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Abstract

This paper provides a comprehensive overview of advanced methodologies for the analysis of grav-
itational wave (GW) data, emphasizing the integration of machine learning (ML) and deep learning
(DL) techniques to enhance the detection and interpretation of GW signals. Initially, we discuss the
foundational data preprocessing steps, including raw data acquisition, noise filtration, and data normal-
ization, which are crucial for preparing GW datasets for ML applications. We then examine the fully
preprocessed GW data with graphical information and statistical analysis, alongside a simplistic GW
event classifier developed without ML applications. After that, to match the input data size of various
ML models presented in this study, we detail the conversion of time-series GW data into spectrograms
for 2D models like 2D CNNs, and the retention of time-series format for 1D and synthetic models: 1D
CNNs; 1D RNNs, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU); and
synthetic models, including Generative Adversarial Networks (GANs) and WaveNet. The study further
explores the use of the following ML models for GW data analysis: Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), convolutional and recurrent autoencoders, Transformers,
Deep Belief Networks (DBNs), Graph Neural Networks (GNNs), and synthetic models such as GANs and
WaveNet. The analysis also includes the application of traditional ML models, such as Support Vector
Machines (SVM), Random Forest Classifiers (RF), and Gaussian Mixture Models (GMM), providing a
comparative evaluation of their effectiveness in classifying and detecting GW signals. Additionally, in the
appendix section, we show a few examples of synthetic GW data generated using GANs and WaveNet
models, offering a new potential to augment training datasets by improving model robustness with ar-
tificially synthesized GW data. Our results underline the significant potential of these methodologies in
enhancing the accuracy and reliability of GW signal detection, thereby contributing to the broader field
of astrophysical research.
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1 Introduction

The astronomy of gravitational waves has drastically changed the realization of the universe by giving new
insight through which we can observe cosmic phenomena, which was not possible earlier. First predicted
by Albert Einstein in 1916 in general relativity theory, these ripples in space-time remained undetected
for almost a century despite continuous effort by many astrophysicists. Indeed, Einstein predicted that
accelerating massive objects, such as binary systems containing black holes or neutron stars, would produce
ripples in spacetime. These ripples, now called gravitational waves, would propagate outward from the source
at the speed of light, carrying with them information about the violent astrophysical events that produced
them. In fact, these waves were quite elusive; it takes very sensitive machinery to detect them, which
prevented the detection for almost a century beyond the prediction. The basis behind this prediction by
Einstein is essentially that gravity is not just simply a force, as described by Issac Newton, but a curvature in
spacetime caused by mass and energy. This curvature is perturbed by any object, especially a very massive
and dense one, like black holes or neutron stars, that is accelerating. It produces these continuing oscillations
of gravitational waves. These waves radiate outward from their source in a manner similar to ripples that
spread on a pond when a stone is thrown into the water. The reason for such a long time of discovery of
Gravitational Waves, even with all the firm theoretical framework provided by Einstein himself, was their
very weak interaction with matter.

These Gravitational Waves are so subtle that they hardly interact with matter, and that is one of the
reasons their measurement was so difficult. This astrophysical landscape dramatically changed in the year
2015 when, for the first time, there was a direct detection of Gravitational Waves from the merger of a binary
black hole, later labeled as GW150914, obtained by the Laser Interferometer Gravitational Wave Observatory.
This breakthrough confirmed one of the key predictions of Einstein’s theory, setting off the beginning of a
new era in astrophysics: an era where the universe would not be observed only through electromagnetic
waves but also through gravitational waves. Most astronomical observations before the Laser Interferometer
Gravitational Wave Observatory made its monumental progress were confined to electromagnetic waves. In
contrast, gravitational waves are unfiltered information coming directly from the universe’s most violent and
extreme events, and they can travel undistorted over vast distances. By observing gravitational waves now,
we will be able to study objects and events in the universe which are invisible because they do not emit light
or other electromagnetic radiation, such as the black hole mergers. This was soon followed by the detection
of other high-energy astrophysical phenomena-neutron star merger in 2017, also known as GW170817, and
it opened the discovery called ”multi-messenger astronomy.” First, it was produced during the spiraling of
the two neutron stars that eventually merged into one bigger object and emitted a short gamma ray burst-
a very energetic explosion normally associated with phenomenally energetic astrophysical events. In fact,
this was singular, not only because it was the first observation of gravitational waves ever produced from
the collision of two neutron stars, but its detection was observed well in multiple forms of electromagnetic
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radiation simultaneously. The merger of neutron stars represented the first time gravitational waves and
electromagnetic signals had been directly observed from the same astrophysical event, which directly linked
both phenomena under one vision of the modern astrophysical world.

These detections have been made possible by a worldwide network of detectors consisting of the Laser
Interferometer Gravitational Wave Observatory in the United States, Virgo in Europe, and the KAGRA de-
tector in Japan. The facilities so far together have enabled researchers to view the universe in unprecedented
ways, sharpening our knowledge about the basic nature of gravity and further advancing cosmology, nuclear
physics, and the study of celestial objects. So far, the observation of GW170817 has, for example, given a
new, independent way of measuring the Hubble constant, a measure of the expansion rate of the universe,
in a way analogous to what happened in cosmology. In turn, nuclear physics was provided with a special
laboratory, as neutron stars are made of some of the densest matter in the universe, to study the behavior
of matter at nuclear densities.

