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Abstract: In order to strictly prove the hypothesis and conjectures in Riemann's 1859 paper on the 

Number of Prime Numbers Not greater than x from a pure mathematical point of view, and in order to 

strictly prove the Generalized hypothesis and the Generalized conjectures, this paper uses Euler's 

formula to study the relationship between symmetric and conjugated zeros of Riemann's ζ(s) function 

and Riemann's ξ(s) function, and proves that Riemann's hypothesis and Riemann's conjecture are 

completely correct. 
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I. Introduction 

Riemann hypothesis and Riemann conjecture are an important and famous mathematical 

problem left by Riemann in his paper "On the Number of prime Numbers not greater than x"
 [1]

, which 

is of great significance for the study of prime number distribution and known as the biggest unsolved 

mystery in mathematics. After years of hard work, I have solved this problem and strictly prove the 

Generalized hypothesis and the Generalized conjectures, The research shows that the Riemann 

hypothesis and the Riemann conjecture and the Generalized Riemann hypothesis and the Generalized 

Riemann conjecture are all completely valid and the Polignac conjecture,twin prime conjecture and 

Goldbach conjecture are completely true.  

 

II.  Reasoning 

 

Lemma 1: 

∑ n��� ��	 =∏ (1 − p��)�	� (n∈ Z�, p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through 

all the prime numbers),this formula was proposed and proved by the Swiss mathematician Leonhard 

Euler in 1737 in a paper entitled "Some Observations on Infinite Series", Euler's product formula 

connects a summation expression for natural numbers with a continuative product 

expression for prime numbers, and contains important information about the distribution of prime 

numbers. This information was finally deciphered by Riemann after a long gap of 122 years, which led 

to Riemann's famous paper "On the Number of primes less than a Given Value
 [1]

. In honor of  

Riemann, the left end of the Euler product formula was named after Riemann, and the notation ζ(s) 

used by Riemann was adopted as the Riemann zeta function .  

Because e=2.718281828459045... ,e is a natural constant, I use " × " for Multiplication, then based 

on euler's e��=cosx+isin(x) (x∈R), 

get (e��)�=(cos(3) + isin(3))2
=cos(2×3)+isin(2×3)=cos(6)+isin(6)， 

because e6i=cos(6)+isin(6),  
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so  

(e��)�= e6i， 

In general, 

(e$�)%= e$×%�(b∈R，c∈R) is established. 

When x>0(x∈R),suppose e&=x(e=2.718281828459045…,x∈R and x>0, j∈R)，then j=ln(x),based on 

euler's e��= cos(x)+isin(x) (x∈R),will get 

e&� = e(�(�)�=cos(lnx)+isin(lnx)(x∈R and x>0). 

suppose y∈R and y ≠ 0, now letʹs figure out expression for x4�(x∈R and x>0, y∈R and y ≠ 0) is 

x4�=(e&)4�=(e&�)4=(cos(lnx) + isin(lnx))4. 

Suppose s is any complex number, and s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C) ,then let's find the expression 

of x�(x∈R and x>0, s∈C) , 

You put s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C) and x4�=(e&)4�=(e&�)4=(cos(lnx) + isin(lnx))4 into x� and 

you will get  

x� =x(ρ�4�) =xρx4� = xρ(cos(lnx) + i sin(lnx))4 =xρ(cos(ylnx) + isin(ylnx))  , if You put s=ρ-yi(ρ ∈ R, 

y∈ R  and y ≠ 0 ,s ∈ C) and x4� =(e&)4� = (e&�)4 =(cos(lnx) + isin(lnx))4  into x� ,you will get x� =
x(ρ�4�) = xρ(x4�)�	 = xρ(cos(lnx) + i sin(lnx))�4 = xρ(cos(−ylnx) + isin(−ylnx)) =
xρ(cos(ylnx) − isin(ylnx)), 

Then  

 

       ζ(s) = 7 1
x�

∞

n=1
= 7 1

n9�4�

∞

n=1
= 7( 1

n9 × 1
n4�)

∞

n=1
= 7(n−ρ) 1

(cos(lnn) + isin(lnn))y
∞

n=1

= 7(n�9(cos(lnn) +  isin(lnn))�4)
∞

n=1
  = 7(n�9(cos(ylnn) − isin(ylnn)) 

∞

n=1
, 

 

ζ(s) = ∏ ( 	
	��;<

���	 )= ∏ (1 − p��)�	���	 =∏ (1 − p�ρ�4�)�	���	 =∏ (1 − 	
�=>?@)�	���	 = 

∏ [1 − (p�9) 	
(%B�((��)�����((��))?]�	���	 = ∏ [1 − (p�9)(cos(ylnp) − isin(ylnp)) ]�	 ���	 , 

 

And 

ζ(s) = 7 1
x�

∞

n=1
= 7 1

n9�4�

∞

n=1
= 7( 1

n9 × 1
n�4�)

∞

n=1
= 7(n−ρ) 1

(cos(lnn) + isin(lnn))−y
∞

n=1

= 7(n�9(cos(lnn) +  isin(lnn))4)
∞

n=1
  = 7(n�9(cos(ylnn) + isin(ylnn)) 

∞

n=1
, 

ζ(s) = ∏ ( 	
	��;<

���	 ) = ∏ (1 − p�s)�	���	  =∏ (1 − p�ρ�4�)�	���	  =∏ (1 − 	
�=;?@)�	���	  = 

∏ [1 − (x�9) 	
(%B�((��)�����((��))?]�	���	 = ∏ [1 − (p�9)(cos(ylnp) + isin(ylnp)) ]�	���	 , 
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and 

    ζ(1 − s) = 7 1
n	��

∞

n=1
= 7 1

n	�ρ�4�

∞

n=1
= 7(n9�	) 1

(cos(lnn) + isin(lnn))�4

∞

n=1

= 7(n9�	)(cos(lnn) + isin(lnn))4)
∞

n=1
= 7(n9�	)(cos(ylnn) + isin(ylnn)) 

∞

n=1
, 

So 

X=x�ρ(cos(ylnx) − isin(ylnx))= n�ρ(cos(ylnn) − isin(ylnn)),  
Y=x�ρ(cos(ylnx) + isin(ylnx))= n�ρ(cos(ylnn) + isin(ylnn)),  

G=[1 − (p�9)(cos(ylnp) − isin(ylnp)) ]�	, 

H=[1 − (p�9)(cos(ylnp) + isin(ylnp)) ]�	, 

X and Y are complex conjugates of each other, that is  

X=Y, and  

G and H are complex conjugates of each other, that is 

G=H, so  

ζ(s)=∑ 	
�< = ∑ X = ∏ G���	 ,���	���	   and  ζ(s)=∑ 	

�< = ∑ Y = ∏ H���	 ,���	���	  

then 

ζ(s)=ζ(s) (s ∈ C and  s ≠ 1 ). 

As  Riemann said in his paper,x takes all the natural numbers, so x=1,2,3... n-1,n ... ,Let's just plug in 

all the natural numbers, 

Obviously, 

ζ(s)=ζ(ρ+yi)= ∑ 1

xs
 =∑ X=[ 1�ρ

Cos(yln1)+ 2�ρ
Cos(yln2)+ 3�ρ

Cos(yln3)+ 4�ρ
Cos(yln4)+...]-i[1

�ρ
Sin(yl

n1)+ 2�ρ
sin(yln2)+ 3�ρ

sin(yln3)+ 4�ρ
sin(yln4)+...]= U-Vi, 

U=[ 1�ρ
Cos(yln1)+ 2�ρ

Cos(yln2)+ 3�ρ
Cos(yln3)+ 4�ρ

Cos(yln4)+...] , 
V=[1

�ρ
Sin(yln1)+ 2�ρ

sin(yln2)+ 3�ρ
sin(yln3)+ 4�ρ

sin(yln4)+...] , 
Then 

 ζ(s)=ζ(ρ-yi)= ∑ 1

xs
 =∑ Y=[ 1�ρCos(yln1)+ 2�ρCos(yln2)+ 3�ρCos(yln3)+ 4�ρCos(yln4)+...]+i[1�ρSin(yl

n1)+ 2�ρ
sin(yln2)+ 3�ρ

sin(yln3)+ 4�ρ
sin(yln4)+ ...]= U+Vi, 

U=[ 1�ρ
Cos(yln1)+ 2�ρ

Cos(yln2)+ 3�ρ
Cos(yln3)+ 4�ρ

Cos(yln4)+...] , 
V=[1

�ρ
Sin(yln1)+ 2�ρ

sin(yln2)+ 3�ρ
sin(yln3)+ 4�ρ

sin(yln4))+...] , 
ζ(1 − s) = ∑(xρ�	)(cos(ylnx) + isin(ylnx)) =[ 1ρ�	Cos(yln1)+ 2ρ�	Cos(yln2)+ 3ρ�	Cos(yln3)+ 

 4ρ�	Cos(yln4)+...]+i[1ρ�	Sin(yln1)+ 2ρ�	 sin(yln2)+ 3ρ�	 sin(yln3)+  4ρ�	 sin(yln4)+...],so only when 

ρ=
	
2
 and ζ(s)=0 ,then It must be true that ζ(1-s)=ζ(s)=0.  

ζ(s) and ζ(s) are complex conjugates of each other,that is ζ(s)=ζ(s),  

if ζ(s)=0,then must ζ(s)=0,so if ζ(s)=0, it must be true that ζ(s)=ζ(s)=0. 

According to Riemann's paper "On the Number of primes not Greater than x", we can obtain an 

expression ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s)(s ∈ C and  s ≠ 1 ) in relation to the Riemann ζ(s) function, 

which has long been known to modern mathematicians, and which I derive later. 

Base on ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s)(s ∈ C and  s ≠ 1 ), then ζ(1-s)= ζ(s)=0(s ∈ C and  s ≠ 1 ). 
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Beacause only when ρ=
	
2
,the next three equations, ζ(ρ + yi)=0, ζ(1 − ρ − yi)=0, and ζ(ρ-yi)=0 are 

all true,so only s = 1
2

+ yi (y ∈ R and y ≠ 0, s ∈ C) is true, or say s = 1
2

+ ti (t ∈ R and t ≠ 0, s ∈C） 

is true. According the equation ζ(1-s)=2
1�s

π �sCos(
π s
2

)Γ(s)ζ(s) obtained by Riemann，when ζ(s)=0，

then ζ(1-s)=0,so It must be true that ζ(1-s)=ζ(s)=0, or say It must be true that ζ(1-s)=ζ((s)=0, so 

only  s = 1
2

+ yi (y ∈ R and y ≠ 0, s ∈ C) is true, or say only s = 1
2

+ ti (t ∈ R and t ≠ 0, s ∈ C ）

is true. 
When ζ(1-s)=ζ(1 − s)=0=ζ(s)=ζ(1-s)=0, and according ζ(s)=2sπs−1Sin(

πs
2 )Γ(1-s)ζ(1-s) , then 

Only ζ(s)=ζ(s)=0,is also say ζ(s)=ζ(s)=ζ(1-s)=0. so only ζ(ρ+yi)=ζ(ρ-yi)=0 is true. 

According the equation ζ(1-s)=21−sπ −sCos(
π s
2 )Γ(s)ζ(s) obtained by Riemann,since Riemann has shown 

that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=21−sπ −sCos(
π s
2 )Γ(s)ζ(s), ζ(s)=0 is true, so 

when ζ(s)=0 , then only ζ(s)=ζ(1-s)=0 is true. 

in the process of the Riemann hypothesis proved about ζ(s)=ζ(1-s)= ζ(s)=0, is refers to the ζ(s) is a 

functional number? It's not. Does ζ(s)=ζ(1-s)= ζ(s) mean the symmetry of the ζ(s function equation? 

Does that mean the symmetry of the equation s=s=1-s? Not really. In my analyst, ζ(s)、ζ(1-s) and ζ(s) 

function expression is the same, are ∑ n−s∞ n=1 (n traves all positive integer, s∈C), so according to 

∑ n−s (n traves all positive integer, s ∈ C)∞ n=1 , ζ(s) function of the independent variable s, the 

relationship between s and 1-s only C32=3 kinds, namely s=sor s=1-s or s=1-s. As follows: 

According ζ(s)=ζ(1-s)=0 and ζ(s)=ζ( s )=ζ(1-s)=0,then only s= s or s=1-s or s =1-s ,so s ∈ R, 

or ρ+yi=1-ρ-yi ,or ρ-yi=1-ρ-yi, so  s ∈ R, or ρ=
1
2and y=0,or ρ = 	

�  and y ∈R and y≠ 0,so s ∈ R, for 

example s=-2n(n∈ Z� ), or s=
1
2+oi ,or s=

1
2+yi(y ∈R and y ≠ 0).ζ P	

�Q > S(1) > 0,drop it, s=-2n(n∈
Z�),It's the trivial zero of the Riemann ζ(s) function, drop it. 

