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Abstract

By recognising that Newtonian gravity is a manifestation of the time
curvature in a four-dimensional Lorentzian manifold as in Einstein's
general theory of relativity(GR), it can be shown that space and time
are completely regular in the neighbourhood of a static point mass,
and that a black hole and event horizon are mathematical artefacts. In
addition, this also leads to the conclusion that superluminal velocities
do not occur and that gravity does not diverge to in�nity as masses ap-
proach each other, which also removes the singularity at the coordinate
origin.

1 Introduction
Black holes play a central part in the current paradigm in cosmology
and astrophysics, and are believed to be ubiquitous in the universe. The
solution of Einstein's theory of general relativity for the curvature of
spacetime near a point mass can be used to justify their prediction, and
in the meantime, observational evidence for their existence has been
claimed via two experimental techniques: gravitational wave signals
[1], and the so-called EHT telescope [2]. However, looking back over
the history of the subject, I am convinced that a crucial error was made
that resulted in the concept of a black hole becoming falsely promoted.
It is this theoretical aspect that I am going to concern myself with in
this paper.

2 Background theory
The �rst person to obtain a solution for the gravitational �eld outside
a point mass using general relativity (GR) was Karl Schwarzschild in
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1916 [3], less than a year after Albert Einstein published his GR theory
[4]. Using my nomenclature, a spacetime increment may be written in
spherical polar coordinates (t, r, θ, φ) as:

ds̃2 = c2dt′2 = Ac2dt2 −B dr2 − C(dθ2 + sin2 θ dφ2) (1)

where A,B and C are radially dependent functions describing the cur-
vature of the time, radial and angular metric coe�cients, respectively; c
is the speed of light, dt′ is an increment of proper time, dt an increment
of coordinate time, and dr is a radial increment. This is, I believe, the
most general description for a spherically symmetric space that must
prevail in the neighbourhood of an isolated static point mass. How-
ever, as I shall explain later, a di�erent form for the metric is usually
adopted, in which C is replaced by r2, and r should then be construed
as a di�erent radial coordinate.

Next, from the metric, the calculus of variations is used to obtain
geodesic equations for the four variables (t, r, θ, φ). One obtains:

ẗ +
A′

A
ṙṫ = 0

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 − C ′

2B

(
θ̇2 + sin2 θ φ̇2

)
= 0

θ̈ +
C ′

C
θ̇ṙ − sin θ cos θ φ̇2 = 0

φ̈ +
C ′

C
φ̇ṙ + 2 cot θ θ̇φ̇ = 0 (2)

The equation of interest for describing the radial free-fall of a test
particle directly towards the mass at the origin is the second of these
expressions, which leads to the following equation of motion for free-
fall:

r̈ +
A′

2B
c2ṫ2 +

B′

2B
ṙ2 = 0 (3)

where r̈ ( = d2r/dt′2) is the proper acceleration, ṙ (= dr/dt′) is the
proper velocity, A′ = dA/dr and B′ = dB/dr. Using the radial part
of the metric in Equation 1 to eliminate ṫ (with dθ = dφ = 0), we can
then reformulate Equation 3 as:

r̈ +
A′

2AB
c2 +

(
A′

2A
+

B′

2B

)
ṙ2 = 0 (4)

Einstein's �eld equations of GR enable us to �nd the way A, B
and C relate to each other. Christo�el curvature coe�cients are found
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from the geodesic equations and then used to obtain the Ricci tensor
components Rab. The components that are not trivially zero are, as
follows:

Rtt = c2 A′′

2B
− c2A′B′

4B2
− c2 A2

4AB
+ c2 A′C ′

2BC
; gtt = −c2A

Rrr = −A′′

2A
+

A′B′

4AB
+

A′2

4A2
+

B′C ′

2BE
− C ′′

C
+

C ′2

2C2
; grr = B

Rθθ = 1− C ′′

2B
+

B′C ′

4B2
− A′C ′

4AB
; gθθ = C (5)

with an equivalent equation to the third for Rφφ. For the vacuum
outside the point mass, Rab are set to zero to satisfy Einstein's GR
�eld equations. Accordingly, we then obtain from Equations 5 the
following pair of simultaneous equations relating A,B and C:

A′

A
+

B′

B
=

2C ′′

C ′ −
C ′

C
;

A′

A
− B′

B
= −2C ′′

C ′ +
4B

C ′ (6)

Since there are only two independent equations for the three functions,
A,B, and C, it means they cannot be solved explicitly, without some
additional condition or assumption.