However, Gravitational Wave signals are extremely faint, requiring the development of highly sophisti-
cated data analysis techniques. The signals are often buried within substantial noise from environmental
and instrumental sources, making the task of signal extraction particularly challenging. At first, a tech-
nique called matched filtering is used to identify weak signals by correlating the noisy data with theoretical
templates of expected Gravitational Wave waveforms. These templates, each corresponding to different pa-
rameters of the potential Gravitational Wave sources – such as mass, spin, and distance – are constructed
using general relativity and describe the expected signals from known sources, such as binary black holes or
neutron star mergers. The goal of matched filtering is to maximize the signal-to-noise ratio, making it easier
to distinguish genuine Gravitational Wave signals from background noise. In addition to matched filtering,
other traditional methods, including time-domain analysis and Bayesian inference techniques, are also used
to infer the properties of the source from the detected waveform. Nonetheless, traditional methods of data
analysis, while effective, could have been increasingly improved if supplemented by Machine Learning and
Deep Learning techniques. These modern computational methods have transformed the processing of Gravi-
tational Wave data by their eligibility for detecting complex patterns in large datasets. All these aspects have
improved significantly with the integration of Machine Learning methods into the analysis of Gravitational
Wave signals, now allowing for real-time detection and a detailed study of the signal properties. A further
building on these recent successes would seek to explore the range of Machine Learning methodologies for
the analysis of data from Gravitational Waves.

This paper aims to build on these advancements by exploring a range of ML methodologies applied to
GW data analysis. Starting with essential data preprocessing steps—such as noise reduction, signal extrac-
tion, and data normalization—we prepare the groundwork for applying advanced ML models. The input
data for each model is tailored to optimize its performance; for example, time-series data is typically used
for models like 1D Recurrent Neural Networks (RNNs) and 1D Convolutional Neural Networks (CNNs),
while spectrograms—capturing both time and frequency domain information—are suited for 2D CNNs and
other models handling visual or sequential data. The different data representations allow each model to
focus on specific aspects of the GW signal, such as temporal patterns or frequency-based features. These
models include CNNs, RNNs (LSTMs and GRUs), convolutional and recurrent autoencoders, Transformers,
Deep Belief Networks (DBNs), Graph Neural Networks (GNNs), generative adversarial networks (GANs),
WaveNet, Support Vector Machines (SVM), Random Forest Classifiers (RF), and Gaussian Mixture Models
(GMM). The focus is on optimizing the performance of these models for the detection, classification, and
parameter estimation of GW signals. In addition, the paper explores the potential of synthetic data gen-
eration using techniques like GANs and WaveNet, which provide augmented training datasets and improve
model robustness using artificially generated GW signals created by these synthetic models. By enhancing
training data through realistic simulations of GW signals, we can further improve the models’ accuracy in
identifying rare or complex GW events. As the field continues to evolve, these methods promise to push
the boundaries of GW astronomy, enabling more detailed and insightful explorations of the universe’s most
violent and energetic processes.

4



2 Raw Data Preprocessing

2.1 Data Acquisition and Setup

2.1.1 Setting GPS Time and Detector

For this study, we focus on a specific GW event (GW150914, the first confirmed observation of GWs from
colliding black holes).

Figure 1: Locating GPS time for Binary Black Holes merger (BBH) event GW150914 and choosing the
Hanford (H1) detector.

2.1.2 Importing TimeSeries Package

We ensure that we can successfully import TimeSeries from gwpy by installing the other required packages
necessary for this installation.

Figure 2: Importing TimeSeries from gwpy.

2.1.3 Downloading and Reading Data

The GW data is downloaded and read into a TimeSeries object.
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Figure 3: Downloading and reading the GW data with the TimeSeries package imported in the last subsec-
tion.

2.2 Data Extraction and Handling Missing Values

2.2.1 Extracting Data

The timestamps and strain values are extracted and stored in a pandas DataFrame.

Figure 4: Extracting the time and strain features from the raw GW data file.

2.2.2 Handling Missing Values

Any missing values in the dataset are dropped to ensure clean data.
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Figure 5: Dropping any NaN values from the dataset.

2.3 Data Noise Filtering and Normalization

2.3.1 Band-Pass Filtering

Noise filtering is crucial in GW data analysis due to the presence of various noise sources that can distract
us from the true signal. One common method is band-pass filtering, which allows signals within a specific
frequency range to pass through while reducing the significance of signals outside this range. The low cutoff
frequency (20 Hz) and high cutoff frequency (500 Hz) are chosen based on the expected characteristics of a
BBH event. Consequently, applying a band-pass filter helps in enhancing the signal-to-noise ratio (SNR) of
the GW data, increasing the exposure of the actual GW signal.
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Figure 6: butter bandpass function designs a band-pass filter with specified low and high cutoff frequencies,
while bandpass filter function applies the designed filter to the GW data, removing noise outside the specified
frequency range.