Beacause only when ρ=
	
�,the next three equations, ζ(ρ + yi)=0, ζ(1 − ρ − yi)=0, and ζ(ρ-yi)=0 are 

all true, ζ(	
�) > S(1) > 0,so only s=

1
2 +yi(y∈R and y ≠ 0,s∈C) is true, or say only s=

	
�+ti (t∈R and t ≠

0,s∈C) is true.Since Riemann has shown that the Riemann ζ(s) function has zero, that is, in 

ζ(1-s)=21−sπ −s Cos(
π s
2 )Γ(s)ζ(s), ζ(s)=0 is true. According the equation  ξ(s) = 	

� s(s-1)Γ(�
�)π� <Vζ(s) 

obtained  by Riemann , so ξ(s)=ξ(1 − s) , because Γ(�
�) =Γ(�

�)  , and π− s
2 =π− s

2  , and because 

ζ(s)=ζ(s)，so ξ(s)=ξ(s). So when ζ(s)=0 ,then ξ(s)=ζ(1 − s) = ζ(s) = 0 and ξ(s)=ξ(1 − s)=ξ(s)=0 

must be true , so the zeros of the Riemann ζ(s) function and the nontrivial zeros of the Riemann ξ(s) 

function are identical, so the complex root of Riemann ξ(s)=0 satisfies s=
1
2+ti (t∈R and t ≠ 0,s∈C) , … 
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According to the Riemann function ∏ s
2(s-1)π−s

2ζ(s )=ξ(t) and he Riemann hypothesis s=
1
2+ti, because 

s≠1, and ∏ s
2 ≠o, π−s

2 ≠o, so ∏ s
2(s-1)π−s

2 ≠o, and when ξ(t)=0, then ∏ s
2(s-1)π−s

2ζ(
1
2+ti)=ξ(t)=0, and 

ζ(
	
� +ti)=  Y(Z)

∏<
V(��	)K;<

V
 =

[
∏<

V(��	)K;<
V

= 0 ， so t ∈ R  and t ≠ 0 . So the root t of the equations 

∏ �
�(s-1)π�<

Vζ(
	
�+ti )=ξ(t)=0 and 4\ ](�

^
V_’(�) )
]�

�
	 x�a

b cos( 	
� tlnx)dx=ξ(t)=0 and  

ξ(t)=
1
2 -(t2 + 1

4)\ Ψ(x) ∞
1 x−3

4 cos(1
2 tlnx )=0 must be real  and t ≠ 0. 

Riemann got ∏ s

2
(s-1)π

�s

2 ζ(s)=ξ(t) and ξ(t)=
1

2
 - ( t2 + 1

4
)\ Ψ(x) ∞

1
x

�3

4 cos(1

2
tlnx ) dx in his paper,or 

∏ s

2
(s-1)π

�s

2ζ(s)=ξ(t) and ξ(t)=4\ d(x
3

2Ψ’(x) )
dx

∞

1
x

�1

4 cos( 1

2
tlnx)dx,Becasue ζ(

	
2
+ti )=0(t∈R and t ≠ 0,s∈C）is 

ture, so ∏ s

2
(s-1)π

�s

2ζ(
	
2
+ti )=ξ(t)=0(t∈R and t ≠ 0,s∈C)and  

and ∏ s

2
(s-1)π

�s

2ζ(
	
2
+ti )=4\ d(x

3
2Ψ’(x) )

dx

∞

1
x

�1

4 cos( 1

2
tlnx)dx=ξ(t)=0,and  

ξ(t)=
1

2
 -(t2 + 1

4
)\ Ψ(x) ∞

1
x

�3

4 cos(1

2
tlnx )=0,so the roots of equations  ∏ s

2
(s-1)π

�s

2ζ(
	
2
+ti )=ξ(t)=0 and 

4\ d(x
3
2Ψ’(x) )

dx

∞

1
x

�1

4 cos( 1

2
tlnx)dx=ξ(t)=0 and ξ(t)=

1

2
 - (t2 + 1

4
)\ Ψ(x) ∞

1
x

�3

4 cos(1

2
tlnx )=0 must all be real 

numbers.When ζ(s)=0 and ξ(t)=0, the real part of the equation ξ(t)=0 must be real between 0 and T. 

Because the real part of the equation ξ(t)=0 has the number of complex roots between 0 and T 

approximately equal to 
T

2π
ln

T

2π
− T

2π
 ,This result of Riemann's estimate of the number of zeros was 

rigorously proved by Mangoldt in 1895. Then,when ζ(s)=0 and ξ(t)=0, the number of real roots of the 

real part of the equation ξ(t)=0 between 0 and T must be approximately equal to 
T

2π
ln

T

2π
− T

2π
 ,So, when 

ζ(s)=0, the Riemann hypothesis and the Riemann conjecture are perfectly valid. 

Reasoning 1: 

For any complex number s, when  Rs(s) > 0  and (s ≠ 1), and if s = ρ + yi(ρ ∈ R, y ∈ R) then 

according to Dirichlet function  

η (s)= ∑ (�	)d;a
�<

���	 es ∈ C and Rs(s) > 0 and (s ≠ 1)f  and η (s)=(1- 2	�� ) ζ(s)(s ∈ C and Rs(s) >

0 and s ≠ 1), ζ(s)is the Riemann Zeta function,so Riemann  ζ(s)=
η(�)

(	��a;<)= 1
P1−21−sQ ∑ (−1)n−1

ns =∞n=1
(−1)n−1

P1−21−sQ ∏ (1 − p−s)−1p (s ∈ C and Rs(s) > 0  and s ≠ 1),n∈ Z� , p ∈ Z�, s ∈C，n goes through all 

the natural numbers, p goes through all the prime numbers). Let's prove that ζ(s) and ζ((s) are 

complex conjugations of each other. 

∑ (�	)d;a
�<

���	 =[ 1�ρCos(yln1)− 2�ρCos(yln2)+ 3�ρCos(yln3)−4�ρCos(yln4)-...]-i[1�ρSin(yln1)− 2�ρsin(yl

n2)+ 3�ρsin(yln3) − 4�ρsin(yln4)+...]= U-Vi, 

∑ (�	)d;a
�<

���	 =[ 1�ρCos(yln1)−2�ρCos(yln2)+ 3�ρCos(yln3)−4�ρCos(yln4)-...]+i[1�ρSin(yln1)− 2�ρsin(yl
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n2)+ 3�ρsin(yln3)−4�ρsin(yln4)+...]= U+Vi, 

∑ (−1)n−1
n1−s

∞n=1 =[ 1ρ�	Cos(yln1)− 2ρ�	Cos(yln2)+ 3ρ�	Cos(yln3)−4�ρCos(yln4)-...]+i[1�ρSin(yln1)− 2�ρsi

n(yln2)+ 3�ρsin(yln3)− 4�ρsin(yln4)+...], 

∑ (−1)n−1

nk−s
∞n=1 =[  1ρ�i Cos(yln1) − 2ρ�i Cos(yln2)+  3ρ�i Cos(yln3) −4ρ�i Cos(yln4)-...]+i[ 1ρ�i Sin(yln1)

− 2ρ�isin(yln2)+ 3ρ�isin(yln3) − 4ρ�isin(yln4)+...], 

Because , 
(�	)d;a

(	��a;<) = (−1)n−1

(1−21−<) ,   

∏ (1 − p��)�	� =∏ (1 − p��)�	�  ,      

so 

(�	)d;a
(	��a;<)=

(�	)d;a
(	��a;s) ,    

so 

 
(;a)d;a

(a;Va;<) ∑ (;a)d;a
d<  kdla �  (;a)d;a

(a;Va;<) ∑ (;a)d;a
d<  kdla  , 

  
(;a)d;a
(a;Va;<) ∏ (	��;<);am � (;a)d;a

(a;Va;<) ∏ (	��;<);am
 ,  

ζ(s)=
	

(	��a;<) ∑ (�	)d;a
�< = (�	)d;a

(	��a;<) ∏ (1 − p��)�	�  ,∞	  

ζ(s)=
	

(	��a;<) ∑ (�	)d;a
�<  ���	 = (�	)d;a

(	��a;<) ∏ (1 − p��)�	 � . 

so 

Only  ζ(s)=ζ(s), [2] 

so 

p	��=p(	�ρ�4�)=p	�ρx�4�=p	�ρ(cos(lnp) + i sin(lnp))�4=p	�ρ(cos(ylnp) − isin(ylnp)) , 
p	��=p(	�ρ�4�)=p	�ρp4�=p	�ρ(p4�) = p	�ρ(cos(lnp) + i sin(lnp))4=(p	�ρ(cos(ylnp) + isin(ylnp)),  
then 

p�(	��)==p(�	�ρ�4�)=pρ�	x4� = pρ�	 	
(%B�(4(��)�����(4(��))  =(pρ�	(cos(ylnp) + isin(ylnp)) , 

p�(�)=p�(ρ�4�)=p�ρp4� = (p�ρ(cos(ylnp) + isin(ylnp)) , 
so 

(1 − p�(	��))=1-(pρ�	(cos(ylnp) + isin(ylnp)) =1 − pρ�	  cos(ylnp) − ipρ�	sin(ylnp) , 
(1 − p�(�))=1-(p�ρ(cos(ylnp) + isin(ylnp)) =1 − p�ρ  cos(ylnp) − ip�ρsin(ylnp) , 

∑ (�	)d;a
�a;<  ���	 =[  1ρ�	 Cos(yln1) − 2ρ�	 Cos(yln2)+  3ρ�	 Cos(yln3) −4ρ�	 Cos(yln4)-...]+i[ 1ρ�	 Sin(yln1)

− 2ρ�	sin(yln2)+ 3ρ�	sin(yln3) − 4ρ�	sin(yln4)+...] , 

∑ (�	)d;a
�<

���	 =[ 1�ρCos(yln1)−2�ρCos(yln2)+ 3�ρ
Cos(yln3)−4

�ρ
Cos(yln4)-...]+i[1

�ρ
Sin(yln1)− 2�ρ

sin(yl

n2)+ 3�ρ
sin(yln3)−4

�ρ
sin(yln4)+...], 
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when ρ=
	
2
, 

then 

∑ (�	)d;a
�a;<

���	 =∑ (�	)d;a
�<

���	 , 

(1 − p�(	��)) =(1 − p��), 

and 

(1 − p�(	��))�	=(1 − p�� )�	, 

∏ (1 − p�(	��))�	� =∏ (1 − p��)�	� , 

and 

(�	)d;a
(	��<) ∏ (1 − p�(	��))�	� = (�	)d;a

(	��a;<) ∏ (1 − p��)�	� , 

(�	)d;a
(	��<) ∑ (�	)d;a

�a;<
���	 = (�	)d;a

(	��a;<) ∑ (�	)d;a
�<

���	 , 

and 

ζ(1 − s)=
(�	)d;a
(	��<) ∏ (1 − p�(	��))�	� , 

ζ(s)=
(�	)d;a

(	��a;<) ∏ (1 − p��)�	�  , 

ζ(1 − s)=
(�	)d;a
(	��<) ∑ (�	)d;a

�a;<
���	 , 

ζ(s)=
(�	)d;a

(	��a;<) ∑ (�	)d;a
�<

���	 , 

so when ρ=
	
2
, then 

Only ζ(1 − s)=ζ(s). 

According the equation ζ(1-s)=2	��π ��Cos(
π �
� )Γ(s)ζ(s) obtained by Riemann,since Riemann has shown 

that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=2	��π ��Cos(
π �
� )Γ(s)ζ(s),ζ(s)=0 is true.  

When ζ(s)=0, then only ζ(k − s)=ζ(s)=0, and  

When ζ(s)=0,then ζ(k − s)=ζ(s)=0. 

But the Riemann ζ(s)function only satisfies ζ(1-s)=2	��π ��Cos(
π �
� )Γ(s)ζ(s),so when ζ(s)=0, then only 

ζ(1 − s)= ζ(s)=0,and when ζ(s)=0, then only ζ(1 − s)= ζ(s)=0, which is ζ(k − s)=ζ(1 − s) = ζ(s),so 

only k=1 be true.so only Re(s)=
i
2
=

	
2
 is true . 

∑ (�	)d;a
�n;<

���	 =[  1ρ�i Cos(yln1) − 2ρ�i Cos(yln2)+  3ρ�i Cos(yln3) −4ρ�i Cos(yln4)-...]+i[ 1ρ�i Sin(yln1)

− 2ρ�isin(yln2)+ 3ρ�isin(yln3) − 4ρ�isin(yln4)+...], 

∑ (�	)d;a
�<

���	 =[ 1�ρCos(yln1)−2�ρCos(yln2)+ 3�ρCos(yln3)−4�ρ Cos(yln4)-...]+i[1�ρSin(yln1)− 2�ρsin(yl

n2)+ 3�ρ
sin(yln3)−4

�ρ
sin(yln4)+...], 

pi��=p(i�ρ�4�)=pi�ρx�4�=pi�ρ(cos(lnp) + i sin(lnp))�4=pi�ρ(cos(ylnp) − isin(ylnp)) , 
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p	��=p(	�ρ�4�)=p	�ρp4�=p	�ρ(p4�) = p	�ρ(cos(lnp) + i sin(lnp))4=(p	�ρ(cos(ylnp) + isin(ylnp)) , 
Then 

p�(i��)=p(�i�ρ�4�)=pρ�ix4� = pρ�i 	
(%B�(4(��)�����(4(��))  =(pρ�i(cos(ylnp) + isin(ylnp)) , 

p�(�)=p�(ρ�4�)=p�ρp4� = (p�ρ(cos(ylnp) + isin(ylnp)) , 
p�(i��)=(pρ�i(cos(ylnp) + isin(ylnp)) , 
so 

(1 − p�(i��))=1-(pρ�i(cos(ylnp) + isin(ylnp)) =1 − pρ�i  cos(ylnp) − ipρ�isin(ylnp) , 
(1 − p��)=1-(p�ρ(cos(ylnp) + isin(ylnp)) =1 − p�ρ cos(ylnp) − ip�ρsin(ylnp) , 
So 

so when ρ=
i
2
(k∈R) then 

∑ (�	)d;a
�a;n><

���	 =∑ (�	)d;a
�<

���	 , 

(1 − p�(i��)) =(1 − p��) 

and 

(1 − p�(i��))�	=(1 − p�� )�	, 

∏ (1 − p�(i��))�	� =∏ (1 − p��)�	� , 

and 

	
(	��a;n><) ∑ (�	)d;a

�n;<
���	 = 	

(	��a;<) ∑ (�	)d;a
�<

���	 , 

and 

ζ(k − s)=
(�	)d;a

(	��a;n><) ∏ (1 − p�(i��))�	� , 

ζ(s)=
(�	)d;a

(	��a;<)  ∏ (1 − p��)�	�  , 

ζ(k − s)=
	

(	��a;n><) ∑ (�	)d;a
�n;<

���	 , 

ζ(s)=
	

(	��a;<) ∑ (�	)d;a
�<

���	 , 

so when ρ=
i
2

(k∈R) then 

Only ζ(k − s)=ζ(s). 

