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Abstract

This paper presents an analysis of galactic rotation curves using novel models, including the Godelian
Logical Flow (GLF) framework and Richard Lieu’s massless topological defect models. The study utilizes
data from the HI Nearby Galaxy Survey (THINGS) to test these models’ ability to describe the observed
rotation curves without invoking dark matter. The GLF framework, which incorporates concepts from
Gödel’s incompleteness theorems, offers an alternative explanation for galactic dynamics by suggesting
that the logical structure of spacetime influences these phenomena. Lieu’s model, on the other hand,
proposes that massless topological defects in the form of concentric spherical shells can account for the
flat rotation curves typically attributed to dark matter.

We demonstrate that the Lieu Multi-Shell model and the GLF3 Exponential model consistently
outperform the standard dark matter model across a sample of galaxies. The results indicate statis-
tically significant differences in model performance, with the alternative models providing incremental
improvements that capture important aspects of galactic dynamics.

This study highlights the potential of these alternative models to provide new insights into the nature
of galactic rotation curves and challenges the traditional dark matter paradigm. The findings encourage
further theoretical development and observational validation of these models, with implications for our
understanding of cosmic structure formation and dynamics.

Introduction

The study of galactic rotation curves has been a cornerstone in our understanding of cosmic structure and
dynamics. Traditional models often invoke dark matter to explain the observed flat rotation curves of
galaxies. However, alternative theories have emerged that challenge this paradigm. This paper explores
two such novel approaches: the Godelian Logical Flow (GLF) framework [18] and Richard Lieu’s massless
topological defect models [21].

The GLF framework, inspired by Gödel’s incompleteness theorems [9], proposes that the logical
structure of spacetime itself may influence galactic dynamics. This approach suggests that incompleteness
in our physical theories might manifest as apparent anomalies in galactic rotation curves, potentially
offering an alternative to dark matter [18].

Richard Lieu’s model [21], on the other hand, introduces the concept of massless topological defects
in the form of concentric spherical shells. This innovative approach proposes that these defects could
account for the flat rotation curves typically attributed to dark matter, without requiring additional
mass [21].

Our study utilizes data from the HI Nearby Galaxy Survey (THINGS) to test these models’ ability
to describe observed rotation curves. THINGS provides high-resolution 21-cm HI observations of 34
nearby galaxies, offering precise measurements of rotation curves that serve as an ideal testbed for these
theories.

Through rigorous statistical analysis, including model fitting and comparison using the Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC), we evaluate the performance of
these models against the standard dark matter paradigm. Our aim is to assess whether these alternative
approaches can provide new insights into galactic dynamics and challenge our current understanding of
cosmic structure.
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Mathematical Derivations for Modeling HI Nearby Galaxy Sur-
vey

1. GLF Models

The Godelian Logical Flow (GLF) framework proposes that the logical structure of spacetime, as in-
spired by Gödel’s incompleteness theorems, may influence galactic dynamics. This approach has evolved
through several iterations:

a) Original GLF model

The initial GLF model was formulated as:

v(r) =
√
αc2 (1 + β log(1 + r)G(r) + δ(1 + r)γG(r))
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)
Here, v(r) represents the rotational velocity at radius r, c is the speed of light, and α, β, δ, γ,

G0, and k are parameters to be fitted. The function G(r) represents a Gödelian factor, introducing
incompleteness effects into the model.

b) Improved GLF model

An enhanced version of the GLF model was later developed:
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This model introduces additional parameters (v0, rs, rl, rf , α, β, γ, δ, µ, ϵ, ν, ξ) to capture more
complex dynamics. The structure allows for different scaling behaviors at various radii, potentially
accounting for diverse galactic features.

c) GLF3 Models (Three Flavors)

The latest iteration of GLF models, known as GLF3, comes in three variants:
Exponential:
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These models combine different functional forms to capture various aspects of galactic rotation curves.
The exponential term could represent inner galactic regions, while power-law terms might describe outer
regions. The logarithmic variant introduces a gradual transition between these regimes.

2. Lieu Models

Richard Lieu’s approach introduces massless topological defects as an alternative explanation for galactic
rotation curves. His model has been implemented in several forms:
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a) Theoretical Foundation

Lieu’s model starts with the gravitational Poisson equation in an isotropic environment:

∇2Φ =
1

r2
d

dr

(
r2

dΦ

dr

)
= 4πGρ(r)

where Φ is the gravitational potential, G is the gravitational constant, and ρ(r) is the mass density.
Lieu introduces a novel source term ρ(r) that combines a Dirac delta function and its derivative:

ρ(r) =
c2

8πG

[
2αs

r2
δ(R− r) +

2αs

r
δ′(R− r)

]
where c is the speed of light, α is a dimensionless constant, s is a length scale (s → 0+), and R is the

radius of the shell.
This configuration produces an inward radial force on a test particle of:

F = −dΦ

dr
= −αsc2

r
δ(R− r) = −GM

r
δ(R− r)

where M = αsc2

G is defined for notational convenience but does not represent actual mass.

b) Simple Lieu model

Based on this theoretical foundation, a simplified model for rotation curves was developed:

v(r) =

√
αc2

r
exp

(
−r

s

)
This model combines the 1/r dependence from the force equation with an exponential decay term.

c) Strict Lieu model

A more stringent interpretation of Lieu’s theory led to:

v(r) =
√
αc2

exp
(
− (r−R)2

2·0.012

)
0.01

√
2π

This model represents a single shell at radius R with a Gaussian profile, closely adhering to the delta
function in the original theory.

d) Multi-shell Lieu model

Extending the concept to multiple shells:

v(r) =
√
αc2

∑
Ri∈{R1,R2,R3}

exp

(
− (r −Ri)

2

2 · width2

)
This model allows for multiple concentric shells, each contributing to the rotation curve.

e) Advanced Lieu model

The most sophisticated implementation incorporates multiple shells with increasing spacing, a logarith-
mic gravitational potential, and a simplified baryonic component. This model aims to capture the full
complexity of Lieu’s theory while remaining computationally tractable for fitting to observational data.

These models represent different interpretations and implementations of Lieu’s theoretical framework,
allowing for a comprehensive exploration of its ability to explain galactic rotation curves.
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Methods: Data and Model Implementation

Our study utilizes data from the HI Nearby Galaxy Survey (THINGS) [28], which provides high-resolution
21-cm HI observations of 0 nearby galaxies. The THINGS dataset offers precise measurements of rotation
curves, making it an ideal testbed for comparing different models of galactic dynamics.

The Godelian Logical Flow (GLF) models [18] and Richard Lieu’s massless topological defect models
[21] were implemented as Python functions and fitted to the data using the scipy.optimize.curve fit
function. These models were compared to the standard dark matter paradigm using Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) to evaluate their performance across galaxies
[1, 2].

Implementation in the Program

The code implements these models as Python functions, allowing for fitting to the THINGS data. Key
aspects of the implementation include:

1. Data loading: The code reads THINGS data for various galaxies, extracting radius, velocity, and
velocity error information.

2. Model fitting: It uses scipy.optimize.curve fit to fit each model to the data, determining the
best-fit parameters.

3. Statistical analysis: The code calculates Akaike Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC) for model comparison.

4. Comparative analysis: The program compares the performance of different models across mul-
tiple galaxies, providing insights into which models best describe the observed rotation curves.

Result

The analysis of galaxy rotation curves using various models reveals several key findings:

1. Model Performance

• The Lieu Multi model emerges as the best performing Lieu model.

• GLF3 Exp (exponential) is the top-performing GLF model.

2. Comparative Analysis

(a) Lieu Multi vs GLF3 Exp:

– Statistically significant difference (p = 0.0000)

– Small effect size (Cohen’s d = -0.48)

– Lieu Multi outperforms GLF3 Exp in 75% of galaxies (42/56)

(b) Lieu Multi vs Standard Dark Matter (DM) model:

– Statistically significant difference (p = 0.0000)

– Small effect size (Cohen’s d = -0.36)

– Lieu Multi outperforms DM in 86.7% of galaxies (52/60)

(c) GLF3 Exp vs DM:

– Statistically significant difference (p = 0.0000)

– Small effect size (Cohen’s d = -0.35)

– GLF3 Exp outperforms DM in 91.1% of galaxies (51/56)
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3. Model Ranking (based on AIC and BIC)

• Lieu Multi consistently ranks first (AIC: 1.95, BIC: 1.75)

• GLF3 Exp ranks second (AIC: 3.05, BIC: 2.71)

• Lieu Advanced and GLF3 Log follow closely

• Standard DM model ranks relatively low (AIC: 6.78, BIC: 6.40)

Table 1: Model Ranking Based on AIC and BIC (lower ranks are better)
Model AIC Rank BIC Rank
Lieu Multi 1.95 1.75
GLF3 Exp 3.05 2.71
Lieu Advanced 4.37 3.75
GLF3 Log 4.27 3.83
GLF Improved 4.15 5.98
GLF Original 5.05 5.18
GLF3 Poly 6.47 6.53
DM 6.78 6.40
Lieu Strict 8.30 8.28
Lieu Simple 9.90 9.90

Discussion of Result

1. Model Performance

The Lieu Multi model and GLF3 Exp model consistently outperform other models, including the standard
Dark Matter model. This suggests that these alternative approaches to understanding galactic dynamics
merit serious consideration. The Lieu Multi model, based on massless topological defects, performs
particularly well, indicating that it captures important aspects of galactic rotation curves not accounted
for in traditional models.