2.3.2 Data Normalization

Normalization is another crucial preprocessing step that adjusts the GW data to a common scale, making it
easier to analyze and compare. This step ensures that the strain data have a mean of zero and a standard
deviation of one. Standardizing the strain data is essential for ensuring that all features contribute equally
to the analysis and for improving the performance of ML models that are sensitive to the scale of the data.

Figure 7: StandardScaler function standardizes the features so that they’re easier for ML algorithms to
analyze.

2.4 Final Data Inspection

We briefly look at the data after it’s being preprocessed.
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Figure 8: Characteristics and features of the preprocessed GW data.

3 Data Visualization and Analysis

Visualization is an essential tool in GW data analysis, offering clear insights into the behavior and structure
of astrophysical sources. In the time domain, GW features reveal key dynamics of compact objects like
black holes and neutron stars, such as their masses, spins, and orbital characteristics. Time-domain analysis
also highlights transient events, like mergers, and plays a crucial role in identifying noise to improve the
signal-to-noise (SNR) ratio. Traditional, simplistic event detection focuses on recognizing significant signals
from astrophysical phenomena, enabling timely follow-up observations across multiple observatories, and
supporting multi-messenger astronomy. Lastly, parameter estimation determines the physical attributes of
GW sources, allowing for rigorous tests of gravitational theories and enhancing our understanding of the
population and evolution of compact celestial objects.

3.1 Time Series Plot

We visualize how the strain data changes over time.
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Figure 9: Graph of time-series plot (strain data versus time).

In the plot, peaks and troughs may correspond to significant events such as black hole mergers or neutron
star collisions, and it is useful for initial data inspection, allowing us to identify the presence of potential
GW events.

3.2 Spectrogram

We visualize how the frequency content of the strain data changes over time.
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Figure 10: Graph of spectrograms (strain data’s frequency versus time).

This plot helps identify transient events and their frequency components, which are crucial for distinguish-
ing between noises and actual GW signals. Additionally, spectrograms provides a detailed view of how the
signal’s frequency content evolves, and spectrogram data can be used as 2D GW data for the implementation
of certain ML models.

3.3 Histogram

We visualize the distribution of strain values.
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Figure 11: Graph of Histogram (frequency distribution of strain data).

This plot provides an overview of the data’s spread, central tendency, and outliers. This is useful for
identifying any anomalies or patterns in the data. Besides this, understanding the distribution of the strain
values is crucial for subsequent statistical analysis and for ensuring that the GW data meets the expectations
of various ML algorithms.

3.4 Time-Domain Features

The function calc and print time domain features is designed to extract and print key time-domain
features from GW data.
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Figure 12: The function accepts three parameters: data (a DataFrame containing the signal and time data),
strain column (the strain data column), and fs (the sampling frequency), and the function calculates the
peak and minimum amplitudes of the specified strain column. For computational purposes, a threshold is set
at 50% of the peak amplitude, and the duration of significant signals exceeding this threshold is calculated
and printed. As a result, the function calculates and prints the signal power, noise power, and SNR.

Time-domain features in GW data are crucial because they provide direct insights into the dynamics
of astrophysical sources and the propagation of GWs. By analyzing these features, we can extract critical
information about the nature and behavior of compact objects, such as black holes and neutron stars, and
the environments in which they reside.

For instance, the shape and structure of the GW signal in the time domain can reveal the mass, spin,
and orbital dynamics of a binary merger event. Features such as chirps, where the frequency and amplitude
of the wave increase as the objects spiral closer, are particularly informative. Also, detecting short-lived,
transient signals helps identify specific events like black hole mergers and neutron star collisions, and each
of them has a unique, discoverable signature in the time domain.

Time-domain analysis allows for the identification of noises, which is essential for improving the signal-
to-noise ratio (SNR) and ensuring the accuracy of the detected signals.

Figure 13: The output of the function prints the peak amplitude, minimum amplitude, signal duration, and
SNR.
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3.5 Basic Event Detection and Parameter Estimation

The calc threshold function calculates a threshold for event detection based on the standard deviation of
the noise in the strain data.

Figure 14: This function calculates a threshold based on the standard deviation of the strain data. The
threshold is set to a multiple of this standard deviation. A threshold of approximately 3 is calculated and
returned.

The detect events function identifies events in the strain data based on the calculated threshold.

Figure 15: This function identifies events where the absolute strain exceeds the calculated threshold, and it
iterates through the strain data, marking the start and end of events. In the end, detected events are stored
as start and end indices in a list.

Event detection is the process of identifying important signals within the GW data that correspond to
astrophysical phenomena. Rapid detection enables follow-up observations with EM and other observatories,
providing critical support to multi-messenger astronomy.

The estimate event params function calculates parameters for each detected event.
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Figure 16: This function calculates parameters such as start time (GPS time), end time (GPS time), peak
amplitude, and duration for each detected event. For each event, the function extracts relevant data and
calculates the required parameters, storing them in an array.

Parameter estimation conveys the importance of determining the physical parameters of the GW source,
such as masses, spins, distances, and orbital characteristics. Accurate parameter estimation is vital for
interpreting GW observations and understanding the underlying physics.