According the equation ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) obtained by Riemann,since Riemann has shown 

that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s),ζ(s)=0 is true.  

When ζ(s)=0, then only ζ(k − s)= ζ(s)=0, and  

When ζ(s)=0,then ζ(k − s)=ζ(s)=0.And because when ζ(s)=0, then only ζ(1 − s)=ζ(s)=0, which is 

ζ(k − s) = ζ(s),so only k=1 be true. 

According ζ(s)=ζ(1-s)=0 and ζ(s)=ζ(s)=ζ(1-s)=0,then s=s or s=1-s or s=1-s ,so s∈R, or ρ+yi=1-ρ-yi ,or 

ρ -yi=1- ρ -yi, so  s ∈ R, or  ρ =
	
�  and y=0,or ρ = 	

�  and y ∈ R and y ≠ 0 , so  s ∈ R,  for example 

s=-2n(n∈ Z�), or s=
	
�+oi ,or s=

	
�+yi(y ∈R and y ≠ 0). ζ P	

�Q > ζ(1) > 0,drop it, s=-2n(n∈ Z�),It's the 
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trivial zero of the Riemann ζ(s) function, drop it. 

Beacause only when ρ=
	
�,the next three equations, ζ(ρ + yi)=0, ζ(1 − ρ − yi)=0, and ζ(ρ-yi)=0 are 

all true, ζ(	
�) > ζ(1) > 0, so only s=

	
� +yi (y∈R and y ≠ 0,s∈C) is true,or say only s=

	
�+ti (t∈R and t ≠

0,s∈C) is true. Since Riemann has shown that the Riemann ζ(s) function has zero, that is, in 

ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s), ζ(s)=0 is true.According the  

equation ξ(s) = 	
�s(s-1)Γ(�

�)π� <Vζ(s) obtained by Riemann , so ξ(s)=ξ(1 − s), because Γ(�
�)=Γ(�

�) , 

and π� <V= π� <V , and because ζ(s)=ζ(s)，so ξ(s)=ξ(s). So when ζ(s)=0 ,then ξ(s)=ζ(1 − s) = ζ(s) =
0and ξ(s)=ξ(1 − s)=ξ(s)=0 must be true , so the zeros of the Riemann ζ(s) function and the nontrivial 

zeros of the Riemann ξ(s) function are identical, so the complex root of Riemann ξ(s)=0 satisfies 

s=
	
�+ti (t∈R and t ≠ 0,s∈C) , according to the Riemann function ∏ �

�(s-1)π�<
Vζ(s )=ξ(t) and he Riemann 

hypothesis s=
	
�+ti, because s≠1, and ∏ �

� ≠o, π�<
V ≠o, so ∏ �

�(s-1)π�<
V ≠o, and when ξ(t)=0, then 

∏ �
�(s-1)π�<

Vζ(
	
�+ti)=ξ(t)=0, and ζ(

	
�+ti)=

Y(Z)
∏<

V(��	)K;<
V
 = 

[
∏<

V(��	)K;<
V
 =0，so t∈R and t ≠ 0. So the root t of 

the equations ∏ �
�(s-1)π�<

Vζ(
	
�+ti )=ξ(t)=0 and 4\ ](�

^
V_’(�) )
]�

�
	 x�a

b cos( 	
� tlnx)dx=ξ(t)=0 and ξ(t)=

	
� -(t� +

	
o \ Ψ(x) �

	 x�^
b cos(	

� tlnx ) =0 must be real and t ≠ o .If Re(s)=
i
� (k ∈ R) ,then 

ζ(k-s)=2i��π �� Cos(
K �
� )Γ(s)ζ(s) and ξ(k − s) = 	

�s(s-k)Γ(�
�)π� <

Vζ(s) are true, so when ζ(s)=0 ,then 

ζ(s)=ζ(k − s) = ζ(s) = 0and ξ(s)=ξ(k − s)=ξ(s)=0 must be true , and s=
i
�+ti (k∈R，t∈R and t ≠

0 ,s∈ C) must be true, then ∏ �
� (s-k)π�<

V ζ(
i
� +ti)=ξ(t)=0, and ζ(

i
� +ti)= 

Y(Z)
∏<

V(��i)K;<
V

=
[

∏<
V(��i)K;<

V
=0 ,so 

t∈R and t ≠ 0. So the root t of the equations ∏ �
�(s-k)π�<

Vζ(
i
�+ti)=ξ(t)=0 must be real and t ≠ 0. But 

the Riemann ζ(s)function only satisfies ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) and ξ(s) = 	

�s(s-1)Γ(�
�)π� <Vζ(s)，

is also say that only ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) is true , so only Re(s)=

i
�=

	
� is true, so only k=1 is 

true.The Riemann hypothesis and the Riemann conjecture must satisfy the properties of the Riemann 

ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function and the 

Riemann ξ(s) function are fundamental, the Riemann hypothesis and the Riemann conjecture must 

be correct to reflect the properties of the Riemann ζ(s) function and the Riemann ξ(s) function, that 

is, the roots of the Riemann ξ(t) function can only be real, that is, Re(s) can only be equal to 
	
�, and 

Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann 

conjecture must be correct. 

For any complex number s, WhenRs(s)is any real number, including Rs(s)>0and(s ≠ 1) and Rs(s) ≤
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0 ∧ (s ≠ 0),  then Riemann Zeta() function is ζ(s)= 2�π��	 Sin(
K�
� )Γ(1-s)ζ(1-s). Suppose s=ρ+yi 

(ρ∈R,y∈R and y ≠ 0,s∈C),let's prove that ζ(s) and ζ(s) are complex conjugations of each other and get 

the equation ζ(s)=2�π��	Sin(
K�
� )Γ(1-s)ζ(1-s). 

Lemma 2: 

The reasoning in Riemann's paper goes like:  

2sin(πs)∏(s − 1)ζ(s)=(2π)� ∑ n��	((−i)��	+i��	)
 [1] 

(Formula 3), 

based on euler's e��=cos(x) + i sin(x) (x ∈ R) can get     

e�(�r
V )

=cos(
�K

� ) +isin(
�K

� ) =0-i= -i ,  

e�(r
V )

=cos(
K
�)+isin(

K
�)=0+i=i ,       

then 

(−i)��	 + i��	 = (−i)�	(−i)�+(i)�	(i)�=(−i)�	e�P�r
VQ� + i(�	)e�Pr

V Q�
=  

ie�P�r
V Q�

-ie�Pr
V Q� =i(cos

�K�
� +isin

�K�
� )-i(cos

K�
� +isin

K�
� )=icos(

K�
� )-icos(

K�
� )+sin(

K�
� )+sin(

K�
� ) 

=2sin(
K�
� ) (Formula 4). 

According to the property of Π(s-1)=Γ(s) of the gamma function,and  

∑ n��	���	 =ζ(1-s), 

Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=(2π )�ζ(1 − s)2 sin K�
�  (Formula 5), 

If I substitute it into (Formula5), according to the double Angle formula sin(πs)=2Sin(
K�
� )Cos(

K�
� ), we 

Will get ζ(1-s)=2	��π ��Cos(
K�
� )Γ(s)ζ(s) (Formula 6), 

When s≠ −2n(n ∈ Z�),because π�a;<
V ≠ 0 ≠ 0 and Γ(

	��
� ) ≠ 0,so when ζ(s)=0, then ζ(1-s)=0, 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=2�π��	Sin(
K�
� )Γ(1-s)ζ(1-s) (Formula 7), 

This is the functional equation for ζ(s). To rewrite it in a symmetric form, use the residual formula of 

the gamma function
 [3]

 

Γ(Z)Γ(1-Z)= π
sin(πZ) (Formula 8)  

and Legendre's formula  

Γ(
s
�)Γ(

s
�+

	
�)=2	�sπa

VΓ(Z) (Formula 9) , 

Take z= �
� in (Formula 8) and substitute it to get 

sin(
K�
� )= 

K
t(<

V)t(	� <
V) (Formula 10) , 

In (Formula 9), let z=1-s and substitute it in to get 
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Γ(1-s)=2��π�a
VΓ(

	��
� )Γ(1- �

�)  (Formula 11) 

By substituting (Formula 10) and (Formula 11) into (Formula 7), we get 

π�<
VΓ(�

�)ζ(s)=π�a;<
V Γ(

	��
� )ζ(1-s), 

also 

Γ(
�
�)π�<

Vζ(s) is invariant under the transformaSon s→1-s, 

And that's exactly what Riemann said in his paper. 

That is to say: 

Γ(
�
�)π�<

Vζ(s) is invariant under the transformaSon s→1-s , 

also 

∏(�
� − 1)π�<

Vζ(s)= ∏(	��
� − 1)π�a;<

V  
ζ(1-s) 

or  

π�<
VΓ(�

�)ζ(s)=π�a;<
V Γ(

	��
� )ζ(1-s) (Formula 2), 

Then ζ(s)=2�π��	Sin(
K�
� )Γ(1-s)ζ(1-s) , 

under the transformation s→1-s ,will get 

ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) (Formula 1) 

Reasoning 2: 

Because  L(s,✗(n))=✗(n)ζ(s) and L(1 − s,✗(n))=✗(n)ζ(1-s)， 

and according to ζ(s)=2�π��	Sin(
K�
� )Γ(1-s)ζ(1-s) (Formula 7), 

so 

Only L(s,✗(n))=2�π��	Sin(
K�
� )Γ(1-s)L(1 − s,✗(n))(Formula 12). 

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also that 

Γ(
	��

� )≠ 0, and π�a;<
V ≠ 0, according to π�<

VΓ(�
�)ζ(s)=π�a;<

V Γ(
	��

� )ζ(1-s) (Formula 2), 

Mathematicians have shown that the real part of the complex independent variable s of the Riemann 

ζ(s) function will have zero only if 0<Re(s)<1 and Im(s) ≠ 0 , so we agree on 

Riemann  ζ(s) =
η(�)

(	��a;<) =
	

(	��a;<) ∑ (�	)d;a
�< = (�	)d;a

(	��a;<)
���	 ∏ (1 − p��)�	� (s ∈ C and 0 <

Rs(s) < 1 and s ≠ 1 and Im(s) ≠ 0 , n∈ Z�, p ∈ Z� , s ∈C，n goes through all the natural 

numbers, p goes through all the prime numbers). 

According the equation ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) obtained by Riemann,since Riemann has 

shown that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s), so ζ(s)=0 
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is true, and so we agree on ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s)(s ∈ C and 0 < Rs(s) < 1 and s ≠

1 and Im(s) ≠ 0 ,n∈ Z� , p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through all 

the prime numbers).  

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also 

that Γ(
	��

� )≠ 0, and π�a;<
V ≠ 0, 

So when ζ(s)=0, then ζ(1-s)=0, also must ζ(s)=ζ(1-s)=0. 

Because sin(Z)=
y@z�y;@z

�� ,Suppose Z=s=ρ+yi (ρ∈R,y∈R and y ≠ 0,s∈C), then  

sin(s)=
y@<�y;@<

��  = 
y@(=>?@)�y;@(=>?@)

�� , 

sin(s)=
y@<�y;@<

��  = 
y@(=;?@)�y;@(=;?@)

�� , 

according x�=x(9�4�)=x9x4�=x9(cos(lnx) + i sin(lnx))4=x9(cos(ylnx) + isin(ylnx)) , then 

e�=e(9�4�)=e9e4�=e9(cos(y) + i sin(y)) = e9(cos(y) + isin(y)) , 
e��=e�(9�4�)=e9�(cos(iy) + isin(iy)) = (cos(ρ) + isin(ρ))(cos(iy) + isin(iy))  
e�� = e�(9�4�)=e9�(cos(−iy) + isin(−iy)) = (cos(ρ) + isin(ρ))(cos(iy) − isin(iy)) , 
e���=e��(9�4�)=e�9�(cos(−iy) + isin(−iy)) = (cos(ρ) − isin(ρ))(cos(iy) − isin(iy))  
e��� = e��(9�4�)=e�9�(cos(iy) + isin(iy)) = (cos(ρ) − isin(ρ))(cos(iy) + isin(iy)) , 
2�=2(9�4�)=2924�=29(cos(ln2) + i sin(ln2))4=29(cos(yln2) + isin(yln2)) , 
2�=2(9�4�)=292�4�=29(cos(ln2) + i sin(ln2))�4=29(cos(yln2) − isin(yln2)) , 
π��	=2(9�	�4�)=29�	24�=29�	(cos(ln2) + i sin(ln2))4=29�	(cos(yln2) + isin(yln2)) , 
π��	=2(9�	�4�)=29�	2�4�=29(cos(ln2) + i sin(ln2))�4=29�	(cos(yln2) − isin(yln2)) , 
So 

2�=2�, π��	=π��	 , 

and 

y@<�y;@<
��  =

y@<�y;@<
��  , 

So 

sin(s)=sin(s) , 

So 

sin(
K�
� )=sin(K�

� )  . 