To circumvent this problem, as mentioned above, C is replaced by
r2, which in e�ect removes one of the unknowns and allows an ex-
act solution to be obtained with two unknowns and two simultaneous
equations. The angular part of the metric then appears as it would
for a �at spatial metric, and A and B are constrained in some way to
be related to each other. This procedure essentially amounts to intro-
ducing a new radial coordinate, and the coordinates are then called
Schwarzschild coordinates (in honour of Schwarzschild's name). This
new radial coordinate is not the same as r in Equation 1, but is mea-
sured as the circumference divided by 2π of a sphere centred around
the massive body (e.g. [5],[6]).

Replacing C with r2, Equations 6 become
A′

A
+

B′

B
= 0 ;

A′

A
− B′

B
= −2(B − 1)

r
(7)

which can now be solved to give:

A =
1

B
= 1− α

r
(8)

where α is a constant of integration.
To relate the geometry of GR expressed via the constant of integra-

tion α to physical quantities such as Newton's gravitational constant
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G and the mass of the object causing gravity M , it is customary to
make use of Newton's law of gravitation, in what is called a weak-�eld
approximation. Inserting B = 1/A from Equation 8 into the free-fall
equation of motion (Equation 4), one then obtains:

r̈ +
A′c2

2
= 0

or
r̈ = −

1
2
αc2

r2
(9)

with A′ = α/r2 from Equation 8. This appears to agree with the
inverse-square behaviour of Newton's law of gravitation, in which free-
fall acceleration is −GM/r2, giving α = 2GM/c2, which is a positive
quantity known variously as the gravitational radius or Schwarzschild
radius. This deduction is based on the tacit assumption that we may
compare or identify the proper acceleration in GR with the absolute
acceleration in Newton's law. The quantity α turns out to represent
only a small distance, about 2.9 km for a star the mass of the Sun and
8.7 mm for Earth. However, for a supermassive object, such as the
centre of the Milky Way galaxy it could be approximately 12 million
kilometres.

The solution in Equation 8 thus predicts that A and B change sign
at this radial coordinate r = α. For a point (or highly compacted) mass
with physical radius less than α, it therefore seems that a discontinuity
may occur in spacetime, and the distance α has become known as the
event horizon of a black hole.

3 Discussion and further theory
Historically, Schwarzschild recognised the presence of a mathematical
discontinuity in his solution, but by de�ning a suitable auxiliary ra-
dial coordinate he forced the discontinuity to be at the origin, since
he believed it to be non-physical. Shortly afterwards Droste [7] and
Weyl [8] provided a solution, but restricted the range of r to r > α.
Subsequently, Hilbert [9] extended Droste and Weyl's solution to the
region r < α on the grounds that a coordinate transformation does not
alter the physics of the situation, and GR is supposed to be a gener-
ally covariant theory. It is essentially Hilbert's solution allowing for a
change in sign of A and B, that is accepted today

Throughout his life, Einstein himself considered the black-hole so-
lution to be unphysical both because of the strange behaviour near
the event horizon and because there is a singularity at the centre of
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the black hole. He was on a quest to �nd a uni�ed theory that would
eliminate the singularity in his theory of gravity. Other authors, such
as Mo�at [10], claim to have discovered exact, non-singular solutions
of Einstein's �eld equations. For example, in Mo�at's modi�ed gravity
theory an exotic �eld energy is added that supposedly permeates all
of spacetime, and causes a negative force to be exerted on a collapsing
star and prevents the formation of a black hole.

I am convinced, however, that there is a simpler explanation that
falsi�es the irregular behaviour of spacetime. Firstly, the geometry of
Newton's inverse-square law of gravitation is undeniably strictly Eu-
clidean (or �at). In other words, spatial curvature plays no part in
Newtonian or classical gravity. On the other hand, Einstein's GR is
a geometrical theory explaining gravity through the curvature of both
space and time. Logically, then, if we relate Newton's law with GR,
Newtonian gravity is that contribution to gravity resulting exclusively
from the curvature of time. William Unruh puts it this way: "gravity
is the uneven running of clocks at di�erent places" [11]. When com-
paring GR with Newtonian gravity, it is therefore incorrect to use the
reciprocity of space and time curvature dictated by GR from Equation
8, not even approximately. To compare GR with classical gravity you
have to write B = 1, as for a Euclidean space, and then the equation
of free-fall from Equation 4 becomes:

r̈ +
A′

2A

(
c2 + ṙ2

)
= 0 [B = 1] (10)

Solving this di�erential equation and inserting Newtonian expres-
sions for free-fall acceleration and velocity then gives the following ex-
pression for A:

A =
(
1 +

α

r

)−1

; α = 2GM/c2 (11)

where the constant of integration α is again equal to 2GM/c2. Thus, we
have quanti�ed the insight that the gravitational force or acceleration
in Newton's law relates strictly to the curvature of the time coordinate
in GR. Clearly, as shown in Figure 1, the function A in Equation 11
(regular solution in the �gure) shows no discontinuity for any value of
the radial coordinate r.