High-precision parameter estimation allows for stringent tests of general relativity and other gravitational
theories. Detailed parameter estimation helps expound the population properties of compact objects, their
formation channels, and their role in the cosmos.

Figure 17: These are the event parameters of the first 10 events detected.

3.6 Basic Statistical Analysis

The summarize event params function summarizes the parameters of detected events.
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Figure 18: This function summarizes detected event parameters, and if no events are detected, it returns a
summary with zeros. For detected events, it calculates and returns the number of events, average duration,
maximum duration, average peak amplitude, and maximum peak amplitude.

Figure 19: This is the summary of the detected events and their corresponding parameters, including total
number of events detected, average duration, maximum duration, average peak amplitude, and maximum
peak amplitude.

4 Data Preparation and Augmentation

4.1 Data Segmentation and Labeling

The continuous GW strain data is split into smaller, manageable segments and labeled appropriately. This
step is critical for preparing the dataset for supervised learning, allowing the model to learn based on
discoverable patterns.
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Figure 20: The function create segments and labels is used to split the strain data into segments of 2
seconds each, starting at t start (start of GW150914 event) and sampled at fs Hz (4096 Hz).

Figure 21: The shape of GW data’s segments and labels.

4.2 Time-series Data Reshaping for 1D and Synthetic Models

To ensure the compatibility of the time-series data for 1D and synthetic models, time-series data is reshaped
to include an extra dimension.
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Figure 22: The segment data is reshaped with an additional dimension of 1. Then, the data is split into the
training set (80% of the data) and the testing set (20% of the data).

Figure 23: The shape of the input time-series data.

4.3 Spectrogram Data Generation for 2D Models

To examine the spatial feature extraction capabilities of 2D models, time-series data is converted into spec-
trograms, which provide a frequency domain representation of the data.

Figure 24: The generate spectrogram function converts each time-series segment into a spectrogram, and
the spectrograms are then reshaped to include a channel dimension for compatibility with 2D model input.
Then, the data is split into the training set (80% of the data) and testing set (20% of the data).

Figure 25: The shape of the input spectrogram data.

4.4 Dataloader Generation for Transformer

Data preparation for the Transformer model involves creating a custom, plain dataset class used to convert
the data into PyTorch tensors and using PyTorch’s DataLoader for batching, shuffling, and splitting.
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Figure 26: For batching and shuffling purposes, the data is split into training (80%) and testing (20%)
datasets using Python functions and PyTorch.

4.5 Tensor Data Creation for DBN

For the DBN model, the data is split into training and testing sets using Scikit-Learn’s train test split
function, and it’s then converted to PyTorch tensors.

Figure 27: The data here is split into training (80%) and testing (20%) datasets with simply the Scikit-
Learn’s train test split function.

4.6 Graphical Data Generation for GNN

Graph-structured data is created for the GNN model, which captures complex relationships and structures
in the GW data.
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Figure 28: For its spatial capturing capabilities, GNN requires graphical data input, and PyTorch’s Dat-
aLoader is utilized for batching and shuffling

Loop Over Signals and Labels

• The zip(gw signals, labels) function pairs each signal with its corresponding label.

• torch.tensor(signal, dtype=torch.float): converts the signal into a PyTorch tensor.

• .unsqueeze(1): adds an extra dimension to the tensor.

• [[i, i+1] for i in range(len(signal)-1)]: creates pairs of consecutive indices (i, i+1), repre-
senting the edges between consecutive nodes in the graph.

• torch.tensor(..., dtype=torch.long): converts index pairs into a PyTorch tensor.

• .t(): transposes the tensor.

• .contiguous(): ensures that the tensor’s memory layout is compatible for efficient processing.

• torch.tensor([label], dtype=torch.long): converts the label into a PyTorch tensor.

• Data(x=node features, edge index=edge index, y=y): creates a graph data object using the Data
class from PyTorch Geometric.

The function at the end returns the list of graph data objects.

4.7 Data Augmentation

To prevent overfitting and improve generalization, data augmentation techniques are applied to the training
data.
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Figure 29: The augment data function artificially increases the size of the training dataset by introducing
variability.

5 Model Building, Training, and Evaluation

5.1 CNNs and RNNs

CNNs and RNNs are key architectures in DL, designed for different types of data. CNNs, especially 2D
CNNs, are highly effective for spatial data, like images, using convolutional layers to detect patterns like
edges and textures, making them ideal for image classification. RNNs excel in handling sequential data, such
as time series data, by using loops to maintain context across input sequences, making them suitable for
time-series prediction. These two types of DL models are commonly utilized for binary event classification
in GW research.

5.1.1 1D CNN

A 1D CNN model is constructed and trained on the augmented time-series data.
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Figure 30: The 1D CNN model processes the time-series data directly, using convolutional layers to extract
temporal features, pooling layers to reduce dimensionality, dense layers to classify event presence, and a
dropout layer to prevent overfitting.

5.1.2 2D CNN

A 2D CNN model is built and trained on the augmented spectrogram data.
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Figure 31: The 2D CNN model consists of convolutional layers for feature extraction, pooling layers for
dimensionality reduction, and dense layers for event classification. A dropout layer is added to help prevent
overfitting.