And the gamma function on the complex field is defined as: 

Γ(s)=\ {|�	��
[ }�~dt 

among 

Re(s)>0,this definition can be extended by the analytical continuation principle to the entire field of 

complex numbers, except for non-positive integers, 

So 

Γ(s)=Γ(s) ,  

and  

Γ(1-s)=Γ(1 − s) . 
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When ζ(1-s)=ζ(1 − s)=0=ζ(s)=ζ(1-s)=0, and according ζ(s)=2�π��	Sin(
K�
� )Γ(1-s)ζ(1-s) , then 

Only ζ(s)=ζ(s)=0,is also say ζ(s)=ζ(s)=ζ(1-s)=0. so only ζ(ρ+yi)=ζ(ρ-yi)=0 is true. 

According the equation ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) obtained by Riemann,since Riemann has shown 

that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s), ζ(s)=0 is true, so 

when ζ(s)=0 , then only ζ(s)=ζ(1-s)=0 is true. 

in the process of the Riemann hypothesis proved about ζ(s)=ζ(1-s)= ζ(s)=0, is refers to the ζ(s) is a 

functional number? It's not. Does ζ(s)=ζ(1-s)= ζ(s) mean the symmetry of the ζ(s function equation? 

Does that mean the symmetry of the equation s=s=1-s? Not really. In my analyst, ζ(s)、ζ(1-s) and ζ(s) 

function expression is the same, are ∑ n−s∞ n=1 (n traves all positive integer, s∈C), so according to 

∑ n−s (n traves all positive integer, s ∈ C)∞ n=1 , ζ(s) function of the independent variable s, the 

relationship between s and 1-s only C��=3 kinds, namely s=sor s=1-s or s=1-s. As follows: 

According ζ(s)=ζ(1-s)=0 and ζ(s)=ζ( s )=ζ(1-s)=0,then only s= s or s=1-s or s =1-s ,so s ∈ R, 

or ρ+yi=1-ρ-yi ,or ρ-yi=1-ρ-yi, so  s ∈ R, or ρ=
	
�and y=0,or ρ = 	

�  and y ∈R and y≠ 0,so s ∈ R, for 

example s=-2n(n∈ Z�), or s=
	
�+oi ,or s=

	
�+yi(y ∈R and y ≠ 0).ζ P	

�Q > S(1) > 0,drop it, s=-2n(n∈
Z�),It's the trivial zero of the Riemann ζ(s) function, drop it. 

Beacause only when ρ=
	
�,the next three equations, ζ(ρ + yi)=0, ζ(1 − ρ − yi)=0, and ζ(ρ-yi)=0 are 

all true, ζ(	
�) > S(1) > 0 ,so only s=

	
� +yi(y ∈ R  and y ≠ 0 ,s ∈ C) is true, or say only s=

	
� +ti 

(t∈R and t ≠ 0,s∈C) is true.Since Riemann has shown that the Riemann ζ(s) function has zero, that is, 

in ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s), ζ(s)=0 is true. According the equation ξ(s) = 	

�s(s-1)Γ(�
�)π� <Vζ(s) 

obtained  by Riemann , so ξ(s)=ξ(1 − s) , because Γ(�
�)=Γ(�

�)  , and π� <V =π� <V  , and because 

ζ(s)=ζ(s)，so ξ(s)=ξ(s). So when ζ(s)=0 ,then ξ(s)=ζ(1 − s) = ζ(s) = 0and ξ(s)=ξ(1 − s)=ξ(s)=0 must 

be true , so the zeros of the Riemann ζ(s) function and the nontrivial zeros of the Riemann ξ(s) 

function are identical, so the complex root of Riemann ξ(s)=0 satisfies s=
	
�+ti (t∈R and t ≠ 0,s∈C) , … 

According to the Riemann function ∏ �
�(s-1)π�<

Vζ(s )=ξ(t) and he Riemann hypothesis s=
	
�+ti, because 

s≠1, and ∏ �
� ≠o, π�<

V ≠o, so ∏ �
�(s-1)π�<

V ≠o, and when ξ(t)=0, then ∏ �
�(s-1)π�<

Vζ(
	
�+ti)=ξ(t)=0, and 

ζ(
	
� +ti)=  Y(Z)

∏<
V(��	)K;<

V
 =

[
∏<

V(��	)K;<
V

= 0 ， so t ∈ R  and t ≠ 0 . So the root t of the equations 

∏ �
�(s-1)π�<

Vζ(
	
�+ti )=ξ(t)=0 and 4\ ](�

^
V_’(�) )
]�

�
	 x�a

b cos( 	
� tlnx)dx=ξ(t)=0 and  

ξ(t)=
	
� -( t� + 	

o ) \ Ψ(x) �
	 x�^

b cos(	
� tlnx ) =0 must be real  and t ≠ 0 . If Re(s)=  i

� (k ∈ R) ,then 



The proof of the Riemann conjecture 

ζ(k-s)=2i��π �� Cos(
K �
� )Γ(s)ζ(s) and ξ(k − s) = 	

�s(s-k)Γ(�
�)π� <

Vζ(s) are true, so when ζ(s)=0 ,then 

ζ(s)=ζ(k − s) = ζ(s) = 0and ξ(s)=ξ(k − s)=ξ(s)=0 must be true , and s=
i
�+ti (k∈R，t∈R and t ≠

0,s∈C) must be true, then ∏ �
�(s-k)π�<

V ζ(
i
�+ti)=ξ(t)=0, and ζ(

i
�+ti)=

Y(Z)
∏<

V(��i)K;<
V
=

[
∏<

V(��i)K;<
V

=0 ,so 

t∈R and t ≠ 0. So the root  of the equations ∏ �
�(s-k)π�<

Vζ(
i
�+ti )=ξ(t)=0 must be real  and t ≠ 0. But 

the Riemann ζ(s)function only satisfies ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) and ξ(s) = 	

�s(s-1)Γ(�
�)π� <Vζ(s)，

is also say that only ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) is true , so only Re(s)=

i
�=

	
� (k ∈ R) is true, so only 

k=1 is true.The Riemann hypothesis and the Riemann conjecture must satisfy the properties of the 

Riemann ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function 

and the Riemann ξ(s)  function are fundamental, the Riemann hypothesis and the Riemann 

conjecture must be correct to reflect the properties of the Riemann ζ(s) function and the Riemann 

ξ(s) function, that is, the roots of the Riemann ξ(t) function can only be real, that is, Re(s) can only 

be equal to 
	
�, and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and 

the Riemann conjecture must be correct. 

Riemann found in his paper that 

              ∏ P�
� − 1Q π�<

V ζ(s) = \ ψ(x) � 
	 x<

V�	
dx+\ ψ(	

�) � 
	 x<;^

V dx    

                     +
	
� \ (x<;^

V	
[  -x<

V�	
)dx 

= 	
�(��	) + \ ψ(x) � 

	 (x<
V�	

+x�a><
V )dx , 

Because 
	

�(��	) and  \ ψ(x)� 
	 (x<

V�	
+x�a><

V )dx are all invariant under the transformation s→1-s If I 

introduce the auxiliary function ψ(s)=∏ P�
� − 1Q π�<

V ζ(s),So I can just write it as ψ(s)=ψ(1-s). But it 

would be more convenient to add the factor s(s − 1)to ψ(s) and introduce the coefficient 
	
� , which is 

exactly what Riemann did,  is that to take  ξ(s) = 	
� s(s-1) Γ P�

�Q π� <Vζ(s).Because the factor (s-1) 

cancels out the first pole of ζ(s)at s=1, And the factor s cancels out the pole of Γ P�
�Q at s=0, and s 

 is equal to -2, -4, -6,...,the rest of the poles of  Γ P�
�Q cancel out . So ξ(s)is an integral function.And 

notice that the factor s(s − 1)obviously doesn't change under the transformation s→ 1 − s,So we 

also have the function ξ(s)=ξ(1 − s) .Base on ζ(1-s)=2	��π –�Cos(
K �
� )Γ(s)ζ(s) (Formula 1).When 

sin(
K�
� )=0，then if s= -2n(n∈ Z�), ξ(s) is going to take the zero . At the same time, according to 

ζ(1-s)=2	��π –�Cos(
π �
� )Γ(s)ζ(s),when s≠1+2n(n∈ Z�) , and if ζ(s)=0,then must ζ(1-s)=0, is that to say 
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ζ(s)=ζ(1-s)=0. According to Riemann's hypothesis s=
	
�+ti(t∈C,s∈C and t ≠ 0), s and t differ by a linear 

transformation . It's a 90 degree rotation plus a translation of 
	
�. So line Re(s)= 	� in the s plane 

corresponds to the real number line in the t plane,the zero of Riemann ζ(s) on the critical line 

Re(s)= 	
� corresponds to the real root of ξ(t)(t∈C and t ≠ 0). In Riemann functionξ(t), the function 

equation ξ(s)=ξ(1 − s)becomes equation ξ(t)=ξ(−t)(t ∈ C and t ≠ 0) is an even function, an even 

function is a symmetric function, it’s zeros are distributed symmetrically with respect to t=0 .The 

function ξ(t)(t ∈ C, and t ≠ 0) designed by Riemann and Riemann's hypothesiss = 	
� + ti(t ∈ C, s ∈

C, and t ≠ 0) and ξ(s)=ξ(1 − s) are equivalent to ξ(t)=ξ(−t).So the function ξ(s) is also an even 

function.The zero points on the graph of an even function ξ(s) with respect to the coordinates of its 

argument on the real number line equal to some value are symmetrically distributed on the line 

perpendicular to the real number line of the complex plane.  When ξ(t) =0 ， is also that 

ξ(t)=ξ(−t)=0,the zeros of ξ(t)are symmetrically distributed with respect to t equals 0.When ξ(s)=0,is 

also that ξ(s)=ξ(1 − s)=0,the zeros of ξ(s) are symmetrically distributed with respect to point (
	
�,0i) 

on a line perpendicular to the real number line of the complex plane.So when ξ(s)=ξ(1 − s)=0, s and 

1-s are pair of zeros of the function ξ(s) symmetrically distributed in the complex plane with respect 

to point (
	
�,0i) on a line perpendicular to the real number line of the complex plane.When ζ(s)=0, 

ζ(1-s)=0 is aslo that ζ(s)=ζ(1-s)=0. We find ζ(s)=ζ(1-s)=0 and ξ(s)=ξ(1 − s)=0 are just the name of the 

function is idifferent,the independent variable s is equal to 
	
�+ti(t∈C,s∈C),that means that the zero 

arguments of function ζ(s) and function ξ(s) are exactly the same,so the zeros of the ζ(s) function in 

the complex plane also correspond to the symmetric distribution of point (
	
� ,0i) on a line 

perpendicular to the real number line in the complex plane,so When ζ(s) = ζ(1 − s) = 0,s and 1-s 

are pair of zeros of the function ζ(s) symmetrically distributed in the complex plane with respect to 

point (
	
�,0i) on a line perpendicular to the real number line of the complex plane.We got 

ζ(s) = ζ ( s )(s= ρ +yi,  ρ ∈ R , y ∈ R  and y ≠ 0 ) before,When t in Riemann's hypothesis 

s=
	
�+ti(t∈C,s∈C and t ≠ 0) is a complex number, and s=

	
�+ti=ρ+yi , then s in ζ(s)=ζ(s)(s=ρ+yi,ρ ∈ R, 

y ∈ R  and y ≠ 0 ) is consistent with s in Riemann's hypothesis s=
	
� +ti(t ∈ C,s ∈ C  andt ≠ 0 ).If 

ζ(s)=ζ(s)=0(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0),Since s and s are a pair of conjugate complex numbers,So 

s and s must be a pair of zeros of the function ζ(s) in the complex plane with respect to point (ρ,0i) 

on a line perpendicular to the real number line.s is a symmetric zero of  1-s, and a symmetric zero of 

s. By the definition of complex numbers, how can a symmetric zero of the same function ζ(s) of the 

same zero independent variable s on a line perpendicular to the real number axis of the complex 

plane be both a symmetric zero of 1-s on a line perpendicular to the real number axis of the complex 

plane with respect to point (
	
�,0i) and a symmetric zero of s on a line perpendicular to the real 
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number axis of the complex plane with respect to point (ρ,0i)?Unless ρ and 
	
� are the same 

value, is also that ρ = 	
�, and only 1-s=s is true, and 1-s=s is wrong.Otherwise it's impossible,this is 

determined by the uniqueness of the zero of the function ζ(s) on the line passing through that point 

perpendicular to the real number axis of the complex plane with respect to the vertical foot 

symmetric distribution of the zero of the line and the real number axis of the complex plane,Only one 

line can be drawn perpendicular from the zero independent variable s of the function ζ(s) to the real 

number line of the complex plane, the vertical line has only one point of intersection with the real 

number axis of the complex plane. In the same complex plane, the same zero point of the function 