2. Statistical Significance

The Wilcoxon tests show highly significant differences between the top models and the standard DM
model (p = 0.0000 in all cases). This strongly suggests that these alternative models are not merely
fitting noise but are capturing genuine patterns in the data.

3. Effect Sizes

While the differences between models are statistically significant, the effect sizes are small (Cohen’s d
ranging from -0.35 to -0.48). This indicates that while the improvements are consistent, they are not
dramatically large. This could suggest that all models are capturing similar underlying physics, with the
alternative models providing incremental improvements.

4. Consistency Across Galaxies

Both Lieu Multi and GLF3 Exp models outperform the DM model in a large majority of galaxies (86.7%
and 91.1% respectively). This consistency across different galactic systems lends credibility to these
alternative approaches and suggests they may be capturing universal aspects of galactic dynamics.

5. Model Complexity and Parsimony

The high performance of the Lieu Multi model, which ranks first in both AIC and BIC, is particularly
noteworthy. AIC and BIC penalize model complexity, suggesting that the Lieu Multi model achieves its
superior fit without undue complexity. This parsimony is a strong point in its favor.

5



Discussion of Ongoing works

The study of galactic dynamics and cosmic structure formation continues to challenge our understanding
of the universe. Our analysis, which spans from large-scale cosmological observations to galactic rota-
tion curves, reveals a complex picture that suggests the need for novel approaches to explain observed
phenomena.

Cosmological Implications from BAO DESI Analysis

Our previous work on the BAO DESI data revealed intriguing results regarding the performance of
different cosmological models. The Gödelian Logical Flow (GLF) model, which incorporates logical
structures inspired by Gödel’s incompleteness theorems, showed superior performance in fitting the BAO
data compared to both the Ricci Flow model and the standard Lambda-CDM model. This suggests that
incorporating concepts from logic and geometric flows into cosmological models may provide a more
accurate description of large-scale structure formation and evolution.

The success of the GLF model at cosmological scales motivated us to explore its applicability to
smaller-scale phenomena, particularly galactic dynamics. However, the transition from cosmological to
galactic scales is not straightforward, and the model requires careful adaptation to address the specific
challenges posed by galactic rotation curves.

Galactic Dynamics and Model Comparison

While the GLF model showed promise in cosmological applications, directly applying it to galactic
rotation curves proved challenging. The complexity of galactic dynamics, including the interplay between
baryonic matter, dark matter (if it exists), and potentially unknown physical phenomena, necessitated
a more flexible approach.

Concurrently, Dr. Richard Lieu’s model of massless topological defects offered an intriguing alterna-
tive explanation for galactic rotation curves. However, applying Lieu’s model to the BAO DESI data
would require significant extensions and modifications, potentially compromising its elegant simplicity
and physical interpretability.

Given these considerations, we decided to focus our analysis on the THINGS (The HI Nearby Galaxy
Survey) dataset. This high-resolution data on nearby galaxies provides an ideal testbed for compar-
ing different models of galactic dynamics, including various iterations of the GLF model and Lieu’s
topological defect model.

Model Performance and Implications

Our analysis of the THINGS data reveals that both the GLF models (particularly the GLF3 Exp variant)
and Lieu’s models (especially the Lieu Multi model) outperform the standard dark matter model in
explaining galactic rotation curves. This suggests that alternative approaches to galactic dynamics merit
serious consideration.

The strong performance of Lieu’s model, which posits massless topological defects as an explanation
for flat rotation curves, is particularly noteworthy. Its ability to fit the data without invoking dark matter
challenges the conventional wisdom and opens up new avenues for understanding galactic structure.

However, it’s important to note that the success of these models does not necessarily mean they are
mutually exclusive. The GLF approach, with its roots in logical structures and incompleteness, and
Lieu’s topological defect model may be capturing different aspects of a more complex underlying reality.
The possibility that these models are complementary rather than competing should not be overlooked.

Implications for Dark Matter and Fundamental Physics

The success of alternative models in explaining galactic rotation curves without invoking dark matter
raises important questions about the nature of dark matter and our understanding of fundamental
physics. While these results don’t necessarily negate the existence of dark matter, they suggest that
the dark matter paradigm may need revision or that alternative explanations for galactic dynamics are
viable.

Furthermore, the potential complementarity of the GLF and Lieu models hints at a deeper connection
between logical structures, topological defects, and the fabric of spacetime. This connection could have

6



profound implications for our understanding of gravity, quantum mechanics, and the fundamental nature
of reality.