5.1.3 LSTM

An LSTM model is constructed and trained on the augmented time-series data.
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Figure 32: The LSTM model processes the time-series data directly, using two LSTM layers for feature
extraction, two dropout layers to prevent overfitting, and a dense layer to classify event presence. For
quicker model training, the size of the data for LSTM is resampled to four times less than the data for 1D
and 2D CNN

5.1.4 GRU

A GRU model is constructed and trained on the augmented time-series data.
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Figure 33: The GRU model processes the time-series data directly, using two GRU layers for feature ex-
traction, two dropout layers to prevent overfitting, and a dense layer to classify event presence. For quicker
model training, the size of the data for LSTM is resampled to four times less than the data for 1D and 2D
CNN

5.2 Autoencoders

In addition to the application of convolutional and recurrent layers, the primary purpose of the autoencoders
is to first compress the dimensions of the data in the encoder section and then expand the dimensions back
in the decoder section, with the bottleneck section in the middle to mark the end of data dimensionality
reduction and the start of data dimensionality expansion, and this is similar to as if you are to visualize the
Big Bounce hypothesis on the contraction and expansion of the universe. Because of the unique training
process of these autoencoders, ReLU activation is chosen for its non-linearity. Additionally, this method
attempts to reconstruct the original input at the end of the training process, and then we can visualize how
well the autoencoder performs at this reconstruction step to determine its ability in GW event detection.

5.2.1 1D CNN Autoencoder

1D CNN Autoencoder is efficient in extracting temporal features from time-series data.
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Figure 34: The 1D CNN autoencoder contains an encoder section (with 1D convolutional layers for feature
extraction and 1D pooling layers for spatial dimensionality reduction), a bottleneck section (with a flatten
layer to convert the data from 1D feature maps into a 1D vector and a dense layer for dimensionality
reduction), and a decoder section (with a dense layer to expands the compressed data into higher dimensional
space, a reshape layer to map the data from 1D vector to 2D tensor, 1D convolutional layers to feature
refining, and 1D upsampling layers for dimensionality expansion).

5.2.2 2D CNN Autoencoder

2D CNN autoencoder is effective in capturing spatial hierarchies from spectrograms.
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Figure 35: The 2D CNN autoencoder contains an encoder section (with 2D convolutional layers for feature
extraction and 2D pooling layers for spatial dimensionality reduction), a bottleneck section (with a flatten
layer to map the data from 2D feature maps into a 1D vector and a dense layer for dimensionality reduction),
and a decoder section (with a dense layer to expands the compressed data into higher dimensional space, a
reshape layer to map the data from 1D vector to 3D vector, 2D convolutional layers to feature refining, and
2D upsampling layers for dimensionality expansion).

5.2.3 LSTM Autoencoder

LSTM Autoencoder captures and learns long-term dependencies in sequential data.
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Figure 36: The LSTM autoencoder contains an encoder section (with LSTM layers for data processing
and timesteps returning), a bottleneck section (with a dense layer for dimensionality reduction), and a
decoder section (with a RepeateVector layer to simply repeat the compressed data for it to match the input
sequence length, LSTM layers to preprocess the data for the repeated vector and return its timesteps, a
TimeDistributed layer to apply a dense layer to each timestep to reconstruct the original input data).

5.2.4 GRU Autoencoder

GRU Autoencoder is efficient memory usage and effective for sequential dependencies.
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Figure 37: The GRU autoencoder contains an encoder section (with GRU layers for data processing and
timesteps returning), a bottleneck section (with a dense layer for dimensionality reduction), and a decoder
section (with a RepeateVector layer to simply repeat the compressed data for it to match the input sequence
length, GRU layers to preprocess the data for the repeated vector and return its timesteps, a TimeDistributed
layer to apply a dense layer to each timestep to reconstruct the original input data).

5.3 Transformer

A Transformer model is defined and trained for time-series data classification, utilizing its ability to capture
long-range dependencies in the data.

Figure 38: All the hyperparameters needed to train the Transformer model.
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Figure 39: Defining the Transformer model.

The class inherits from the base class, nn.Module, for all Neural Network (NN) modules in PyTorch.
init () function:

• nn.Linear(input dim, model dim) is an embedding layer that linearly projects the input from input dim

to model dim.

• nn.Parameter(torch.zeros(1, 8192, model dim)) creates a positional encoding tensor with shape
(1, 8192,model dim). This encodes positional information to help the model understand the order of
input.

• nn.TransformerEncoderLayer defines a transformer encoder layer with:

– model dim: the dimension of the model.

– num heads: the number of attention heads.

– dim feedforward=2048: the dimension of the feedforward network.

– dropout=dropout rate: the dropout rate.

• nn.TransformerEncoder stacks the encoder layers to form the complete transformer encoder.

• nn.Linear(model dim, output dim) linearly projects the output from model dim to output dim.

forward() function:

• x.unsqueeze(-1) adds an extra dimension to x, making its shape compatible for the embedding layer.

• self.embedding(x.unsqueeze(-1)) applies the linear transformation to the input.

• + self.positional encoding[:, :x.size(1), :] adds the positional encoding to the embedded
input.