ζ(s) on the line passing through that point perpendicular to the real number line of the complex 

plane there will be only one zero point about the vertical foot symmetric distribution of the line and 

the real number line of the complex plane.Because ζ(s) =ζ(s)(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0), then if 

ζ(ρ + yi )=0,  then  ζ(ρ − yi )=0, and because  ζ(s) = ζ(1 −  s)=0, then ζ( 1- ρ -yi)=0, and because 

 ζ(s)= ζ(1 − s) =0, then ζ( 1- ρ -yi)=0. The next three equations, ζ(ρ + yi )=0, ζ(ρ − yi )=0, and 

ζ(1-ρ-yi)=0, are all true, so only 1-ρ=ρ is true,only s=
	
�+ti(t∈R and t ≠ 0,s∈C) is true.Since the 

harmonic series ζ(1) diverges, it has been proved by the late medieval French scholar Orem 

(1323-1382).The Riemann hypothesis and the Riemann conjecture must satisfy the properties of the 

Riemann ζ(s) function and the Riemann ξ(s) function, The properties of the Riemann ζ(s) function and 

the Riemann ξ(s) function are fundamental, the Riemann hypothesis and the Riemann conjecture 

must be correct to reflect the properties of the Riemann ζ(s) function and the Riemann ξ(s) function, 

that is, the roots of the Riemann ξ(t) function must only be real, that is, Re(s) can only be equal to 
	
�, 

and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the Riemann 

conjecture must be correct. Riemann got ∏ �
�(s-1)π�<

V ζ(s)=ξ(t)  (t  ∈ C ,s∈ C), and ξ(t)=
	
� - (t� +

	
o)\ Ψ(x)�

	 x�^
b cos P	

� tlnx Q dx(t∈ C) in his paper, or ∏ �
�(s-1)π�<

Vζ(s)=ξ(t) and (t∈ C,s∈C）, 

ξ(t)=4\ ](�
^
V_’(�) )

]�
�

	 x�a
b cos( 	

� tlnx)dx(t ∈ C）[1]
. Becasue ζ(

	
�+ti)=0(t∈R and t ≠ 0,s∈C) ,so ζ(

	
�+ti)=0 

(t ∈ R  and t ≠ 0 ,s ∈ C ） is ture, so ∏ �
� (s-1) π�<

V ζ(
	
� +ti )=ξ(t)=0(t ∈ R  and t ≠ 0 ,s ∈ C) and 

∏ �
� (s-1)π�<

V ζ(
	
� +ti)=4 \ ](�

^
V_’(�) )

]�
�

	 x�a
b cos( 	

� tlnx )dx =ξ(t)=0(t ∈ R  and t ≠ 0 ,s∈ C）and ξ(t)=
	
� -(t� +

	
o)\ Ψ(x) �

	 x�^
b cos(	

� tlnx )=0(t∈C), so the roots of equations  ∏ �
�(s-1)π�<

V ζ(
	
�+ti )=ξ(t)=0(t∈C) and 

4\ ](�
^
V_’(�) )
]�

�
	 x�a

b cos( 	
� tlnx)dx=ξ(t)=0(t∈C) and ξ(t)=

	
� - (t� + 	

o)\ Ψ(x) �
	 x�^

b cos(	
� tlnx )=0(t∈C) must 

all be real numbers.When ζ(s)=0 and ξ(t)=0, the real part of the equation ξ(t)=0(t∈C) must be real 

between 0 and T. Because the real part of the equation ξ(t)=0 has the number of complex roots 

between 0 and T approximately equal to 
�

�K ln �
�K − �

�K
 [1]

 ,This result of Riemann's estimate of the 

number of zeros was rigorously proved by Mangoldt in 1895. Then,when ζ(s)=0(s∈C) and ξ(t)=0(t ∈
C and t ≠ 0), the number of real roots of the real part of the equation ξ(t)=0(t ∈ C and t ≠ 0) 
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between 0 and T must be approximately equal to 
�

�K ln �
�K − �

�K
[1]

 ,so when the Riemann ζ(s)function 

has nontrivial zeroes, then the Riemann hypothesis and the Riemann conjecture are perfectly valid. 

Definition: 

Assuming that a(n) is a uniproduct function, then the Dirichlet series ∑ a(n)n�� ���	  is equal to the 

Euler product ∏ P(p，s)�  .Where the product is applied to all prime numbers p, it can be expressed 

as: 1+a(p)p��+a(p�)p���+...，this can be seen as a formal generating function, where the existence of 

a formal Euler product expansion and a(n) being a product function are mutually sufficient and 

necessary conditions. When a(n) is a completely integrative function, an important special case is 

obtained,where P(p，s) is a geometric series, and P(p, s)=
	

	��(�)�;< .When a(n)=1,it is the 

Riemann zeta function, and more generally the Dirichlet feature.  

Euler's product formula: for any complex number s,  

Rs(s) > 1, then ∑ n��� ��	 = ∏ (1 − p��)�	�  , and when Rs(s) > 1Riemann Zeta function ζ(s) =

∑ n�����	 =∏ (1 − p��)�	� (s ∈ C and Rs(s) > 0 and (s ≠ 1),n∈ Z�, p ∈ Z�, s ∈C，n goes through all 

the natural numbers, p goes through all the prime numbers). 

Riemann zeta function expression: 

ζ(s)=1/1�+1/2�+1/3�+...+1/m� (m tends to infinity, and m is always even). 

 

(1)Multiply both sides of the expression by (1/2�),*for multiplication 

(1/2�)∗ζ(s)=1/1� ∗(1/2�)+1/2� ∗(1/2�)+1/3� ∗(1/2�)+...+1/m� ∗
(1/2�)=1/2�+1/4�+1/6�+...+1/(2 ∗ m)� 

This is given by (1) - (2) 

ζ(s)-(1/2�)*ζ(s)=1/1�+1/2�+1/3�+...+1/m�-[1/2�+1/4�+1/6�+...+1/(2 ∗ m)�] 

The derivation of Euler product formula is as follows: 

ζ(s)-(1/2�)*ζ(s)=1/1�+1/3�+1/5�+...+1/(m − 1)�. 

Generalized Euler product formula: 

Suppose f(n) is a functionthat satisfies f(n	)f(n�)=f(n	n�) and ∑  |f(n)| < � + ∞ (n1 and n2 are both 

natural numbers), then∑ f(n) � =∏ [1 + f(p) + f(p�) + f(p�)+. . . ]� . 

Proof: 

The proof of Euler product formula is very simple, the only caution is to deal with infinite series and 

infinite products, can not arbitrarily use the properties of finite series and finite products. What I 

prove below is a more general result, and the Euler product formula will appear as a special case of 

this result. 

Due to ∑  |f(n)| < ∞� ��	 ，so 1 + f(p) + f(p�) + f(p�)+. .. absolute convergence.Consider the part of 

p<N in the continued product (finite product),Since the series is absolutely convergent and the 

product has only finite terms, the same associative and distributive laws can be used as ordinary finite 

summations and products. 

Using the product property of f(n), we can obtain: 

∏ [1 + f(p) + f(p�) + f(p�)+. . . ]��� =∑ f(n)  .The right end of the summation is performed on all 

natural numbers with only prime factors below N (each such natural number occurs only once in the 
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summation, because the prime factorization of the natural numbers is unique).Since all natural 

numbers that are themselves below N obviously contain only prime factors below N, So Σ'f(n) = 

∑  f(n)  ��� + R(N),Where R(N) is the result of summing all natural numbers that are greater than or 

equal to N but contain only prime factors below N.From this we get: ∏ [1 + f(p) + f(p�) +���
f(p�)+. . . ]=∑  f(n)  ��� + R(N).For the generalized Euler product formula to hold, it is only necessary to 

prove lim�→� R(N)=0,and this is obvious,because |R(N)| ≤ ∑  |f(n)|  ��� ,and ∑  |f(n)| < � + ∞ sign 

of 

lim�→� ∑  |F(n)|  ��� =0,thus lim�→� R(N)=0.Beacuse 

1 + f(p) + f(p�) + f(p�)+...=1 + f(p)+f(p)�+f(p)�+...=[1 − f(p)]�	, so the generalized Euler product 

formula can also be written as: 

∑ f(n) =� ∏ [1 − f(p)]�	� .In the generalized Euler product formula, take f(n)=n��,Then obviously 

∑  |f(n)| < � ∞ corresponds to the condition Rs(s)>1 in the Euler product formula, 

and the generalized Euler product formula is reduced to the Euler product formula. 

From the above proof, we can see that the key to the Euler product formula is the basic property that 

every natural number has a unique prime factorization, that is, the so-called fundamental theorem of 

arithmetic. 

For any complex number s, ✗(n) is the Dirichlet characteristic and satisfies the following properties: 

1: There exists a positive integer q such that ✗(n+q)= ✗(n); 

2: when n and q are not mutual prime,✗(n)=0; 

3: ✗(a)✗(b)=✗(ab) for any integer a and b; 

Reasoning 3: 

If 0 < �}(s) < 1,then 

L(s,✗(n))=∑ ✗(�)
�<

���	 (n∈ Z�, p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through all 

the prime numbers, ✗(n)∈R and (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
	

	��(�)�;<). 

Next we prove the generalized Riemann conjecture when the Dirichlet eigen function✗ (n) is any real 

number that is not equal to zero, 

and 

η(s)=∑ (�	)d;a
�<

���	 (s ∈ C and Rs(s) > 0 and (s ≠ 1))  andη(s)=(1- 2	�� )ζ(s)(s ∈ C and Rs(s) >
0 and s ≠

1, ζ(s) is the Riemann Zeta function) ,so  Riemann  ζ(s) =
η(�)

(	��a;<) =
	

(	��a;<) ∑ (�	)d;a
�< =���	

(�	)d;a
(	��a;<) ∏ (1 − p��)�	� (s ∈ C and Rs(s) > 0 and (s ≠ 1) ,n ∈ Z�, p ∈ Z�, s ∈ C ， n goes 

through all the natural numbers, p goes through all the prime numbers),so 

GRH(s,✗(n) )=L(s,✗(n) )= ∑ ✗(�)
�<

���	 = ∑ a(n)n��� ��	 = ∏ P(p，s)� = ∏ ( 	
	��(�)�;<)� ( n ∈

Z�, p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through all the prime numbers, ✗

(n)∈R  and (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
	

	��(�)�;<).  

a(p)p��=a(p)p�9 	
(%B�(4(��)�����(4(��))  =a(p)(p�9(cos(ylnp) − isin(ylnp)) , 
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(1 − a(p)p��)=1-a(p)(p�9(cos(ylnp) − isin(ylnp)) =1 − a(p)p�9  cos(ylnp) + a(p)ip�9sin(ylnp) , 

a(p)p��=a(p)p�9 	
(%B�(4(��)�����(4(��))  =a(p)(p�9(cos(ylnp) + isin(ylnp)) , 

(1 − a(p)p��)=1-a(p)p�9 cos(ylnp) − ia(p)p�9sin(ylnp)  , 
because 

(1 − a(p)p��)=1 − a(p) ∗ p�� , 

so 

(1 − a(p)p��)�	=(1 − a(p)p��)�	 , 

so 

∏ (1 − a(p)p��)�	� =∏ (1 − a(p)p��)�	�  ,      

becuse L(s,✗(n))=∑ a(n)n��� ��	 = ∏ (1 − a(p)p��)�	�  and  L(s,✗(n))=∑ a(n)n��� ��	 =
∏ (1 − a(p)p��)�	� , for the Generalized Riemann function L(s,✗(n))=∑ ✗(�)

�< = ∑ a(n)n��� ��	 =���	

∏  �
	

	��(�)�;< (n∈ Z�, p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through all the 

prime numbers, ✗(n)∈R and (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
	

	��(�)�;<). 

so  

L(s,✗(n))=L(s,✗(n)) . 

a(p)p	�� = a(p)p(	�9�4�) = a(p)p	�9x�4� = a(p)p	�9(cos(lnp) + i sin(lnp))�4 = a(p)p	�9(cos(ylnp) −
isin(ylnp)) , 
a(p)p	�� = a(p)p(	�9�4�) = a(p)p	�9p4� = a(p)p	�9(p4�) =
a(p)p	�9(cos(lnp) + i sin(lnp))4=a(p)p	�9(cos(ylnp) + isin(ylnp)) , 
then 

a(p)p�(	��)=a(p)p9�	 	
(%B�(4(��)�����(4(��))  =a(p)(p9�	(cos(ylnp) + isin(ylnp)) , 

(1 − a(p)p�(	��))=1-a(p)p9�	(cos(ylnp) + isin(ylnp)) = 

1-a(p)p9�	 cos(ylnp) − a(p)p9�	isin(ylnp)  , 
(1 − a(p)p��)=1-a(p)(p�9(cos(ylnp) + isin(ylnp)) =1 − a(p)p�9  cos(ylnp) − ia(p)p�9sin(ylnp) , 

When ρ=
	
� , then  

(1 − a(p)p�(	��)) =(1 − a(p)p�� ), 

(1 − a(p)p�(	��))�	=(1 − a(p)p�� )�	, 

so 

∏ (1 − a(p)p�(	��))�	� =∏ (1 − a(p)p��)�	� , 

becuse L(1 − s,✗(n))=∏ (1 − a(p)p�(	��))�	�  and  L(s,✗(n))=∏ (1 − a(p)p��)�	� , n∈ Z�, p ∈
Z� , s ∈C，n goes through all the natural numbers, p goes through all the prime numbers, ✗

(n)∈R and (✗(n) ≠ 0),a(n) = a(p)=✗(n) ),P(p，s)=
	

	��(�)�;< . 

so  

Only L(1 − s,✗(n))=L(s,✗(n)) , 
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and 

Only L(1 − s,✗(n))=L(s,✗(n)). 