Conclusion

In conclusion, our work on both cosmological and galactic scales reveals the richness and complexity
of cosmic structure formation and evolution. The success of alternative models in explaining observed
phenomena challenges us to reconsider our fundamental assumptions about the universe and opens up
exciting new avenues for theoretical and observational exploration.
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Python Code

#!/usr/bin/env python3

# based on https://www2.mpia-hd.mpg.de/THINGS/Data.html, moment 1

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

from astropy.table import Table

from astropy.io import fits

import warnings

import os

from tabulate import tabulate

from glob import glob

from astropy.io import fits

from astropy.wcs import WCS

import pandas as pd

8



from scipy import stats

warnings.filterwarnings(’ignore’)

# Constants

G = 6.67430e-11 # Gravitational constant in m^3 kg^-1 s^-2

c = 299792458 # Speed of light in m/s

# Original simplified Lieu model

def lieu_model_simple(r, alpha, s):

return np.sqrt(alpha * c**2 / r) * np.exp(-r/s)

# Improved Lieu model based strictly on the paper

def lieu_model_strict(r, alpha, R):

v = np.sqrt(alpha * c**2)

delta = np.exp(-(r - R)**2 / (2 * 0.01**2)) / (0.01 * np.sqrt(2 * np.pi))

return v * delta

# Practical multi-shell Lieu model

def lieu_model_multi(r, alpha, R1, R2, R3, width):

v = np.sqrt(alpha * c**2)

shell_effects = np.sum([np.exp(-(r - R)**2 / (2 * width**2)) for R in [R1, R2, R3]], axis=0)

return v * shell_effects

def glf_model_original(r, alpha, beta, gamma, delta, G0, k):

"""Original Godelian Logical Flow (GLF) model for rotation curves."""

G_r = G0 * np.exp(-k * r**2 / (1 + r**2))

logical_term = np.log(1 + r) * G_r

flow_term = (1 + r)**gamma * G_r

return np.sqrt(alpha * c**2 * (1 + beta * logical_term + delta * flow_term))

def glf_model_improved(r, v0, r_s, alpha, beta, r_l, gamma, r_f, delta, epsilon, mu, nu, xi):

"""Improved Godelian Logical Flow (GLF) model for rotation curves."""

G_r = (1 + (r/r_s)**alpha)**(-beta)

logical_term = (1 + r/r_l)**gamma * G_r

flow_term = (1 + (r/r_f)**delta)**epsilon * G_r

combined_term = (logical_term**mu + flow_term**nu)**(1/xi)

return v0 * np.sqrt(combined_term)

def dm_model(r, v_max, r_s):

"""Standard dark matter model (NFW profile) for rotation curves."""

x = r / r_s

return v_max * np.sqrt((np.log(1 + x) - x / (1 + x)) / (x * (np.log(1 + x) - x / (1 + x) + 0.5 / (1 +

x)**2)))

def load_galaxy_data(file_path):

"""

Load rotation curve data from a THINGS moment 1 FITS file.

Args:

file_path (str): Path to the FITS file

Returns:

tuple: Arrays of radius (kpc), velocity (km/s), and velocity error (km/s)

"""

print(f"Loading file: {file_path}")

with fits.open(file_path) as hdul:

header = hdul[0].header

data = hdul[0].data[0, 0, :, :] # Extract 2D data

ny, nx = data.shape

wcs = WCS(header).celestial # Get 2D WCS

y, x = np.mgrid[:ny, :nx]

ra, dec = wcs.wcs_pix2world(x, y, 0)

center_ra, center_dec = wcs.wcs_pix2world(nx/2, ny/2, 0)

# Calculate radial distance

dx = (ra - center_ra) * np.cos(np.radians(center_dec))

dy = dec - center_dec

r = np.sqrt(dx**2 + dy**2)
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# Convert to physical units

pixscale = np.abs(wcs.wcs.cdelt[0])

r_kpc = r * 3600 * pixscale * 60 # Assuming 1 arcmin = 1 kpc

# Flatten and clean data

r_flat = r_kpc.flatten()

v_flat = data.flatten()

mask = ~np.isnan(v_flat)

r_clean = r_flat[mask]

v_clean = v_flat[mask]

# Reduce data points

n_points = 1000 # Adjust this number as needed

if len(r_clean) > n_points:

indices = np.linspace(0, len(r_clean) - 1, n_points, dtype=int)

r_clean = r_clean[indices]

v_clean = v_clean[indices]

# Sort data by radius

sort_idx = np.argsort(r_clean)

radius = r_clean[sort_idx]

velocity = v_clean[sort_idx]

# Convert velocity to km/s if necessary

if header.get(’BUNIT’, ’’).upper() == ’METR/SEC’:

velocity /= 1000

# Estimate velocity error (10% of the velocity range)

velocity_error = np.ones_like(velocity) * (np.max(velocity) - np.min(velocity)) * 0.1

# Convert to physical units (assuming 1 arcmin = 1 kpc)

pixscale = np.abs(wcs.wcs.cdelt[0])

r_kpc = r * 3600 * pixscale

# Convert velocity to km/s if necessary

if header.get(’BUNIT’, ’’).upper() == ’M/S’:

velocity /= 1000

print(f"Loaded data: {len(radius)} points")

return radius, velocity, velocity_error

import matplotlib as mpl

def plot_rotation_curves(galaxies):

"""

Plot rotation curves for all galaxies.