• self.transformer encoder(x) processes the input through the transformer encoder stack.

• x.mean(dim=1) performs global average pooling across the sequence dimension, resulting in a tensor
of shape (batch size,model dim).

• self.fc out(x) linearly transforms the pooled tensor to the desired output dimension.

• The final output tensor is then returned.
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Figure 40: Defining the function for training and evaluating the Transformer model.

train and evaluate() function:

• Epoch Loop: iterates over the epochs.

– model.train(): sets the model to training mode.

– running loss is initialized to 0.0 to accumulate the training loss over all batches in the epoch.

– Batch Loop: iterates over all batches in the train loader.

∗ optimizer.zero grad(): clears the gradients of all optimized parameters.

∗ outputs = model(segments aug): computes the model outputs for the input batch.

∗ loss = criterion(outputs, labels aug): calculates the loss between the predicted out-
puts and the true labels.

∗ loss.backward(): computes the gradient of the loss.

∗ optimizer.step(): updates the model parameters using the computed gradients.

∗ running loss += loss.item(): adds the batch loss to the running total loss for the epoch.
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– train loss = running loss / len(train loader): calculates the average training loss for the
epoch.

– train losses.append(train loss): appends the average training loss to train losses.

– model.eval(): sets the model to evaluation mode.

– with torch.no grad(): disables gradient computation, which reduces memory usage and speeds
up computations.

– Batch Loop: iterates over all batches in the test loader.

∗ outputs = model(segments aug): computes the model outputs for the input batch.

∗ , predicted = torch.max(outputs.data, 1): finds the one with the highest predicted
score for each sample.

∗ total += labels aug.size(0) and correct += (predicted == labels aug).sum().item():
updates the total number of samples and the number of correct predictions.

• The function returns two lists: train losses, containing the average training loss for each epoch, and
test accuracies, containing the test accuracy for each epoch.

Figure 41: Building and training the Transformer model.

5.4 DBN

A DBN is trained for binary classification, capturing hierarchical representations in the data.
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Figure 42: Defining the DBN model.

The class inherits from the base class, nn.Module, for all NN modules in PyTorch.
init () function:

• self.layer1 takes the input data and outputs 256 features.

• self.layer2 takes the 256 features from layer1 and outputs 128 features.

• self.layer3 takes the 128 features from layer2 and outputs 64 features.

• self.output takes the 64 features from layer3 and outputs a single feature for binary classification
or regression.

• Sigmoid activation is used.

forward() function:

• It defines the forward pass of the network, which is the way input data flows through the network
shown in the constructor.
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• The final output x is returned. It will be in the range of (0, 1), which is fit for binary classification
tasks.

Figure 43: Training and evaluating the DBN model.

Epoch Loop: iterates over the epochs.

• model.train(): sets the model to training.

• optimizer.zero grad(): clears the gradients of all optimized parameters.

• outputs = model(X train aug): processes the input data X train aug and produces outputs.

• loss = criterion(outputs, y train aug): calculates the difference between the outputs and the
true labels y train aug.

• loss.backward(): performs backpropagation to compute the gradients of the loss respective to the
parameters.

• optimizer.step(): updates the parameters using the computed gradients.

• predicted = (outputs >= 0.5).float(): converts the outputs to binary predictions with a thresh-
old of 0.5.

• accuracy = (predicted.eq(y train aug).sum() / float(y train aug.shape[0])).item(): com-
pares the predicted labels to the true labels and calculates the accuracy.

• with torch.no grad(): disables gradient computation, which reduces the memory used and speeds
up computations.

• val outputs = model(X test): processes the test data X test.

• val loss = criterion(val outputs, y test): calculates the difference between the outputs and
the true labels y test.

• val predicted = (val outputs >= 0.5).float(): converts the outputs to binary predictions.

• val accuracy = (val predicted.eq(y test).sum() / float(y test.shape[0])).item(): calcu-
lates the accuracy of the predictions on the test data.
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5.5 GNN

A GNN is trained for classification, using the graph structure of the data to capture complex relationships.

Figure 44: Defining the GNN model.

The class inherits from the base class, nn.Module, for all NN modules in PyTorch.
init () function:

• self.conv1 = GCNConv(in channels=in channels, out channels=16): initializes the first graph
convolutional layer with input data and 16 output features.

• self.conv2 = GCNConv(in channels=16, out channels=32): initializes the second graph convolu-
tional layer with 16 input features from the first layer and 32 output features.

• self.fc = torch.nn.Linear(32, 2): initializes a fully connected layer that takes 32 input features
from the second layer and outputs 2 features used for binary classification.

forward() function:

• It defines the forward pass of the network, which is the way input data flows through the network
shown in the constructor.
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• x = F.relu(x): applies the ReLU activation.

• x = global mean pool(x, batch): applies global mean pooling to obtain a graph-level representa-
tion.

• x = self.fc(x): applies the fully connected layer to the graph-level representation.

• return F.log softmax(x, dim=1): applies the log softmax function, converting the raw scores into
log-probabilities for classification tasks.
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Figure 45: Training and evaluating the GNN model.
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train() function:

• model.train(): sets the model to training.

• Batch Loop: Iterates over all batches in the data loader.