Because L(s,✗(n))=✗(n)ζ(s) and L(1 − s,✗(n))=✗(n)ζ(1-s), so When only ρ=
	
�, it must be true 

that L(s,✗(n))=L(s,✗(n)), and it must be true that L(1 − s,✗(n))=L(s,✗(n)).  

Suppose k∈ R, 

a(p)pi�� =a(p)p(i�9�4�) = a(p)pi�9x�4� = a(p)pi�9(cos(lnp) + i sin(lnp))�4 =a(p)pi�9(cos(ylnp) −
isin(ylnp)) , 
a(p)pi��=a(p)p(i�9�4�)=a(p)pi�9p4�=a(p)pi�9(p4�) = a(p)pi�9(cos(lnp) + i sin(lnp))4= 

a(p)(pi�9(cos(ylnp) + isin(ylnp)) , 
then 

a(p)p�(i��)=a(p)p9�i 	
(%B�(4(��)�����(4(��))  =a(p)(p9�i(cos(ylnp) + isin(ylnp)) , 

(1 − a(p)p�(i��)) =1- (a(p)p9�i(cos(ylnp) + isin(ylnp)) = 1 −
a(p)p9�i  cos(ylnp) − ip9�isin(ylnp) , 
(1 − a(p)p��)=1-(a(p)p�9(cos(ylnp) + isin(ylnp)) =1 − a(p)p�9  cos(ylnp) − ia(p)p�9sin(ylnp) , 

When ρ=
i
�(k∈ R) , then  

(1 − a(p)p�(i��)) =(1 − a(p)p��), 

(1 − a(p)p�(i��))�	=(1 − a(p)p��)�	, 

so 

∏ (1 − a(p)p�(i��))�	� =∏ (1 − a(p)p��)�	�  , 

becuse L(k − s,✗(n))=∏ (1 − a(p)p�(i��))�	�  and  L(s,✗(n))=∏ (1 − a(p)p��)� , for the 

generalized Riemann function L(s,✗(n))(n∈ Z�, p ∈ Z�, s ∈C， n goes through all the natural 

numbers, p goes through all the prime numbers, 

✗(n)∈R and (✗(n) ≠ 0), a(n) = a(p)=✗(n) ),P(p，s)=
	

	��(�)�;<). 

so  

Only L(k − s,✗(n))=L(s,✗(n)), 

and 

Only L(k − s,✗(n))=L(s,✗(n)). 

And because Only L(1 − s,✗(n))= L(s,✗(n)),so only k=1 be true. 

so 

GRH(s,✗(n)) = L(s,✗(n)) = ∑ ✗(�)
�<

���	 = ✗(�)η(�)
(	��a;<) = ✗(�)

(	��a;<) ∑ (�	)d;a
�<

���	 =
✗(�)

(	��a;<) ∑ (�	)d;a
�=>?@

���	 = (�	)d;a
(	��a;<) ∑ ✗(n)( 	

�=
	

�?@)���	 =
(�	)d;a

(	��a;<) ∑ ✗(n)(x�9) 	
(%B�((��)�����((��))?

���	 = (�	)d;a
(	��a;<) ∑ ✗(n)(x�9(cos(lnx) +���	

 isin(lnx))�4) =
(�	)d;a

(	��a;<) ∑ ✗(n)(n�9(cos(yln(n)) − isin(yln(n))(x =���	

n, x goes through all positive integers, n goes through all positive integers）
 
,  
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GRH(s,✗(n)) = L(s,✗(n)) = 7✗(n)
n�

�

��	
= ✗(n)η(s)

(1 − 2	�s) = ✗(n)
(1 − 2	�s) 7 (−1)��	

x�

�

��	

= ✗(n)
(1 − 2	�s) 7 (−1)��	

x9�4�

�

��	
= (−1)��	

(1 − 2	�s) 7✗(n)( 1
x9

1
x�4�

�

��	
)

= 1
(1 − 2	�s) 7(✗(n) 1

x9
1

(cos(lnx) + i sin(lnx))�4)
�

��	

= 1
(1 − 2	�s) 7(✗(n)x�9(cos(lnx) +  isin(lnx))4)

�

��	
= 

	
(	��a;<) ∑ (✗(n)n�9(cos(yln(n)) + isin(yln(n))) ���	 (x =

n, x goes through all positive integers, n goes through all positive integers）, 

 GRH(1 − s,✗(n)) = L(1 − s,✗(n)) = ∑ ✗(�)
�<

���	 = ✗(�)η(	��)
(	��<) = ✗(�)

(	��<) ∑ (�	)d;a
�a;=;?@

���	 =
(�	)d;a
(	��<) ∑ ✗(n)( 	

�a;=
	

�;?@)���	 = (�	)d;a
(	��<) ∑ (✗(n)x9�	(cos(yln(n)) + isin(yln(n)))(x =���	

n, x goes through all positive integers, n goes through all positive integers）
 
, 

Suppose 

U=[ ✗(n)1�9Cos(yln1)- ✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−✗(n) 4�9Cos(yln4)+...], 

V=[✗(n)1�9Sin(yln1)− ✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)−✗(n)4�9sin(yln4)+...] , 
Then  

L(s,✗(n))=L(s,✗(n)) . 

And x goes through all the natural numbers, so x=1,2,3... n-1,n ... ,let's just plug in, so  

L(s,✗(n))= ∑ ✗(�)
�<

���	 =[ ✗(n)1�9Cos(yln1)− ✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−✗(n) 4�9Cos

(yln4)+...]-i[✗(n)1�9Sin(yln1)− ✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)− ✗(n)4�9sin(yln4)+...]= U-Vi, 

U=[ ✗(n)1�9Cos(yln1)−✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−✗(n) 4�9Cos(yln4)+...], 

V=[✗(n)1�9Sin(yln1)−✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)−✗(n)4�9sin(yln4)+...] , 
Then 

L(s,✗(n))= ∑ ✗(�)
�<

���	 =[ ✗(n)1�9Cos(yln1)−✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−4�9Cos(yln4)+

...]+i[✗(n)1�9Sin(yln1)−✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)−✗(n) 4�9sin(yln4)+ ...]= U+Vi, 

U=[ ✗(n)1�9Cos(yln1)−✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−✗(n) 4�9Cos(yln4)+...], 

V=[✗(n)1�9Sin(yln1)−✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)− ✗(n)4�9sin(yln4)+...] , 
L(s,✗(n))and L(s,✗(n)) are complex conjugates of each other,that is L(s,✗(n))=L(s,✗(n)).  

When ✗(n)ρ=
	
�, 

then 

L(s,✗(n))=L(1 − s,✗(n))= U-Vi, 
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U=[ ✗(n)1�9Cos(yln1)−✗(n)2�9Cos(yln2)+ ✗(n)3�9Cos(yln3)−✗(n) 4�9Cos(yln4)+...], 

V=[✗(n)1�9Sin(yln1)−✗(n)2�9sin(yln2)+ ✗(n)3�9sin(yln3)− ✗(n)4�9sin(yln4)+...] . 
and When ρ=

	
�, 

then 

Only L(1 − s,✗(n))=L(s,✗(n)) . 
GRH(k − s,✗(n)) = L(k − s,✗(n)) = ✗(�)η(i��)

(	��a;n><) = ✗(�)
(	��a;n><) ∑ (�	)d;a

�n;=;?@
���	 =

(�	)d;a
(	��a;n><) ∑ ✗(n)( 	

�n;=
	

�;?@)���	 = (�	)d;a
(	��a;n><) ∑ (✗(n)n9�i(cos(yln(n)) + isin(yln(n))(x =���	

n, x goes through all positive integers, n goes through all positive integers) 
, 

W=[ ✗(n)19�iCos(yln1)−✗(n)29�iCos(yln2)+ ✗(n)39�iCos(yln3)−✗(n) 49�iCos(yln4)+...] 

U=[✗(n)19�iSin(yln1)−✗(n)29�isin(yln2)+ ✗(n)39�isin(yln3)− ✗(n)49�isin(yln4)+...] . 
When ρ=

i
�(k∈ R), 

then 

Only L(k − s,✗(n))=L Ps,✗(n)Q = W − Ui. 

But the Riemann ζ(s) function only satisfies ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s),so when ζ(s)=0, then only 

ζ(1 − s)= ζ(s)=0,and when ζ(s)=0, then only ζ(1 − s)= ζ(s)=0, which is ζ(k − s)=ζ(1 − s) =
ζ(s),so only k=1 be true.so only Re(s)=

i
�=

	
� (k ∈ R). 

So Only L(1 − s,✗(n)) = L(s,✗(n)) is true, so only k=1 is true. 

According the equation ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s) obtained by Riemann,since Riemann has shown 

that the Riemann ζ(s) function has zero, that is, in ζ(1-s)=2	��π ��Cos(
K �
� )Γ(s)ζ(s)(s ∈ C), ζ(s)=0 is true. 

So only When  ρ=
	
�  and ζ(s)=0 and ✗(n) ≠ 0, then  L(s,✗(n)) =✗(n) ζ(s)=0 is true. Because 

L(s,✗(n)) =✗(n) ζ(s) and L(1 − s,✗(n)) =✗(n) ζ(1-s), so When  ρ=
	
� , it must be true that 

L(s,✗(n))=L(s,✗(n)), and it must be true that L(1 − s,✗(n))=L(s,✗(n)).  

According ζ(1 − s) =ζ(s)=0 and ζ(s)=ζ( s )=ζ(1- s )=0, so L(s,✗(n)) = L(1 − s,✗(n)) =0 and  

L(s,✗(n))=L(s,✗(n))=L(1 − s,✗(n))=0,then s=s or s=1-s or s=1-s ,so s∈R, or ρ+yi=1-ρ-yi,or 

ρ-y i=1- ρ -y i, so  s ∈ R, or ρ=
	
� and y=0,or ρ = 	

�  and y ∈R and y ≠ 0 , so s∈ R  for example 

s=-2n(n∈ Z�), or s=
	
�+oi ,or s=

	
�+ yi(y ∈R and y ≠ 0). ζ P	

�Q > S(1) > 0, drop it, when s=-2n(n∈ Z�), 

it's the trivial zero of the Riemann ζ(s) function, drop it. 

So only s = 	
� + yi (y ∈ R , and y ≠ 0, s ∈ C) is true, or say s = 	

� + ti (t ∈ R , and t ≠ 0, s ∈

C）is true.And beacause only when ρ=
	
�,the next three equations, L(ρ + yi,✗(n))=0, L(1 − ρ −
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yi,✗(n))=0 and L(ρ − yi,✗(n))=0 are all true. And because L(	
� ,✗(n))=∞,  so only s=

	
�+yi 

(y ∈R and y ≠ 0,s∈C) is true,or say only s=
	
�+ti (t∈R and t ≠ 0,s∈C）is true. 

The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the 

properties of the L(s,✗(n)) function, The properties of the L(s,✗(n)) function are fundamental, 

the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct to 

reflect the properties of the L(s,✗(n)) function , that is, the roots of the L(s,✗(n))=0 can only be  

s=
	
�+ti(t∈C,s∈C and t ≠ 0), that is, Re(s) must only be equal to 

	
�, and Im(s) must be real, and Im(s) is 

not equal to zero.So the Generalized Riemann hypothesis and the Generalized Riemann conjecture 

must be correct. 

According L(1 − s,✗(n))= L(s,✗(n))=0,so the zeros of theL(s,✗(n))function in the complex 

plane also correspond to the symmetric distribution of point (
	
�,0i) on a line perpendicular to the real 

number line in the complex plane,so When L(1 − s,✗(n)) =  L(s,✗(n)) = 0,s and 1-s are pair of 

zeros of the function L(s,✗(n)) symmetrically distributed in the complex plane with respect to point 

(
	
�,0i) on a line perpendicular to the real number line of the complex plane. 

