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Abstract

Light trajectories near a static point mass have been calculated for
two cases: the first is the usual black-hole solution in general rela-
tivity that results from using Schwarzschild coordinates to determine
the curvature of spacetime, and the second is for a model described in
a previous paper, viXra:2409.0030, in which spacetime is completely
regular with no event horizon.

1 Introduction

The first and probably most important test of Einstein’s theory of gen-
eral relativity (GR) [1] was to predict correctly the bending of starlight
as it passed near the Sun on its way to being observed on Earth during
the solar eclipse of 1919 [2|. Since then, numerous examples of light
bending have been observed and catalogued, and the term gravitational
lensing used to describe the effect generally [3].

Using GR, an approximate expression for the angle of bending ¢ is
given by § = 2a/R, where a = 2GM/c* and R is the perihelion or
closest distance of approach of a ray of light to the mass M causing
gravitational bending [4]. This applies when the bending is small and
the light ray continues its travels. However, when a light ray passes
very close to a point-like mass, below a certain distance, it will be
captured and spiral inwards towards the central mass. There is also
a theoretical distance where a light ray will do neither of these things
and stay in a circular orbit, called the photon sphere.

These trajectories can be calculated numerically using the well known
GR solution for a point mass in terms of Schwarzschild coordinates.
However, there is a potential problem here, in my opinion, in that



the Schwarzschild radial coordinate (denoted in this paper by 7) is not
strictly identical to the true radial coordinate distance r from the point
mass when distances are small. Whether this discrepancy leads to a
false impression of the trajectories has, to my knowledge, not been
discussed in the scientific literature. In this paper I therefore want to
show how light ray trajectories might differ from what one expects from
the standard view, by adopting a spacetime metric that quantifies the
difference between 7 and r.

2 Background theory

The spacetime solution for a point mass in terms of Schwarzschild
coordinates leads to it being a black hole with the defining feature
of an event horizon (see, for example, |5]). If the black hole is spinning,
instead of being static, the metric for this is called the Kerr metric [6].
However, in this paper it will suffice to consider just the well-known
solution for a static point mass, for which a metric line element in a
curved spacetime (t, 7,6, ¢) with spherical spatial symmetry about the
origin may be written:

d3® = *dt”* = A(F) *dt* — B(F) di* — 7 d? (1)

Here, ds is a spacetime increment, ¢ the speed of light, dt’ an increment
of proper time, dt an increment of coordinate time, dr an increment
of the radial coordinate 7, and d©2* = d6? + sin® 0 d¢?; A and B are
radially dependent functions describing the curvature of the time and
radial metric coefficients, respectively, while 7 is the Schwarzschild ra-
dial coordinate. The solution satisfying Einstein’s field equations of
general relativity for the vacuum outside the point mass is well known,
and given by:
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where « is a constant of integration equal to 2GM/c?. This leads to
the idea of a black hole and event horizon, since the functions A and
B become negative if 7 < «.

In order to calculate how a ray of light is bent in the gravitational
field - or curved spacetime - of a static point mass, we use the fact that
for light the proper time is zero, so the metric in Equation 1 may be
rearranged to read:

B ~2
di? + —— d0? (3)

dt* = —
Ac? Ac?



Now consider a ray of light travelling in a plane given by § = 7/2, in
which case dQ2? = d¢?, and we have

B 72
dt’ = — di? + — d¢? 4
Ac? Tt Ac? ¢ (4)
This can be rewritten as:
B 72 72 (bz
T
A 2 + A c? (5)

where 7 = dif/dt and ¢ = d¢/dt. Using the coordinate time ¢ as
Lagrangian parameter in Equation 4 it is then straightforward to show
that the geodesic equation in ¢ leads to

L=k (6)

where k is a constant.

Figure 1: A light ray approaches the mass M with an impact parameter p.
The ray deviates from a straight line near M as a result of the curvature of
spacetime.

We now need to find the constant k for the particular "experiment"
envisaged. Consider a ray of light directed from a large distance away
towards a point mass M, where the "impact parameter" is p (Figure 1).
When the ray approaches M (from the right) it will be bent towards it.
For large p it would pass M, being deflected by a small angle § ~ 2a/R,
as mentioned previously. Instead, we essentially want to know here how
the path of the ray would be affected when p is small or of the same
order of magnitude as .



From the initial condition, i.e. when the ray is a long way from the
mass M, it can be deduced that the constant & in Equation 6 is given
by:

k=pc (7)
giving _
$? A2
R ®)
Inserting this into Equation 5 with B = 1/A then gives:
22 2
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Dividing Equation 8 by Equation 9 gives
d
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which is the fundamental equation I shall be using in this paper. This
now enables us in principle to find the trajectory of a light ray in terms
of the parameters o and p.

In addition to this, it is interesting to derive the equation for a
circular orbit for the light trajectory, the so-called photon sphere. In
that case we write dr = 0 in Equation 4 to give
2 7:2 d¢2
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To complete the solution, we need to use the radial geodesic equation,
which is given by :
A, B ., T -
2+ =7 — — (0% +sin’ 0 ¢*) = 12
¥ +QBT B( +sin“0¢°) =0 (12)
and set dr = 0,df = 0,0 = w/2, which gives

dt

or
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Combining Equations 11 and 13 gives
A/

A

and with A =1 — a/7, we finally obtain
3

= 504 (14)

for the radius of the photon sphere.
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3 Conventional results

Integrating Equation 10 to obtain ¢ directly as a function of 7 does not
seem to be analytically possible. However, numerical solutions can be
obtained using online software (see, e.g. [7]), or by writing one’s own
programmes, which I did here. The following diagrams give examples
of numerically calculated solutions using the above equation.

p=12

Figure 2: Light trajectories near a point mass (black-hole model). The
impact parameter p is in units of & = 2GM/c?

