Primality criterion for $N = 4 \cdot 3^n - 1$

Predrag Terzic´

Bulevar Pera Ćetkovića 139, Podgorica, Montenegro e-mail: predrag.terzic@protonmail.com

Abstract: Polynomial time primality test for numbers of the form $4 \cdot 3^n - 1$ is introduced. Keywords: Primality test , Polynomial time , Prime numbers . AMS Classification: 11A51 .

Theorem 0.1. Let $N = 4 \cdot 3^n - 1$ where $n \ge 0$. Let $S_i = S_{i-1}^3 - 3S_{i-1}$ with $S_0 = 6$. Then N is *prime iff* $S_n \equiv 0 \pmod{N}$.

Proof. The sequence $\langle S_i \rangle$ is a reccurence relation with a closed-form solution. Let $\omega = 3 + \sqrt{8}$ and $\bar{\omega} = 3 -$ √ $\overline{8}$. It then follows by induction that $S_i = \omega^{3^i} + \overline{\omega}^{3^i}$ for all i: and $\omega = 3 - \sqrt{8}$. It then follows by
 $S_0 = \omega^{3^0} + \bar{\omega}^{3^0} = (3 + \sqrt{8}) + (3 - \sqrt{8})$ √ $(8) = 6$ $S_n = S_{n-1}^3 - 3S_{n-1} =$ $=\left(\omega^{3^{n-1}}+\bar{\omega}^{3^{n-1}}\right)^3-3\left(\omega^{3^{n-1}}+\bar{\omega}^{3^{n-1}}\right)=$ $=\omega^{3^n}+3\omega^{2\cdot3^{n-1}}\bar{\omega}^{3^{n-1}}+3\omega^{3^{n-1}}\bar{\omega}^{2\cdot3^{n-1}}+\bar{\omega}^{3^n}-3\omega^{3^{n-1}}-3\bar{\omega}^{3^{n-1}}=$ $=\omega^{3^n}+3\omega^{3^{n-1}}(\omega\bar{\omega})^{3^{n-1}}+3\bar{\omega}^{3^{n-1}}(\omega\bar{\omega})^{3^{n-1}}+\bar{\omega}^{3^n}-3\omega^{3^{n-1}}-3\bar{\omega}^{3^{n-1}}=$ $=\omega^{3^n}+\bar{\omega}^{3^n}$ √

The last step uses $\omega \bar{\omega} = (3 + \sqrt{8})(3 - \sqrt{8})$ $(8) = 1$.

Necessity

If N is prime then S_n is divisible by $4 \cdot 3^n - 1$.

For $n = 0$ we have $N = 3$ and $S_0 = 6$, so $N \mid S_0$, otherwise since $4 \cdot 3^n - 1 \equiv 11 \pmod{12}$ for odd $n \geq 1$ it follows from properties of the Legendre symbol that $\left(\frac{3}{\Lambda}\right)$ $\left(\frac{3}{N}\right) = 1$. This means that 3 is a quadratic residue modulo N. By Euler's criterion, this is equivalent to $3^{\frac{N-1}{2}} \equiv 1 \pmod{N}$. Since $4 \cdot 3^n - 1 \equiv 3 \pmod{8}$ for odd $n \ge 1$ it follows from properties of the Legendre symbol that $\left(\frac{2}{\lambda}\right)$ $\left(\frac{2}{N}\right) = -1$. This means that 2 is a quadratic nonresidue modulo N. By Euler's criterion, this is equivalent to $2^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Combining these two equivalence relations yields

 $72^{\frac{N-1}{2}} = \left(2^{\frac{N-1}{2}}\right)^3 \left(3^{\frac{N-1}{2}}\right)^2 \equiv (-1)^3 (1)^2 \equiv -1 \pmod{N}$

Let $\sigma = 3\sqrt{8}$ and define X as the ring $X = \{a+b\}$ $\sqrt{8} | a, b \in \mathbb{Z}_N \}$. Then in the ring X, it follows that

$$
(12 + \sigma)^N = 12^N + 3^N (\sqrt{8})^N =
$$

= 12 + 3 \cdot 8^{\frac{N-1}{2}} \cdot \sqrt{8} =
= 12 + 3(-1)\sqrt{8} =

 $= 12 - \sigma$,

where the first equality uses the Binomial Theorem in a finite field, and the second equality uses Fermat's little theorem.