We got L(s,✗(n))  =L(s,✗(n)) (s=ρ+yi,ρ ∈ R, y ∈ R  and y ≠ 0 ) before,When t in Generalized 

Riemann's hypothesis s=
	
�+ti(t∈C,s∈C and t ≠ 0) is a complex number, and s=

	
�+ti=ρ+yi , then s in 

L(s,✗(n))=L(s,✗(n))(s=ρ+yi,ρ ∈ R, y ∈R and y ≠ 0) is consistent with s in Generalized Riemann's 

hypothesis s=
	
�+ti(t∈C,s∈C andt ≠ 0).when L(s,✗(n)) =L(s,✗(n))=0(s=ρ+yi,ρ ∈ R, y ∈R and y ≠

0),since s and s are a pair of conjugate complex numbers, so s and s must be a pair of zeros of the 

Generalized function L(s,✗(n))in the complex plane with respect to point (ρ ,0i) on a line 

perpendicular to the real number line.s is a symmetric zero of 1-s, and a symmetric zero of s. By the 

definition of complex numbers, how can a symmetric zero of the same Generalized Riemann function 

L(s,✗(n)) of the same zero independent variable s on a line perpendicular to the real number axis 

of the complex plane be both a symmetric zero of 1-s on a line perpendicular to the real number axis 

of the complex plane with respect to point (
	
�,0i) and a symmetric zero of s on a line perpendicular to 

the real number axis of the complex plane with respect to point (ρ,0i)?Unless ρ and 
	
� are the same 

value, is also that ρ = 	
�, and only 1-s=s is true, only s=

	
�+ti (t∈R and t ≠ 0,s∈C) is true. Otherwise 

it's impossible,this is determined by the uniqueness of the zero of Generalized Riemann function 

L(s,✗(n)) on the line passing through that point perpendicular to the real number axis of the 

complex plane with respect to the vertical foot symmetric distribution of the zero of the line and the 

real number axis of the complex plane,Only one line can be drawn perpendicular from the zero 

independent variable s of Generalized Riemann function L(s,✗(n))on the real number line of  the 

complex plane, the vertical line has only one point of intersection with the real number axis of the 

complex plane. In the same complex plane, the same zero point of Generalized Riemann function 
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L(s,✗(n)) on the line passing through that point perpendicular to the real number line of the 

complex plane there will be only one zero point about the vertical foot symmetric distribution of the 

line and the real number line of the complex plane,so I have proved the generalized Riemann 

conjecture when the Dirichlet eigen function✗(n) is any real number that is not equal to zero,Since 

the nontrivial zeros of the Riemannian function ζ(s) and the generalized Riemannian function 

L(s,✗(n)) are both on the critical line perpendicular to the real number line of Re(s)=
	
� and 

Im(s)≠ 0, these nontrivial zeros are general complex numbers of Re(s)=
	
� and Im(s)≠ 0,so I have 

proved the generalized Riemann conjecture when the Dirichlet eigen function ✗(n) is any real 

number that is not equal to zero.  
The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the 

properties of the L(s,✗(n)) function, The properties of the L(s,✗(n)) function are fundamental, 

the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct to 

reflect the properties of the L(s,✗(n))function, that is, the roots of the L(s,✗(n))=0 can only be  

s=
	
�+ti(t∈C,s∈C and t ≠ 0), that is, Re(s) can only be equal to 

	
�, and Im(s) must be real, and Im(s) is 

not equal to zero. 

When L(s,✗(n)) = 0 (n∈ Z�, p ∈ Z�, s ∈C, n goes through all the natural numbers, p goes through 

all the prime numbers , ✗(n) ∈ R and ✗(n) ≠ 0), a(n) = a(p)=✗(n), 

 P(p，s) =
	

	��(�)�;<)  and  s = 	
� + ti (t ∈ R and t ≠ 0, s ∈ C) , then the Generalized Riemann 

hypothesis and the Generalized Riemann conjecture must be correct. 

Reasoning 4: 

For any complex number s,when ✗(n) is the Dirichlet characteristic and satisfies the following 

properties: 

1: There exists a positive integer q such that ✗(n+q)=✗(n)(n ∈ Z�); 

2: when n and q are not mutual prime,✗(n)=0(n ∈ Z�);  

3: ✗(a)✗(b)=✗(ab) (a ∈ Z� , b ∈ Z�)for any integer a and b; 

Suppose q=2k(k ∈ Z�),  

if n and n+q are all prime number, and if ✗(Y) = 1 (Y traverses all positive odd numbers) or 

if ✗(Y) ≠ 0 (Y traverses all positive odd numbers), 

then ✗(n + q) = ✗(n) =✗(p)≡1(n, n + q, and p  go through all the prime numbers), 

or ✗(n + q) = ✗(n) = ✗ (p) ≠ 0 (n, n + q, and p  go through all the prime numberss) , because n(n 

traverses all prime numbers) and q=2k(k ∈ Z�) are not mutual prime, then ✗(n)=0 (n ∈ Z+), and   
 for any prime number a and b, 
✗(a)✗(b)=✗(ab)(a ∈ Z� , b ∈ Z� , a and b are all prime number),  

then the three properties described by the Dirichlet eigenfunction✗(n) above fit the definition of the 
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Polignac conjecture, the Polignac conjecture states that for all natural numbers k, there are infinitely 

many pairs of prime numbers (p,p+2k)(k ∈ Z�). In 1849, the French mathematician A. Polignac 

proposed the conjecture.When k=1, the Polygnac conjecture is equivalent to the twin prime 

conjecture.In other words, when L(s,✗(n)) = 0(n∈ Z�, p ∈ Z�, s ∈C，n goes through all the natural 

numbers, p goes through all the prime numbers, ✗(n)∈R 

and(✗(n) ≠ 0),a(n) = a(p)=✗(n)),P(p，s)=
	

	��(�)�;<), and generalized Riemann hypothesis and 

the generalized Riemann conjecture are true, then the Polygnac conjecture must be completely true, 

and if the Polignac conjecture must be true, then the twin prime conjecture and Goldbach's 

conjecture must be true.I proved that the generalized Riemannian hypothesis and the generalized 

Riemannian conjecture are true, so when  L(s,✗(n)) = 0(n∈ Z� , p ∈ Z�, s ∈C，n goes through all 

the natural numbers, p goes through all the prime numbers,✗(n))∈R and (✗(n)) ≠ 0), a(n) =
a(p)=✗(n)),P(p，s)=

	
	��(�)�;<) and s = 	

� + ti (t ∈ R and t ≠ 0, s ∈ C) ,I also proved that the 

Polignac conjecture,twin prime conjecture must be true and Goldbach conjecture are completely or 

almost true.The Generalized Riemann hypothesis and the Riemann conjecture are perfectly valid, so 

the Polygnac conjecture and the twin prime conjecture and Goldbach's conjecture must satisfy the 

properties of the Generalized Riemann ζ(s) function and the Riemann ζ(s) function, so the Polignac 

conjecture,twin prime conjecture must be true and Goldbach conjecture is completely true.Riemann 

hypothesis and the Riemann conjecture are completely correct and the Generalized Riemann 

hypothesis and the Generalized Riemann conjecture are completely correct and the Polignac 

conjecture,twin prime conjecture must be tue and Goldbach conjecture are almost or completely 

true.  

Reasoning 5: 

In order to explain why the zero of the Landau-Siegel function exists under special conditions,we need 

to start with the Riemann conjecture. I have solved the Riemann conjecture for the Dirichlet feature 

✗(n)=1(n traverses all natural numbers) and the generalized Riemann conjecture for the Dirichlet 

feature ✗(n)≠0(n traverses all natural numbers), Now I propose a special form of Dirichlet 

L(s, ✗(p))(s∈C, ✗(p)∈R and X(p)=0,p traverses all odd primes,including 1) function problem. Let 

me first explain to you what Landau-Siegel zero conjecture is. As you may know, the Landau-Siegel 

zero point problem, named after Landau and his student Siegel, boils down to solving whether there 

are abnormal real zeros in the Dirichlet L function. So let's look again at what the Dirichlet L function is. 

Look at the abve proof process,which is the expression of Dirichlet L(s,✗(n))(s∈C,n traverses all 

natural numbers),  
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I shall first introduce the Dirichlet L(s, ✗(n))(s∈C,n traverses all natural numbers) function and 

explain its relation to the Riemannn ζ(s)(s∈C) function. Here, ✗(n)(n traverses all natural numbers) 

is a characteristic value of a Dirichlet function, which is all real numbers, and ✗(n)(n traverses all 

natural numbers) is a real function. The L(s,✗(n))(s∈C, ✗(n)∈R, n traverses all natural numbers) 

function can be analytically extended as a meromorphic function over the entire complex plane. John 

Peter Dirichlet proved that L(1, ✗(n))≠0(s∈C, ✗(n)∈R and ✗(n)≠0,n takes all natural numbers) 

for all ✗(n)(n traverses all natural numbers), and thus proved Dirichlet's theorem. In number theory, 

Dirichlet's theorem states that for any positive integers a,d, there are infinitely many forms of prime 

numbers, such as a+nd, where n is a positive integer, i.e., in the arithmetic sequence a+d,a+2d,a+3d,... 

There are an infinite number of prime numbers-there are an infinite number of prime modules d as 

well as a . If ✗(n)(n traverses all natural numbers) is the main feature, then L(s,✗(n))(s∈C, ✗(n)∈

R,n traverses all natural numbers) has a unipolar point at s=1. Dirichlet defined the properties of the 

characteristic function ✗(n)(n is a positive integer) in the Dirichlet function L(s, ✗(n))(s∈C , ✗(n)∈

R,n traverses all natural numbers) : 

1: There is a positive integer q such that ✗(n+q)= ✗(n)(n traverses all natural numbers); 

2: when n(n traverses all natural numbers) and q are non-mutual primes, ✗(n)=0(n traverses all 

natural numbers); 

3: For any integer a and b, ✗(a)✗(b)=✗(ab)(a is a positive integer, b is a positive integer); 

From the expression of the Dirichlet function L(s,X(n))(s∈C,X(n)∈R,n takes all natural numbers) in 

Figure 1 above, it is easy to see that when the Dirichlet characteristic real function ✗(n)=1(s∈C,n 

takes all natural numbers), Then the Dirichlet L(s,1)(s∈C, ✗(n)∈R,n traverses all natural numbers) 
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becomes the Riemann ζ(s)(s∈C)(s∈C) function, so the Riemann ζ(s)(s∈C) function is a special 

function of the Dirichlet function L(s, ✗(n))(s∈C, ✗(n)∈R,n traversing all natural numbers), when 

the characteristic real function ✗(n)(n is a positive integer) is equal to 1, Also called a trivial 

characteristic function of the Dirichlet function L(s, ✗(n))(s∈C, ✗(n)∈R，n traverses all natural 

numbers). When the eigenreal functions ✗(n)≠1, they are called nontrivial eigenfunctions of the 

Dirichlet function L(s,✗(n))(s∈C,✗(n)∈R，n traverses all natural numbers). When the independent 

variable s in the expression of the Dirichlet function L(s, ✗(n))(s∈C, ✗(n)∈R,n traverses all natural 

numbers) is a real number β, then for all eigenfunction values X(n)(n traverses all natural numbers), 

L(β, ✗(n))(β is real, ✗(n)∈R,n traverses all natural numbers) is called the Landau-Siegel function. 

Visible landau - siegel function L(β, ✗(n))(β∈R, ✗(n)∈R,n traverses all natural numbers) is dirichlet 

function L(s,✗(n)) (s∈C, ✗(n)∈R，n traverses all natural numbers) of a special function, landau - 

siegel guess is landau and siegel they guess L(β,✗(n))(β∈R,X(n)∈R, n traverses all natural numbers) 

is not zero, So Landau and Siegel's conjecture that L(β,✗(n))≠0(β∈R, ✗(n)∈R, n traverses all 

natural numbers) is easy to understand, right? Well, now that you know what the Landau and Siegel 

null conjecture is all about, let's continue to see how I'm going to solve the Landau and Siegel null 

conjecture. Look at the abve proof process: 

 

 

 

then 

L(β, ✗(n))=
(−1)n−1

(1−21−β)
∑ ✗(n)(n−β(cos (0 × ln(n) + isin(0 ×∞n=1
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ln(n)))=
(�	)d;a

(	��a;β)
∑ (✗(n)n�β���	 )=

	
�	��a;β�

(✗(1)1�β −✗(2)2�β +✗(3)3�β −

✗(4)4�β + ⋯ ). 

what is η(s)? Look at the abve proof process: 

 

Above is that part of the content about the η(s)(s∈C) function definition and η(s)(s∈C) function and 

Riemann ζ(s)(s∈C)function expression of the relationship, apparently L(s, X (n)(s∈C, ✗(n)∈R , n 

traverses all natural numbers). It is easy to see that the Dirichlet function L(s,X(n)) (s∈C, ✗(n)∈R, n 

traverses all natural numbers) is a summation function, just like the Riemannn ζ(s)(s∈C)function. I 

defined s=ρ+yi(ρ∈R, y∈R and y≠0,s∈C), the Landau-Siegel function L(β,X(n))(β∈R, ✗(n)∈R, n 

traverses all natural numbers) is equivalent to let me define s=β+0i(β∈R), that is, let y=0, then the 

contents above become the contents of the below: 

 

Obviously, when ✗(n) ≡1 (n traverses all natural numbers), because the real exponential function of 

the real number has a function value greater than zero, so 

n−β > 0(n traverses all natural numbers) and  1β − 2β ≠ 0 , 3β − 4β ≠ 0 , 5β − 6β ≠ 0, … , (n −
1)β − (n)β ≠ 0, … , and | 1

e1−21−βf | ≠ 0, it can be known that when and ✗(n) ≡1(n traverses all 

natural numbers), then L(β,1)≠0(β∈R, ✗(n)∈R and ✗(n) ≡1,n traverses all natural numbers), so for 

Riemann ζ(s)(s∈C) functions, its corresponding landau-siegel function L(β,1)(β∈R,X(n)∈R 
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and ✗(n) ≡1,n traverses all natural numbers) of pure real zero does not exist, This means that the 

Riemann ζ(s)(s∈C) function does not have a zero of a pure real variable s. 