Args:

galaxies (dict): Dictionary with galaxy data

"""

# Increase the chunk size to handle more complex paths

mpl.rcParams[’agg.path.chunksize’] = 10000

for galaxy, data in galaxies.items():

plt.figure(figsize=(12, 8))

for weighting in [’NA’, ’RO’]:

if data[weighting] is not None:

radius, velocity, velocity_error = data[weighting]

plt.errorbar(radius, velocity, yerr=velocity_error, fmt=’o’, alpha=0.5, capsize=3, label=f’{

galaxy} {weighting}’)

plt.xlabel(’Radius (kpc)’, fontsize=12)

plt.ylabel(’Velocity (km/s)’, fontsize=12)

plt.title(f’Rotation Curve - {galaxy}’, fontsize=14)

plt.legend(fontsize=10)

plt.grid(True, linestyle=’--’, alpha=0.7)

plt.tick_params(axis=’both’, which=’major’, labelsize=10)

plt.tight_layout()

plt.savefig(f’{galaxy}_rotation_curve.png’, dpi=300)

plt.close()

# Plot all galaxies on one figure

plt.figure(figsize=(15, 10))

for galaxy, data in galaxies.items():
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for weighting in [’NA’, ’RO’]:

if data[weighting] is not None:

radius, velocity, _ = data[weighting]

plt.plot(radius, velocity, ’-’, label=f’{galaxy} {weighting}’, linewidth=1, alpha=0.7)

plt.xlabel(’Radius (kpc)’, fontsize=12)

plt.ylabel(’Velocity (km/s)’, fontsize=12)

plt.title(’Rotation Curves - All Galaxies’, fontsize=14)

plt.legend(fontsize=10, loc=’center left’, bbox_to_anchor=(1, 0.5))

plt.grid(True, linestyle=’--’, alpha=0.7)

plt.tick_params(axis=’both’, which=’major’, labelsize=10)

plt.tight_layout()

plt.savefig(’all_galaxies_rotation_curves.png’, dpi=300, bbox_inches=’tight’)

plt.close()

def lieu_model(r, alpha, s):

"""Lieu’s model for rotation curves based on massless topological defects."""

return np.sqrt(alpha * c**2 / r) * np.exp(-r/s)

def fit_model(model, r, v, v_err, p0):

try:

popt, pcov = curve_fit(model, r, v, p0=p0, sigma=v_err, absolute_sigma=True, maxfev=50000)

return popt, np.sqrt(np.diag(pcov))

except RuntimeError as e:

print(f"Fit failed for {model.__name__}: {str(e)}")

return p0, np.ones_like(p0) * np.inf # Return initial guess and infinite errors

def compute_aic(model, params, r, v, v_err):

"""Compute the Akaike Information Criterion (AIC) for a model."""

residuals = v - model(r, *params)

sse = np.sum((residuals / v_err)**2)

n = len(v)

k = len(params)

aic = 2*k + n*np.log(sse/n)

return aic

def compute_bic(model, params, r, v, v_err):

"""Compute the Bayesian Information Criterion (BIC) for a model."""

residuals = v - model(r, *params)

sse = np.sum((residuals / v_err)**2)

n = len(v)

k = len(params)

bic = k*np.log(n) + n*np.log(sse/n)

return bic

def load_all_galaxies(data_dir):

galaxies = {}

# Use glob to find all FITS files

fits_files = glob(os.path.join(data_dir, ’**’, ’*MOM1_THINGS.FITS’), recursive=True)

for file_path in fits_files:

galaxy_name = extract_galaxy_name(file_path)

if galaxy_name not in galaxies:

galaxies[galaxy_name] = {’NA’: None, ’RO’: None}

try:

if ’NA’ in file_path:

galaxies[galaxy_name][’NA’] = load_galaxy_data(file_path)

elif ’RO’ in file_path:

galaxies[galaxy_name][’RO’] = load_galaxy_data(file_path)

except Exception as e:

print(f"Error loading data for {galaxy_name} ({file_path}):")

print(f"Error type: {type(e).__name__}")

print(f"Error message: {str(e)}")

return galaxies

def extract_galaxy_name(file_path):

import re

"""

Extract the galaxy name from the file path.
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Args:

file_path (str): Path to the FITS file

Returns:

str: Extracted galaxy name

"""

# Extract the filename from the path

filename = os.path.basename(file_path)

# Use regex to match galaxy name patterns

match = re.match(r’(NGC_?\d+|DDO_?\d+|[A-Za-z]+_?\d+)_’, filename)

if match:

return match.group(1)

else:

# If no match found, use the directory name as a fallback

return os.path.basename(os.path.dirname(file_path))

