timing weights)
G.add_weighted_edges_from([

("Drug A", "ADR 1", 2.0), # Drug A causes ADR 1 after 2 hours
("Drug A", "ADR 2", 1.0), # Drug A causes ADR 2 after 1 hour
("Drug B", "ADR 3", 3.0), # Drug B causes ADR 3 after 3 hours

])

Find the shortest path between Drug A and ADR 1 based on weight (time)
shortest_path = nx.dijkstra_path(G, "Drug A", "ADR 1")
print("Shortest Path (based on time):", shortest_path)

17

Python code snippet 4: Community Detection Algorithm (Louvain)

import networkx as nx
import community as community_louvain

Create a graph
G = nx.Graph()

Add edges (drug-ADR relationships)
G.add_edges_from([

("Drug A", "ADR 1"),
("Drug A", "ADR 2"),
("Drug B", "ADR 1"),
("Drug C", "ADR 3"),

])

Apply Louvain community detection
partition = community_louvain.best_partition(G)

Output the detected communities
print("Communities:", partition)

Python code snippet 5: API Integration of FHIR-Based Prescription Data Retrieval

import requests

FHIR_BASE_URL = "https://hospital-emr-system.com/fhir"
PATIENT_ID = "12345"

FHIR endpoint to retrieve prescription (MedicationRequest) data for a patient
response = requests.get(f"{FHIR_BASE_URL}/MedicationRequest?patient={PATIENT_ID}")
prescription_data = response.json()

Process the retrieved FHIR data and extract drug prescriptions
for entry in prescription_data['entry']:

medication_request = entry['resource']
drug_name = medication_request['medicationCodeableConcept']['text']
doctor_id = medication_request['requester']['identifier']['value']

Store the prescription details in the ADR detection system
prescription = {
"patient_id": PATIENT_ID,
"drug_name": drug_name,
"prescription_time": medication_request['authoredOn'],
"doctor_id": doctor_id
}

18

prescriptions.append(prescription)

print("Prescription Data:", prescriptions)

Note: This integration will allow the ADR detection system to automatically pull prescription

data from the hospital's FHIR server and store it for ADR analysis.

Python code snippet 6: API Integration for FHIR-Based Barcode Scanning Data Retrieval

import requests

FHIR endpoint to retrieve medication administration data for a patient
response =
requests.get(f"{FHIR_BASE_URL}/MedicationAdministration?patient={PATIENT_ID}")
administration_data = response.json()

Process the retrieved FHIR data and extract administration details
for entry in administration_data['entry']:

medication_admin = entry['resource']
drug_name = medication_admin['medicationCodeableConcept']['text']
admin_time = medication_admin['effectivePeriod']['start']
administered_by = medication_admin['performer'][0]['actor']['reference']

Store the administration details in the ADR detection system
barcode_scan = {
"patient_id": PATIENT_ID,
"drug_name": drug_name,
"scan_time": admin_time,
"administered_by": administered_by
}
barcode_scans.append(barcode_scan)

print("Barcode Scan Data:", barcode_scans)

19