The value of σ was chosen so that $\omega =$ $(12 + \sigma)^2$ $\frac{+0}{72}$. This can be used to compute $\omega^{\frac{N+1}{2}}$ in the ring \overline{Y} as

$$
\frac{\Delta \text{ as}}{\omega^{\frac{N+1}{2}}} = \frac{(12+\sigma)^{N+1}}{72^{\frac{N+1}{2}}} =
$$

$$
= \frac{(12+\sigma)(12+\sigma)^N}{72 \cdot 72^{\frac{N-1}{2}}} =
$$

$$
= \frac{(12+\sigma)(12-\sigma)}{-72} =
$$

$$
= -1.
$$

Next, multiply both sides of this equation by $\bar{\omega}^{\frac{N+1}{4}}$ and use $\omega \bar{\omega} = 1$ which gives $\omega^{\frac{N+1}{2}}\bar{\omega}^{\frac{N+1}{4}}=-\bar{\omega}^{\frac{N+1}{4}}$

$$
\omega^{\frac{N+1}{4}} + \bar{\omega}^{\frac{N+1}{4}} = 0
$$

\n
$$
\omega^{\frac{4 \cdot 3^{n} - 1 + 1}{4}} + \bar{\omega}^{\frac{4 \cdot 3^{n} - 1 + 1}{4}} = 0
$$

\n
$$
\omega^{3^{n}} + \bar{\omega}^{3^{n}} = 0
$$

\n
$$
S_n = 0
$$

Since S_n is 0 in X it is also 0 modulo N.

Sufficiency

If S_n is divisible by $4 \cdot 3^n - 1$ then $4 \cdot 3^n - 1$ is prime.

For $n = 0$ we have $N = 3$ and $S_0 = 6$, so $N \mid S_n$ and N is prime, otherwise consider the sequences:

$$
U_0 = 0, U_1 = 1, U_{n+1} = 6U_n - U_{n-1}
$$

$$
V_0 = 2, V_1 = 6, V_{n+1} = 6V_n - V_{n-1}
$$

The following equations can be proved by induction:

(1):
$$
V_n = U_{n+1} - U_{n-1}
$$

\n(2): $U_n = \frac{(3 + \sqrt{8})^n - (3 - \sqrt{8})^n}{\sqrt{32}}$
\n(3): $V_n = (3 + \sqrt{8})^n + (3 - \sqrt{8})^n$
\n(4): $U_{m+n} = U_m U_{n+1} - U_{m-1} U_n$

Now let p be a prime and $e \geq 1$. Suppose $U_n \equiv 0 \pmod{p^e}$. Then $U_n = bp^e$ for some b. Let $U_{n+1} = a$. By the recurrence relation and (4), we have:

$$
U_{2n} = bp^{e} (2a - 6bp^{e}) \equiv 2aU_{n} \pmod{p^{e+1}}
$$

\n
$$
U_{2n+1} = U_{n+1}^{2} - U_{n}^{2} \equiv a^{2} \pmod{p^{e+1}}
$$

\nSimilarly:
\n
$$
U_{3n} = U_{2n+1}U_{n} - U_{2n}U_{n-1} \equiv 3a^{2}U_{n} \pmod{p^{e+1}}
$$

\n
$$
U_{3n+1} = U_{2n+1}U_{n+1} - U_{2n}U_{n} \equiv a^{3} \pmod{p^{e+1}}
$$

\nIn general:
\n
$$
U_{kn} \equiv ka^{k-1}U_{n} \pmod{p^{e+1}}
$$

\n
$$
U_{kn+1} \equiv a^{k} \pmod{p^{e+1}}
$$

Taking $k = p$ we get: (5) : $U_n \equiv 0 \pmod{p^e} \leadsto U_{np} \equiv 0 \pmod{p^{e+1}}$ Expanding $(3 \pm \sqrt{8})^n$ by the Binomial Theorem we find that (2) and (3) give us: $U_n = \sum$ k $\binom{n}{2k+1}$ $3^{n-2k-1}8^k$ $V_n = \sum$ k $\left(n\right)$ $2k$ \setminus $2 \cdot 3^{n-2k}8^k$

Let us set $n = p$ where p is an odd prime. From Binomial Coefficient of Prime $\binom{p}{k}$ $\binom{p}{k}$ is a multiple of p except when $k = 0$ or $k = p$. We find that:

 $U_p \equiv 8^{\frac{p-1}{2}} \pmod{p}$ $V_p \equiv 6 \pmod{p}$ If $p \neq 2$ then by Fermat's Little Theorem $8^{p-1} \equiv 1 \pmod{p}$ Hence: $\left(8^{\frac{p-1}{2}}-1\right)\left(8^{\frac{p-1}{2}}+1\right) \equiv 0 \pmod{p}$ $8^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$ When $U_p \equiv -1 \pmod{p}$ we have: $U_{p+1} = 6U_p - U_{p-1} = 6U_p + V_p - U_{p+1} \equiv -U_{p+1} \pmod{p}$ Hence: $U_{p+1} \equiv 0 \pmod{p}$ When $U_p \equiv +1 \pmod{p}$ we have: $U_{p-1}=6U_{p}-U_{p+1}=6U_{p}-V_{p}-U_{p-1}\equiv-U_{p-1}\pmod{p}$ Hence: $U_{p-1} \equiv 0 \pmod{p}$ Thus we have shown that: (6) : $\forall p \in \mathbb{P}$: $\exists \epsilon(p)$: $U_{p+\epsilon(p)} \equiv 0 \pmod{p}$ where $\epsilon(p)$ is an integer such that $|\epsilon(p)| \leq 1$. Now let $N \in \mathbb{N}$ Let $m \in \mathbb{N}$ such that $m(N)$ is the smallest positive integer such that: $U_{m(N)} \equiv 0 \pmod{N}$ Let $a \equiv U_{m+1} \pmod{N}$ Then $a \perp N$ because $\gcd\{U_n, U_{n+1}\} = 1$ Hence the sequence: $U_m, U_{m+1}, U_{m+2}, \ldots$ is congruent modulo N to $aU_0, aU_1.aU_2, \ldots$ Then we have: (7) : $U_n \equiv 0 \pmod{N} \Longleftrightarrow n = km(N)$ for some integer k . (This number $m(N)$ is called the rank of apparition of N in the sequence.) We have the identity: $2U_{n+1} = 6U_n + V_n$

So any common factor of U_n and V_n must divide U_n and $2U_{n+1}$.

As $U_n \perp U_{n+1}$; this implies that $gcd{U_n, V_n} \leq 2$.

So U_n and V_n have no odd factor in common.

So if $S_n \equiv 0 \pmod{4 \cdot 3^n - 1}$:

 $U_{2\cdot3^n} = U_{3^n}V_{3^n} \equiv 0 \pmod{4\cdot3^n-1}$

 $U_{3^n} \not\equiv 0 \pmod{4 \cdot 3^n - 1}$

Now, if $m = m(4 \cdot 3^n - 1)$ is the rank of apparition of $4 \cdot 3^n - 1$ it mas be divisor of $2 \cdot 3^n$ but not of 3^n . So $m = 2 \cdot 3^n$.

Now we prove that $N = 4 \cdot 3^n - 1$ must therefore be prime.

Let the prime decomposition of N be $p_1^{e_1} \dots p_r^{e_r}$.

All primes p_j are greater than 3 because N is odd and congruent to -1 modulo 3.

From (5), (6), (7) we know that
$$
U_t \equiv 0 \pmod{4 \cdot 3^n - 1}
$$
, where:
\n $t = \text{lcm} \{x_1^{e_1-1}(x_1 + \epsilon_1) \}$

$$
t = \operatorname{lcm}\{p_1^{e_1-1}(p_1 + \epsilon_1), \ldots, p_r^{e_r-1}(p_r + \epsilon_r)\}\
$$

where each $\epsilon_i = \pm 1$.

It follows that t is a multiple of $m = 2 \cdot 3^n$.

Let
$$
N_0 = \prod_{j=1}^r p_j^{e_j - 1}(p_j + \epsilon_j)
$$
.
We have:

We have:

$$
N_0 \le \prod_{j=1}^r p_j^{e_j - 1} \left(p_j + \frac{p_j}{5} \right) = \left(\frac{6}{5} \right)^r N
$$

Also because $p_j + \epsilon_j$ is even $t \leq \frac{N_0}{2r_0}$ $\frac{20}{2^{r-1}}$ because a factor of 2 is lost every time the LCM of two even numbers is taken.

■

Combining these results, we have:

$$
m \le t \le 2\left(\frac{3}{5}\right)^r N \le 4\left(\frac{3}{5}\right)^r N < 3m
$$
\nHence $r \le 2$ and $t = m$ or $t = 2m$

Therefore $e_1 = 1$ and $e_r = 1$

If N is not prime, we must have:

 $N = 4 \cdot 3^n - 1 = (2 \cdot 3^k + 1) (2 \cdot 3^l - 1)$ where $(2 \cdot 3^k + 1)$ and $(2 \cdot 3^l - 1)$ are prime.

When n is odd, that last factorization is obviously impossible, so N is prime.