# Now, update your analyze_galaxy function to include these new models:

def analyze_galaxy(file_path):

galaxy_name = extract_galaxy_name(file_path)

try:

r, v, v_err = load_galaxy_data(file_path)

except Exception as e:

print(f"Error loading data for {galaxy_name}: {str(e)}")

return None

# Fit models

models_to_fit = [

(’lieu_simple’, lieu_model_simple, [1e-6, 1e20]),

(’lieu_strict’, lieu_model_strict, [1e-6, 20]),

(’lieu_multi’, lieu_model_multi, [1e-6, 10, 20, 30, 5]),

(’lieu_advanced’, lieu_model_advanced, [1e-6, 1.0, 0.1, 10, 0.15]),

(’glf_original’, glf_model_original, [1e-6, 1, 1, 1e-6, 1, 1e-2]),

(’glf_improved’, glf_model_improved, [200, 10, 1, 1, 10, 1, 10, 1, 1, 1, 1, 1]),

(’glf3_exp’, glf3_exp, [200, 0.1, 0.1, 2, 10]),

(’glf3_log’, glf3_log, [200, 0.1, 0.1, 2, 10]),

(’glf3_poly’, glf3_poly, [200, 0.1, 0.1, 0.1, 0.1, 10]),

(’dm’, dm_model, [200, 20])

]

results = {’galaxy’: galaxy_name}

for name, model, p0 in models_to_fit:

popt, perr = fit_model(model, r, v, v_err, p0)

if popt is not None:

aic = compute_aic(model, popt, r, v, v_err)

bic = compute_bic(model, popt, r, v, v_err)

results[name] = {’params’: popt, ’errors’: perr, ’aic’: aic, ’bic’: bic}

else:

results[name] = None

# Plot results

plt.figure(figsize=(12, 8))

plt.errorbar(r, v, yerr=v_err, fmt=’o’, alpha=0.5, label=’Data’)

r_smooth = np.linspace(r.min(), r.max(), 500)

for name, model, _ in models_to_fit:

if results[name] is not None:

plt.plot(r_smooth, model(r_smooth, *results[name][’params’]), label=f’{name} model’)

plt.xlabel(’Radius (kpc)’)

plt.ylabel(’Velocity (km/s)’)

plt.legend()

plt.title(f’Rotation curve models for {galaxy_name}’)

plt.savefig(f’{galaxy_name}_rotation_curve.png’)

plt.close()

return results

def analyze_model_performance(data):

# Convert the data to a pandas DataFrame
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df = pd.DataFrame(data, columns=["Galaxy",

"Lieu Simple AIC", "Lieu Simple BIC",

"Lieu Strict AIC", "Lieu Strict BIC",

"Lieu Multi AIC", "Lieu Multi BIC",

"Lieu Advanced AIC", "Lieu Advanced BIC",

"GLF Original AIC", "GLF Original BIC",

"GLF Improved AIC", "GLF Improved BIC",

"GLF3 Exp AIC", "GLF3 Exp BIC",

"GLF3 Log AIC", "GLF3 Log BIC",

"GLF3 Poly AIC", "GLF3 Poly BIC",

"DM AIC", "DM BIC"])

# Convert AIC and BIC columns to float, replacing ’N/A’ with NaN

for col in df.columns[1:]: # Skip the ’Galaxy’ column

df[col] = pd.to_numeric(df[col], errors=’coerce’)

narrative = "Detailed Statistical Analysis of Galaxy Model Performance\n\n"

# 1. Friedman Test

models = [’Lieu Simple’, ’Lieu Strict’, ’Lieu Multi’, ’Lieu Advanced’,

’GLF Original’, ’GLF Improved’, ’GLF3 Exp’, ’GLF3 Log’, ’GLF3 Poly’, ’DM’]

friedman_data = df[[f’{model} AIC’ for model in models]].dropna()

if len(friedman_data) > 1: # Ensure we have enough data for the test

statistic, p_value = stats.friedmanchisquare(*[friedman_data[col] for col in friedman_data.columns

])

narrative += "1. Overall Comparison of Models (Friedman Test):\n"

narrative += f" Statistic: {statistic:.2f}, p-value: {p_value:.4f}\n"

if p_value < 0.05:

narrative += " There are significant differences among the models’ performances.\n"

narrative += " Pairwise Wilcoxon signed-rank tests:\n"

for i, model1 in enumerate(models):

for j, model2 in enumerate(models):

if i < j:

valid_data = df[[f’{model1} AIC’, f’{model2} AIC’]].dropna()

if len(valid_data) > 1:

_, p = stats.wilcoxon(valid_data[f’{model1} AIC’], valid_data[f’{model2} AIC’])

narrative += f" - {model1} vs {model2}: {’Significant’ if p < 0.05 else ’Not

significant’} (p = {p:.4f})\n"

else:

narrative += f" - {model1} vs {model2}: Insufficient data for comparison\n"

else:

narrative += " There are no significant differences among the models’ performances.\n"

else:

narrative += "1. Overall Comparison of Models (Friedman Test):\n"

narrative += " Insufficient data for Friedman test\n"