– optimizer.zero grad(): clears the gradients of all optimized parameters.

– output = model(data): passes the input data to get predictions.

– loss = criterion(output, data.y): calculates the loss between the output and the true labels.

– loss.backward(): compute the gradient of the loss respective to the parameters.

– optimizer.step(): update the parameters with the computed gradients.

– .item() converts the tensor to a number.

– pred = output.argmax(dim=1): obtain the prediction with the index of the highest log proba-
bility.

Epoch Loop: applies train() function over epochs.

5.6 GAN

5.6.1 Hyperparameters

Figure 46: The hyperparameters for implementing GAN.

• latent dim: dimensionality of the latent space (input vector)).

• num gw data to generate: number of synthetic gravitational wave data samples to generate after
training.

5.6.2 Define Generator

The build generator function creates the generator model to synthesize GW data.
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Figure 47: The construction of the build generator.

• Dense Layer: initial dense layer with latent dim input.

• LeakyReLU: LeakyReLU activation function.

• BatchNormalization: normalizes the output.

• Reshape: reshapes the output into a suitable shape for Conv1D layers.

• UpSampling1D: upsamples the input.

• Conv1D Layers: convolutional layers to extract features.

• Activation: tanh activation to output values between -1 and 1.

5.6.3 Define Discriminator

The build discriminator function creates the discriminator model to distinguish real versus generated
data.

Figure 48: The construction of the build generator.
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• Conv1D Layers: convolutional layers to extract features.

• LeakyReLU: LeakyReLU activation function.

• Flatten: Flattens the 3D tensor into 1D.

• Dense Layer: final dense layer to output a single probability (of it being real and not generated data)
with sigmoid activation.

5.6.4 Define GAN

The build gan function combines the generator and discriminator into a GAN model.

Figure 49: The construction of the GAN.

• Compile Discriminator: compile the discriminator.

• Freeze Discriminator: ensure only the generator is trained.

• GAN Input: create input layer for the GAN model.

• Generated Data: pass input through the generator to get synthetic data.

• GAN Output: pass generated data through the discriminator to get the probability (of it being real and
not generated data).

• Compile GAN: compile the GAN model.

5.6.5 Train GAN

The train gan function trains the GAN by alternating between training the discriminator and the generator.
The steps are as follows:
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Figure 50: Visualization of the GAN training loop.

Training Loop:

• Train Discriminator:

– Sample real data.

– Generate synthetic data.

– Train on real data (labeled 1) and synthetic data (labeled 0).

– Compute the discriminator loss.

• Train Generator:

– Generate random noise.

– Create an array with every element labeled 1 for the noise.

– Train on the random noise and array.

– Compute the generator loss.

5.7 WaveNet

5.7.1 Define Causal Convolutional Layer

The causal convolutional layers are used to maintain causality in time series data.
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Figure 51: The causal Conv1D class.

CausalConv1D Class:

• init function:

– Inherits from layers.Layer.

– Creates a Conv1D layer.

• Call function:

– Defines the forward pass by returning the convolutional layer that’s applied to the input tensor.

5.7.2 Define Residual Block

The residual block is added to build complex feature representations while maintaining gradient flow through
skip connections.

Figure 52: The residual block class.

ResidualBlock Class:

• init function:
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– Inherits from layers.Layer.

– Creates a CausalConv1D layer.

– Creates two Dense layers with tanh and sigmoid activations, respectively.

– Creates two Conv1D layers for skip and residual connections.

• Call function:

– Defines the forward pass:

∗ Applying the CausalConv1D layer to the input.

∗ Applying the Dense layers with tanh and sigmoid activations to the output of the previous
layer.

∗ Multiplying the outputs of the tanh and sigmoid layers to create a gated activation.

∗ Applying the skip conv layer to the gated activation for the skip connection.

∗ Applying the residual conv layer to the gated activation and adding it to the input to create
the residual output.

– Returning the skip output and the residual output.

5.7.3 Define and Train WaveNet

The build wavenet function creates a WaveNet model for sequential data generation.

Figure 53: The construction of the WaveNet.

• Inputs: input layer with specified shape.

• Residual Blocks: apply multiple residual blocks with different dilation rates.

• Skip Connections: collect and sum connections.

• Activations and Convolutions: layers to produce output.
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We then train the WaveNet on augmented data and validate it on test data.

Figure 54: Training and saving its history for WaveNet

5.8 Traditional ML Models

Traditional ML models, including SVM, RF, and GMM, offer versatile solutions for various predictive tasks.
SVM is a powerful supervised learning algorithm useful for classification purposes, which aims to best separate
classes in a dataset based on the information present. RF, an ensemble method, constructs multiple decision
trees and combines their predictions to improve accuracy and reduce overfitting, making them robust for
classification. GMM is an unsupervised learning algorithm used for clustering, organizing data into a mixture
of several Gaussian distributions to identify the underlying patterns in complex datasets. These traditional
ML models are still widely used due to their effectiveness in many applications, though their usage in GW
astronomy is less commonly associated since certain DL models, such as CNNs and RNNs, already display
promising results in binary classification.