For the usual model - which I shall call the black-hole model - using
the Schwarzschild radial coordinate 7, we have A = 1 — «/7. The
ray trajectory is shown in terms of 7 in Figure 2 for various values
of the impact parameter p. Distances are plotted in units of «, by
setting = 1. For large values of p the light ray is bent slightly
towards the black hole, but passes by and is not captured. This occurs
for p > 3\/5/2 ~ 2.6, and the trajectory is then symmetrical about
a straight line joining the origin to the perihelion. When p is less
than 2.6, the light ray overshoots the point mass, but is nevertheless
captured by it. It bends around and spirals in towards the origin at
7 = 0. If p is less than about 0.5, the ray is simply captured by the



point mass without overshooting it. The event horizon is indicated as
a circle a distance « from the origin and the photon sphere is at a
distance 3a/2 from the origin. This condition can also be established
by setting dr/d¢ = 0 in Equation 10. These characteristics are well
known, and do not represent anything new, so far.

4 Additional theory and results

Adapting Newton’s law of gravitation to a four-dimensional spacetime,
i.e. with a time dimension (instead of absolute time), I showed in
previous papers (8], [9] that the true radial coordinate r is related to
the Schwarzschild coordinate 7 by the linear expression

T=r+a (15)

This difference is of no consequence when r >> «. Then, all the usual
predictions of GR, such as gravitational time dilation, the perihelion
rotation of Mercury and the weak bending of light past a gravitational
mass are quantitatively valid, as they stand. However, when distances
are of the order of a, which is crucial for the black-hole prediction,
the situation is entirely different. The time curvature metric coefficient
A(r) is then given by:

A(r) = (1 n i‘>_1 (16)

and by applying GR to satisfy Einstein’s vacuum field equations, since
the functions A and B are reciprocal to each other, we have B =
(1 4+ «/r), and in the metric we have to replace 7 by (r + «)?. All
these functions then remain regular for all values of r (co > r > 0), A
and B only becoming zero or infinity, respectively, at the position of
the point mass itself. There is therefore no event horizon in this model,
and spacetime is completely regular.
With 7 = (r + «) and A = r/(r + «), we then replace Equation 10
with the following expression:
2 1 (17)
dr \/ %73)4 —r(r+a)

It is fortunate that 7 and r are linearly related; this means we have
dr = dr, which simplifies the analysis considerably.

Trajectories are plotted in Fig.3 using the above equation for various
values of the parameter p. For p > 2.6 a ray again escapes to infinity,
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Figure 3: Light trajectories near a point mass (this solution - no event
horizon) for different values of the impact parameter p.

and below this value it is captured, but the overshoot and spiralling is
less pronounced than for the black-hole solution. The critical impact
parameter for a photon sphere remains at p = 2.6, but now, the radius
of the photon sphere is at a distance /2 from the point mass and there
is no event horizon.

5 Discussion

The differences between the two scenarios examined here may not seem
particularly important, but there is a significant difference in principle
between them. As I have already explained, the Schwarzschild radial
coordinate 7 used to depict the trajectories in Figure 2 is not a true
representation of the radial coordinate distance when r is small and of
the order of a = 2GM/c?. In my interpretation, the region 7 < « is
physically prohibited, i.e. the region inside a sphere of radius 7 = «
does not exist as part of the spacetime manifold. The trajectories in
Fig.3 thus give a truer representation to a distant observer of how light
would be curved near a point mass.

The photon sphere is an important concept, because it is known
(see, e.g. Koga et al) as the geometrical structure that shapes a black



hole shadow; the radius is a threshold for photons coming from distant
light sources to escape to infinity or fall into the black hole; the photon
sphere accumulates photons along this radius, and the observer sees a
very bright shadow edge corresponding to the photon sphere as actually
observed by the EHT [12].

In my work, there is no black hole and event horizon, but there
is a photon sphere. To obtain an image similar to that published by
the EHT does not necessarily imply a black hole is present at the
centre. It just means there is a compact mass whose photon sphere lies
outside its physical radius. The point mass in my calculations would
indeed be essentially invisible due to complete gravitational redshift of
any light it emitted itself. The bright ring in the image would then
be due to light emitted from particles localised in the photon sphere
that have been energised by the influx of radiation there. i.e. photons
and relativistic particles accumulating in the photon sphere will be

scattered and absorbed by gaseous matter there, which then re-emits
radiation in all directions.
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Figure 4: Schematic of light intensity from a spherical shell light source for
two different thickness to radius ratios.

The next diagram shows schematically how a spherical shell as a
light source might appear to a distant observer. The thinner the shell,
the sharper is the contrast between the peak intensity and the central
intensity; however the intensity is overall lower for a thin shell. Thus,



it is quite easy to see that a thin spherical shell acting as a source of
light would appear to an observer as a circular image, rather than a
uniform disk of light. Obviously, this is just a simple suggestion to
explain a very interesting and complex phenomenon.
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