# 2. Best Model Identification

lieu_models = [’Lieu Simple’, ’Lieu Strict’, ’Lieu Multi’, ’Lieu Advanced’]

glf_models = [’GLF Original’, ’GLF Improved’, ’GLF3 Exp’, ’GLF3 Log’, ’GLF3 Poly’]

best_lieu = min(lieu_models, key=lambda m: df[f’{m} AIC’].mean())

best_glf = min(glf_models, key=lambda m: df[f’{m} AIC’].mean())

narrative += f"\n2. Best Performing Models:\n"

narrative += f" - Best Lieu model: {best_lieu}\n"

narrative += f" - Best GLF model: {best_glf}\n"

# 3. Detailed Comparison of Best Models

narrative += "\n3. Detailed Comparison of Best Models:\n"

def compare_models(model1, model2):

valid_data = df[[f’{model1} AIC’, f’{model2} AIC’]].dropna()

if len(valid_data) > 1:

wilcoxon_statistic, wilcoxon_p_value = stats.wilcoxon(valid_data[f’{model1} AIC’], valid_data[f

’{model2} AIC’])

effect_size = (valid_data[f’{model1} AIC’].mean() - valid_data[f’{model2} AIC’].mean()) / np.

std(valid_data[f’{model1} AIC’] - valid_data[f’{model2} AIC’])

n_model1_wins = sum(valid_data[f’{model1} AIC’] < valid_data[f’{model2} AIC’])

binomial_p_value = stats.binom_test(n_model1_wins, len(valid_data), p=0.5)

comparison = f" {model1} vs {model2}:\n"
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comparison += f" - Wilcoxon test: {’Significant’ if wilcoxon_p_value < 0.05 else ’Not

significant’} (p = {wilcoxon_p_value:.4f})\n"

comparison += f" - Effect size (Cohen’s d): {effect_size:.2f} ({’Small’ if abs(effect_size) <

0.5 else ’Medium’ if abs(effect_size) < 0.8 else ’Large’})\n"

comparison += f" - {model1} outperforms {model2} in {n_model1_wins}/{len(valid_data)} galaxies

(Binomial test p = {binomial_p_value:.4f})\n"

else:

comparison = f" {model1} vs {model2}: Insufficient data for comparison\n"

return comparison

narrative += compare_models(best_lieu, best_glf)

narrative += compare_models(best_lieu, ’DM’)

narrative += compare_models(best_glf, ’DM’)

# 4. Model Ranking

aic_ranks = df.iloc[:, 1::2].rank(axis=1, method=’min’)

bic_ranks = df.iloc[:, 2::2].rank(axis=1, method=’min’)

narrative += "\n4. Model Ranking:\n"

narrative += " Average ranks (lower is better):\n"

for model in models:

avg_aic_rank = aic_ranks[f’{model} AIC’].mean()

avg_bic_rank = bic_ranks[f’{model} BIC’].mean()

narrative += f" - {model}: AIC rank = {avg_aic_rank:.2f}, BIC rank = {avg_bic_rank:.2f}\n"

# 5. AIC and BIC Differences

narrative += "\n5. AIC and BIC Differences:\n"

for model in models:

aic_diff = df[f’{model} AIC’] - df[f’{best_lieu} AIC’]

bic_diff = df[f’{model} BIC’] - df[f’{best_lieu} BIC’]

narrative += f" {model} vs {best_lieu}:\n"

narrative += f" - Mean AIC difference: {aic_diff.mean():.2f} (std: {aic_diff.std():.2f})\n"

narrative += f" - Mean BIC difference: {bic_diff.mean():.2f} (std: {bic_diff.std():.2f})\n"

return narrative

def main():

data_dir = ’/Users/quantmann/Documents/THINGS_data’

galaxies = load_all_galaxies(data_dir)

# Plot rotation curves

plot_rotation_curves(galaxies)

results = []

for galaxy, data in galaxies.items():

print(f"Analyzing {galaxy}:")

for weighting in [’NA’, ’RO’]:

if data[weighting] is not None:

radius, velocity, velocity_error = data[weighting]

# Construct file path using the original galaxy name

file_path = glob(os.path.join(data_dir, ’**’, f’{galaxy}*{weighting}*MOM1_THINGS.FITS’),

recursive=True)

if file_path:

result = analyze_galaxy(file_path[0])

if result:

results.append(result)

print(f" {weighting} data analyzed")

else:

print(f" No {weighting} data file found for {galaxy}")

else:

print(f" No {weighting} data")

print()