5.8.1 SVM

An SVM model with an RBF kernel is trained with the training data and evaluated with the validation data.
The confusion matrix and classification report provide insights into the model’s performance.

Figure 55: The confusion matrix and classification report for SVM.

5.8.2 RF

A RF model is trained and evaluated similarly. The confusion matrix and classification report are also
applied to examine its performance.
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Figure 56: The confusion matrix and classification report for RF.

5.8.3 GMM

A GMM is trained on the original segment data due to its unsupervised nature. The log-likelihood of the
data is computed and used to detect outliers, defined as the bottom 0.01% of the log-likelihood value, and
these outliers represent a higher likelihood of a GW event present at the corresponding time.

Figure 57: Number of outliers detected with GMM considering the bottom 0.01% of the data as outliers.

6 Model Performance Visualization

6.1 1D CNN

Figure 58: These plots show the training history of the 1D CNN, including the test loss and accuracy
evaluation.
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6.2 2D CNN

Figure 59: These plots show the training history of the 2D CNN, including the test loss and accuracy
evaluation.

6.3 LSTM

Figure 60: These plots show the training history of the LSTM, including the test loss and accuracy evaluation.
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6.4 GRU

Figure 61: These plots show the training history of the GRU, including the test loss and accuracy evaluation.

6.5 1D CNN Autoencoder

Figure 62: These plots show the training history of the 1D CNN autoencoder, including the test loss and
accuracy evaluation.
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6.6 2D CNN Autoencoder

Figure 63: These plots show the training history of the 2D CNN autoencoder, including the test loss and
accuracy evaluation.

6.7 LSTM Autoencoder

Figure 64: These plots show the training history of the LSTM autoencoder, including the test loss and
accuracy evaluation.
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6.8 GRU Autoencoder

Figure 65: These plots show the training history of the GRU autoencoder, including the test loss and
accuracy evaluation.

6.9 Transformer

Figure 66: These plots show the training history of the Transformer model, including the loss and accuracy
evaluation.
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6.10 DBN

Figure 67: These plots show the training history of the DBN model, including the loss and accuracy evalu-
ation.

6.11 GNN

Figure 68: These plots show the training history of the GNN model, including the loss and accuracy evalu-
ation.
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6.12 GAN

Figure 69: Visualization of the discriminator and generator losses over epochs (G = Generator, D = Dis-
criminator).

6.13 WaveNet

Figure 70: Visualization of the loss and accuracy over epochs for WaveNet model.
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6.14 SVM (ROC Curve)

Figure 71: The ROC curve for SVM.
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6.15 RF (ROC Curve)

Figure 72: The ROC curve for RF.
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6.16 GMM (Clustering)

Figure 73: The clustering results from GMM, highlighting detected outliers and clusters in the data.

7 Conclusion

The development regarding Gravitational Wave astronomy, first postulated by Albert Einstein in his predic-
tion within his general theory of relativity, then through endless efforts by many astrophysicists of modern
times using the latest technologies, have greatly extended our knowledge with regard to the universe and
allowed us to study a number of its most powerful and mysterious phenomena. The integration of Machine
Learning into the data analysis of Gravitational Waves is a milestone in having the detection, classification,
and analysis of Gravitational Wave signals with unprecedented accuracy and precision. Among others, the
Convolutional Neural Networks and the Recurrent Neural Networks are some of the vital models in Machine
Learning that have become quite indispensable to extract very faint Gravitational Wave signals buried under
a highly noisy data environment. In addition, in this paper, synthetic data generation through models like
Generative Adversarial Networks and WaveNet play a vital role in augmenting training datasets, especially
in situations where real data is scarce or specific events, such as rare mergers, are underrepresented. The
synthetic data, designed to mimic the characteristics of real Gravitational Wave signals, can replace the data
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generated with the traditional augmentation technique and improve the training of Machine Learning mod-
els by introducing controlled variability, enabling these models to generalize better to diverse and complex
scenarios. This not only enhances the models’ ability to identify and classify Gravitational Wave events but
also improves their sensitivity to subtle patterns that might otherwise be overlooked.

As the field advances, the connection between increasingly sophisticated Machine Learning algorithms and
the rapidly expanding global network of Gravitational Wave detectors will undoubtedly lead to more profound
discoveries. Continued innovations in event classification and synthetic data augmentation techniques will
be critical to refining our models, making them more resilient to noise and better equipped to handle rare
events. These developments promise to push the boundaries of our knowledge of high-energy astrophysics,
the dynamics of compact objects, and the widening field of gravity. Together, the fusion of Machine Learning
with Gravitational Wave astronomy will remain pivotal in deepening our insights into fundamental physics,
cosmology, and the evolution of black holes and neutron stars. With ongoing improvements in both detection
technology and analytical methodologies, the future of Gravitational Wave astronomy is bright, offering the
potential for even deeper understanding and discoveries about the cosmos.
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A Appendix

A.1 GAN Generated Data Visualization

Figure 74: Example 1 of the GW segments generated.
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Figure 75: Example 2 of the GW segments generated.
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A.2 WaveNet Generated Data Visualization

Figure 76: Example 1 of the GW segments generated.
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Figure 77: Example 2 of the GW segments generated.
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