 

Obviously, when ✗(n) ≠1 and ✗(n) ≠0 ,n traverses all natural numbers, because the real 

exponential function of the real number has a function value greater than zero, so n�� >
0(n traverses all natural numbers) and  1� − 2� ≠ 0 , 3� − 4� ≠ 0 , 5� − 6� ≠ 0, … , (n −
1)� − (n)� ≠ 0, … , and | 	

e	��a;�f | ≠ 0, it can be known that when ✗(n) ≠1 and ✗(n) ≠0 , n 

traverses all natural numbers, then L(β,1)≠0(β∈R, ✗(n)∈R and✗(n) ≠1,n traverses all natural 

numbers) so for generalized Riemann L(s, ✗(n)) (s∈C) functions, its corresponding landau-siegel 

function L(β,1)(β∈R,✗(n)∈R, ✗(n)  ≠1 and ✗(n) ≠0,n traverses all natural numbers) of pure 

real zero does not exist, This means that the generalized Riemann L(s, ✗(n))(s∈C) function does 

not have a zero of a pure real variable s. 

 

Obviously, when ✗(n) ≡0 (n traverses all natural numbers), because the real exponential function of 

the real number has a function value greater than zero, so 

n�� > 0(n traverses all natural numbers) and  ✗(1)1� = 0,✗(2)2� = 0 ,✗(3)3� = 0,✗(4)4� =
0 ,✗(5)5� = 0,✗(6)6� = 0, … ,✗(n − 1)(n − 1)� = 0,✗(n)n� = 0, … , and | 	

e	��a;�f | ≠ 0, it can 

be known that when ✗(n) ≡0 (n traverses all natural numbers), then L(β,1)=0(β∈R,X(n)∈R 

and ✗(n) ≡0,n traverses all natural numbers), so for generalized Riemann L(s, ✗(n))(s∈C) 

functions, its corresponding landau-siegel function L(β,1)(β∈R,X(n)∈R and ✗(n) ≡0,n traverses all 

natural numbers) of pure real zero exists, This means that the generalized Riemann L(s, ✗(n))(s∈C) 

function has a zero of a pure real variable s, that means the twin prime conjecture, Goldbach's 

conjecture, Polignac's conjecture are all true. 

Now I summarize the Dirichlet function L(s,X(n))(s∈C,X(n) ∈R, n traverses all positive integers) 

as follows:Let's review the properties of the characteristic function X(n) in the Dirichlet function 
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L(s,X(n))(s∈C,X(n)∈R,n traverses all natural numbers) : 

1: There is a positive integer q such that X(n+q)=X(n)(n traverses all natural numbers); 

2: when n(n traverses all natural numbers) and q are non-mutual primes, X(n)=0(n traverses all 

natural numbers); 

3: For any integer a and b, ✗(a)✗(b)=✗(ab)(a is a positive integer, b is a positive integer); 

In the 19th century, 1 was considered a prime number, it is not considered a prime number later, but 

now it is considered a prime number again by me. Now I'm going to assume that q=2k(k traverses 

through all positive integers), and I'm going to assume that there are any odd numbers n, so for n(n 

traverses through all odd numbers) and q(q is positive even), they're non-mutual prime numbers, 

Then X(n)=0(n traverses through all odd numbers, including 1), then X(p)=0(p traverses through all 

primes, including 1), then X(p+2k)=X(p)=0(k traverses through all positive integers, p traverses 

through all odd primes, including 1), then for all odd primes p(including 1), A special Dirichlet function 

L(s,X(p))(s∈C,X(p)∈R,p traverses all odd primes including 1) has a function value of zero for the 

characteristic function ✗(p)(p traverses all odd primes including 1). Now suppose that there are any 

odd primes a and any odd primes b, then ab is a odd number, then ✗(a)=0,✗(b)=0,✗(ab)=0, 

satisfying ✗(a)✗(b)=✗(ab)=0(a traverses all odd primes, including 1,  and b traverses all odd primes 

including 1). Then the characteristic function ✗(p) in a new Dirichlet function 

L(s,✗(p))(s∈C, ✗(p) ∈R and ✗(p)=0, p traverses all odd primes, including 1) has the following 

properties: 

1: There is a positive integer q=2k(k traverses all positive integers) such that ✗(p+q)= ✗(p)=0(k 

traverses all positive integers,p traverses all odd primes, including 1); 

2: when n(n traverses all positive odd numbers) and q are non-mutual primes, ✗(n)=0(n traverses all 

positive odd numbers); 

3: For any odd prime number a and any odd prime number b, ✗(a) ✗(b)=✗(ab)(a is any odd prime 

number including 1 and b is any odd prime number including 1); 

Then there is a special form of Dirichlet function L(s,✗(p))(s∈C, ✗(p)∈R, p traverses all odd primes, 

including 1) function, as shown below: 

L(s,✗(p))= (�	)d;a
e	��a;=;?@f ∑ ✗(p)x�9(cos (y ln(p)) + isin(y ln(p)))���	 , 

L(β,✗(p))= (�	)d;a
e	��a;�f ∑ ✗(p)p��(cos (0 × ln(p)) + isin(0 × ln(p)))���	 =

(�	)d;a
e	��a;�f ∑ (✗(p)p��)���	 =

(�	)d;a
e	��a;�f [✗(1)1��-✗(2)2��+✗(3)3��-✗(5)5��+✗(7)7�β+ … 

−✗(p)p�� + ⋯ ] ( β ∈R, x = p, p traverses all primes, including 1). 

When✗(p)=0(p traverses all odd primes, including 1), then L(s,✗(p))=0(s∈C,✗(n) ∈R and 

✗(p)=0, p traverses all odd primes, including 1) was established.  At the same time L(s,✗(p)) 
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(s∈C,✗(p) ∈R and✗(p)=0, p traverses all primes, , including 1) the corresponding landau-siegel 

function L(β,0)(β∈R,✗(p)∈R and ✗(p)=0, p traverses all primes, including 1) expression as 

shown in as follows: 

 

According to the above, we already know that since ✗(p)=0(p traverses all primes, including 1), 

it is obvious that L(β,0)=0(β∈R) holds. The characteristic function X(p) in this special Dirichlet 

function L(s, ✗(p))(s∈C, ✗(p)∈R and ✗(p)=0 , p traverses all primes, including 1) has the following 

properties: 

1: There is a positive integer q=2k(k traverses all positive integers) such that ✗(p+q)=X(p)=0(k 

traverses all positive integers, p traverses all odd primes, including 1); 

2: when n(n traverses all odd numbers) and q are non-mutual primes, X(n)=0(n traverses all odd 

numbers); 

3: For any odd prime number a and any odd prime number b, ✗(a)✗(b)=✗(ab)(a is any odd prime 

number including 1 and b is any odd prime number including 1);  

From the above three properties, and from the fact that L(β,0)=0(β∈R, ✗(p) ∈R and ✗(p)=0, p 

traverses all prims, including 1), it is obvious that we know that twin prims, Polignac's conjecture and 

Goldbach's conjecture all hold. 

Now I summarize the Dirichlet function L(s, ✗(n))(s∈C, ✗(n) ∈R, n traverses all positive integers) as 

follows: 

1: When ✗(n)=1(n traverses all positive integers), the generalized Riemannian hypothesis and the 

generalized Riemannian conjecture degenerate to the ordinary Riemannian hypothesis and the 

ordinary Riemannian conjecture, whose nontrivial zeros s satisfy s=
	
�+ti(t∈R and t≠0), and ordinary 

Riemann ζ(s)=L(s, ✗(n))(s∈C, ✗(n)∈R and ✗(n)=1,n traverses all natural numbers) the 

corresponding Landau-siegel function L(β,1)≠0(β∈R, ✗(n)∈R and ✗(n)=1, n traverses all natural 
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numbers), ordinary Riemann hypothesis and ordinary Riemann hypothesis all hold, and for Riemann 

ζ(s)(s∈C) function, its corresponding Landau-Siegel function L(β,1)(β∈R, ✗(n)∈R and ✗(n)=1,n 

traverses all natural numbers) does not exist pure real zero, which also shows that Riemann ζ(s)(s∈C) 

function does not exist zero when variable s is a pure real zero. 

2: When X(n)=0(n traverses all positive odd numbers), then✗(p)=0(p traverses all primes, including 1), 

a special Dirichlet function L(s,✗(p))(s∈C, ✗(p)∈R and ✗(p)=0, p traverses all primes, including 1) 

has zero, and when zero is obtained, the independent variable s is any complex number. This special 

dirichlet function L(s,✗(p))(s∈C, ✗(p)∈R and ✗(p)=0, p traverses all prime, including 1) the 

corresponding Landau - siegel function L(β,0)=0(β∈R, ✗(p)∈R and✗(p)=0,p traverses all prime, 

including 1) holds, so for this particular Dirichlet function L(s,✗(p))=0(s∈C, ✗(p)∈R and ✗(p)=0, p 

traverses all primes, including 1)holds.The existence of a pure real zero of the corresponding 

Landau-Siegel function L(β,0)(β∈R, ✗(p)∈R and✗(p)=0,p traverses all prime numbers, including 1) 

shows that the twin prime numbers, Polignac conjecture and Goldbach conjecture are all true.  

For any prime  number  a and b,then the three properties described by the Dirichlet 

eigenfunction✗(n) above fit the definition of the Polignac conjecture, the Polignac conjecture states 

that for all natural numbers k, there are infinitely many pairs of prime numbers (p,p+2k)(k ∈ Z�). In 

1849, the French mathematician A.Polignac proposed the conjecture.When k=1, the Polygnac 

conjecture is equivalent to the twin prime conjecture. 

When Polignac conjecture is true, then the twin prime conjecture and Goldbach's conjecture must be 

true. 

When L(s,✗(n) = 0(n∈ Z�, p ∈ Z�, s ∈C，n goes through all the natural numbers, p goes through all 

the prime numbers,  ✗ (n) ∈ R and ✗(n) ≠ 0) ,  a(n) = a(p) =✗(n) ),  P(p，s) =
	

	��(�)�;<)  and 

s=
	
�+ti(t∈R and t≠0) then the Generalized Riemann hypothesis and the Generalized Riemann 

conjecture are true,  

3: when the ✗(n)≠0(n traverses all natural numbers), Dirichlet function L(s,✗(n))(s∈C,✗(n)∈ 

and ✗(n)≠0,n traverses all natural numbers) has zero, it's nontrivial zero meet s=
	
�+ti (t∈R and 

t≠0). For dirichlet function L(s,✗(n))(s∈C ,✗(n)∈R and ✗(n)≠0, n traverses all positive 

intege),  it's corresponding Landau-siegel function L(β,✗(n))(β∈R, ✗(n)∈R and ✗(n)≠0, n 

traverses all natural numbers) of pure real zero does not exist, In other words,  it shows that the 

Dirichlet function L(s,✗(p))(s∈C,✗(n)∈R and✗(n)≠0,n traverses all natural numbers) does not exist 
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for the zero of a pure real variable s, so if✗(n)≠0(n traverses all natural numbers), then both the 

generalized Riemannian hypothesis and the generalized Riemannian conjecture hold and the 

Generalized Riemann L(s,✗(n)) (s∈C,✗(n)∈R and✗(n)≠0, n traverses all positive intege) function of 

nontrivial zero s also meet s=
	
�+ti (t∈R and t≠0). Now we know that merely proving that the nontrivial 

zero s of the Riemann conjecture L(s,1)(s∈C,✗(n)∈R and ✗(n)=1,n traverses all natural 

numbers) and the generalized Riemann conjecture L(s,✗(n))(s∈C,✗(n)∈R and ✗(n)≠0,n traverses 

all natural numbers) satisfies s=
	
�+ti(t∈R, t≠0) is sufficient to prove that the twin primes, 

Polignac's conjecture, Goldbach's conjecture are all true. It is also proved that a special class of 

generalized Riemann hypothesis L(s,✗(p))(s∈C,✗(p)∈R and✗(p)=0, p traverses all odd prime 

numbers, including 1) exists corresponding Landau-Siegel functions L(β,✗(p))=0(s∈C,✗(p)∈R and 

✗(p)=0, p traverses all  prime numbers, Including 1) is equal to prove that twin prime numbers, 

Polignac conjecture, Goldbach conjecture are all true. L(s,✗(p))=0(s∈c ,✗(p)∈R and ✗(p)=1, p 

traverses all primes, including 1) and the generalized Riemann conjecture L(s,✗(p))=0(s∈C,✗(p)∈R 

and ✗(p)≠0, p traverses all primes, including 1) prove that the twin primes, Polignac's conjecture, 

Goldbach's conjecture are all true.When L(s,✗(p))=0(s∈c,✗(p)∈R and ✗(p)=1, p traverses all  

primes, including 1) and the generalized Riemann conjecture L(s,✗(p))=0(s∈C,✗(p)∈R and✗(p)≠0, 

p traverses all primes, including 1) prove that the twin primes, Polignac's conjecture, Goldbach's 

conjecture are all true. 

 

III. Conclusion 

After the Riemann hypothesis and the Riemann conjecture and the Generalized Riemann hypothesis 

and the Generalized Riemann conjecture are proved to be completely valid, the research on the 

distribution of prime numbers and other studies related to the Riemann hypothesis and the Riemann 

conjecture will play a driving role. Readers can do a lot in this respect. 
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