# Summarize results

print(f"\nAnalyzed {len(results)} galaxy datasets")

print("\nSummary of results:")

table_data = []

for result in results:

row = [result[’galaxy’]]

for model in [’lieu_simple’, ’lieu_strict’, ’lieu_multi’, ’lieu_advanced’, ’glf_original’, ’

glf_improved’, ’glf3_exp’, ’glf3_log’, ’glf3_poly’, ’dm’]:

if model in result and result[model]:

row.extend([f"{result[model][’aic’]:.2f}", f"{result[model][’bic’]:.2f}"])
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else:

row.extend(["N/A", "N/A"])

table_data.append(row)

headers = ["Galaxy",

"Lieu Simple AIC", "Lieu Simple BIC",

"Lieu Strict AIC", "Lieu Strict BIC",

"Lieu Multi AIC", "Lieu Multi BIC",

"Lieu Advanced AIC", "Lieu Advanced BIC",

"GLF Original AIC", "GLF Original BIC",

"GLF Improved AIC", "GLF Improved BIC",

"GLF3 Exp AIC", "GLF3 Exp BIC",

"GLF3 Log AIC", "GLF3 Log BIC",

"GLF3 Poly AIC", "GLF3 Poly BIC",

"DM AIC", "DM BIC"]

if table_data:

print(tabulate(table_data, headers=headers, tablefmt="grid"))

else:

print("No valid results to display in the table.")

# Perform statistical analysis

narrative = analyze_model_performance(table_data)

print("\nStatistical Analysis:")

print(narrative)

def delta_approx(r, R, epsilon=1e-6):

"""Approximation of delta function."""

return np.where(np.abs(r - R) < epsilon, 1/(2*epsilon), 0)

def lieu_model_advanced(r, alpha, R_0, spacing_factor, n_shells, baryon_fraction):

"""

Advanced Lieu model with multiple shells, variable spacing, and baryonic component.

This model aims to more closely represent the theoretical model described in Lieu’s paper.

It includes multiple shells with increasing spacing, a logarithmic gravitational potential,

and a simplified baryonic component.

Parameters:

r : array-like, radial distances (kpc)

alpha : float, model parameter related to the strength of the gravitational effect

R_0 : float, radius of the first shell (kpc)

spacing_factor : float, factor by which shell spacing increases

n_shells : int, number of shells

baryon_fraction : float, fraction of mass in baryons

Returns:

array-like, rotation velocities (km/s)

"""

v = np.sqrt(alpha * c**2)

# Calculate shell radii with increasing spacing

shell_radii = R_0 * np.cumprod(np.full(int(n_shells), 1 + spacing_factor))

# Sum effects of all shells

shell_effects = np.sum([delta_approx(r, R) for R in shell_radii], axis=0)

# Gravitational potential term

potential_term = np.log(1 + r/R_0)

# Baryonic term (simplified model assuming NFW-like profile)

baryonic_term = baryon_fraction * (np.log(1 + r/R_0) - r/(r + R_0))

return v * (shell_effects + potential_term + baryonic_term)

def glf3_exp(r, v0, alpha, beta, gamma, r_s):

"""GLF3 model with exponential term"""

return v0 * np.sqrt(alpha * np.exp(-r/r_s) + beta * (r/r_s)**gamma)

def glf3_log(r, v0, alpha, beta, gamma, r_s):

"""GLF3 model with logarithmic term"""

return v0 * np.sqrt(alpha * np.log(1 + r/r_s) + beta * (r/r_s)**gamma)
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def glf3_poly(r, v0, alpha, beta, gamma, delta, r_s):

"""GLF3 model with polynomial terms"""

return v0 * np.sqrt(alpha * (r/r_s) + beta * (r/r_s)**2 + gamma * (r/r_s)**3 + delta * (r/r_s)**4)

def fit_glf3_model(r, v, v_err, model):

"""Fit the GLF3 model to data"""

if model.__name__ == ’glf3_poly’:

p0 = [100, 0.1, 0.1, 0.1, 0.1, 10] # Initial guess for poly model

else:

p0 = [100, 0.1, 0.1, 2, 10] # Initial guess for exp and log models

popt, pcov = curve_fit(model, r, v, p0=p0, sigma=v_err, absolute_sigma=True, maxfev=10000)

return popt, pcov

def plot_glf3_model(r, v, v_err, popt, model):

"""Plot the data and the fitted GLF3 model"""

plt.figure(figsize=(10, 6))

plt.errorbar(r, v, yerr=v_err, fmt=’o’, label=’Data’)

r_smooth = np.linspace(r.min(), r.max(), 500)

v_fit = model(r_smooth, *popt)

plt.plot(r_smooth, v_fit, label=f’GLF3 {model.__name__} Model’)

plt.xlabel(’Radius (kpc)’)

plt.ylabel(’Velocity (km/s)’)

plt.legend()

plt.title(f’GLF3 {model.__name__} Model Fit’)

plt.show()

if __name__ == "__main__":

main()
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