Now writing the Schwarzschild radial coordinate in the GR solution
of Equation 8 as r∗, so as not to confuse the two coordinates, we may
write

A = 1− α

r∗
=

(
1 +

α

r

)−1

(12)
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Figure 1: Time curvature A: In the regular solution the time clock stops
(A = 0) at the point mass; in the black-hole solution the clock stops at a
distance r = α from the point mass, and then becomes negative or space-like

from which it follows that

r∗ = r + α (13)

The di�erence is extremely small for r >> α, and distinguishing be-
tween the two then becomes irrelevant. But when r is of the order of
α the situation is crucially di�erent. While the range of r goes from
zero to ∞, the range of r∗ is from α to ∞. The spacetime manifold
therefore does not exist for r∗ < α, Hilbert's extension to r∗ < α is
meaningless, and there is therefore no event horizon.

The solution A = (1 + α/r)−1; B = 1 does not accurately satisfy
Einstein's vacuum �eld equations of GR, but we do not expect it to, and
there is no requirement that it should, since Newtonian physics does
not treat a curved space per se. As stated, Newton's inverse-square
law of gravity describes that aspect of gravity caused exclusively by
the curvature of the time coordinate, and this is manifestly dominant
for most cases we consider, such as planetary motion. However, space
curvature becomes signi�cant when speeds approach the speed of light,
and distances to the central mass become small, and this will modify
gravity from being purely Newtonian. The use of GR is then to describe
phenomena that Newton's law does not describe, such as the perihelion
rotation of the planet Mercury, and the bending of starlight passing
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near the Sun. To satisfy GR, we then require B = 1/A with C =
r∗2, which gives the following complete solution for the curvature of
spacetime due to a static point mass:

A =
1

B
=

(
1 +

α

r

)−1

; C = (r + α)2 (14)

This could also have been obtained directly by substituting A from
Equation 11 into Equations 6.

We now have a new way of visualising the situation. Regarding the
point mass as �xed in space at r = 0, since r∗ = r + α, the origin of
Schwarzschild coordinates r∗ = 0 lies somewhere on a sphere at radius
r = α. This has also been addressed previously by Leonard Abrams
[12] and Stephen Crothers [13] in various papers. Thus, taking any
point P in space, the Schwarzschild coordinate r∗ = 0 lies a distance
α behind r = 0 on the line joining P to r = 0. A free-falling object
along this line therefore reaches the point mass before it would reach
the singularity of the Schwarzschild coordinate origin, which in any
case does not exist as part of the spacetime manifold.

4 A limiting velocity and gravitational force
Some further predictions are now apparent. By integrating Equation
10, it is straightforward to show that the proper velocity of free-fall is
given by

ṙ2

c2
= 1− A

where the asymptotic condition A → 1, r → ∞ has been used, and
then with A = (1 + α/r)−1 we have

ṙ = c

√
α

r + α
(15)

This means we have ṙ → c for r → 0, which contrasts fundamentally
with the black hole solution where

ṙ2

c2
= 1− A =

α

r

or
ṙ = c

√
α

r
(16)

which gives ṙ → c for r → α, and ṙ → ∞ for r → 0. The solution
presented here thus predicts a limiting free-fall velocity of c, as in spe-
cial relativity, which is much more intuitively acceptable than both the
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Figure 2: E�ective gravitational mass

black-hole solution (Hilbert's extension) and Newton's law that predict
in�nite speed as r → 0.

Furthermore, the radial free-fall acceleration may be written

r̈ = −1

2
c2 α

(r + α)2
= − GM

(r + 2GM/c2)2
(17)

which shows classical Newtonian behaviour −GM/r2 for r À α but
deviates (decreases) from inverse-square law behaviour for r of the order
of α. Finally, I shall de�ne an e�ective gravitational mass ratio Meff/M
as the acceleration in my model divided by the acceleration in Newton's
law, from which we obtain:

Meff

M
=

r2

(r + α)2
=

(
1 +

α

r

)−2

(18)

We thus have for large r, Newton's law being obeyed, i.e. the e�ective
gravitational mass is constant (Meff = M), but as r decreases to zero,
the e�ective mass goes to zero, and the singularity you expect to �nd
at r = 0, where the laws of physics would break down, disappears (see
Figure 2).

5 Conclusion
In conclusion, the deductions outlined here deviate from the current
paradigm. The idea of a black hole and event horizon is a mathemat-
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ical possibility, but can be shown to be non-physical by correct inter-
pretation of Newton's law in conjunction with Einstein's GR theory.
The present model is much more intuitive and rules out superluminal
velocities. Gravity does not diverge to in�nity as masses approach each
other, which removes the physically inexplicable issue of a singularity
in spacetime.
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