
A Fourier derivative collocation method for the
solution of the Navier–Stokes problem

Daniel Thomas Hayes, dthayes83@gmail.com

December 2, 2024

A proposed solution to the millennium problem on the existence and smoothness
of the Navier–Stokes equations.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in R3,
[1–5]. Let u = u(x, t) ∈ R3 be the fluid velocity and let p = p(x, t) ∈ R be the
fluid pressure, each dependent on position x ∈ R3 and time t > 0. I take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity ν > 0 and to fill all of R3.
The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u◦ (3)

where u◦ = u◦(x) ∈ R3. In these equations

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(4)

is the gradient operator and

∇2 =

3∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0 equations (1), (2), (3) are called the Euler
equations. When ∇p = 0 equations (1), (3) are called the Burgers equations.
Solutions of (1), (2), (3) are to be found with

u◦(x + ei) = u◦(x) (6)

for 1 6 i 6 3 where ei is the ith unit vector in R3. The initial condition u◦ is a given
C∞ divergence-free vector field on R3. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(x + ei, t) = u(x, t), p(x + ei, t) = p(x, t) (7)

on R3 × [0,∞) for 1 6 i 6 3 and

u, p ∈ C∞
(
R3 × [0,∞)

)
. (8)
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2. Solution of the Navier–Stokes problem

Theorem. Take ν > 0. Let u◦ be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R3 × [0,∞) that satisfy (1), (2),
(3), (7), (8).
Proof. A Fourier derivative collocation method is as follows. Let u, p be given by

u =
∑

L

uLeikL·x, (9)

p =
∑

L

pLeikL·x (10)

respectively. Here uL = uL(t) ∈ C3, pL = pL(t) ∈ C, i =
√
−1, k = 2π, and

∑
L

denotes the sum over all L ∈ Z3. The initial condition u◦ is a Fourier series [2] of
which is convergent for all x ∈ R3. Equations (1), (2) can be written as

∂ui

∂t
+

3∑
j=1

u j
∂ui

∂x j
= ν

3∑
j=1

∂2ui

∂x j
2 −

∂p
∂xi

for i = 1, 2, 3, (11)

and
3∑

j=1

∂u j

∂x j
= 0 (12)

respectively. In this method we have for a quantity q that⌈
∂q
∂x j

⌉
=

[
G j

]
dqe (13)

valid at x = x∗n for n = 1, 2, . . . ,N. For example we can choose x∗i,n to be equally
spaced and fill x ∈ [0, 1]3. Here

[
G j

]
is a known constant N × N matrix with[

G j

]
m,n

= G j,m,n and dre means to vectorise r where the components are equal to

r|x=x∗n , n = 1, 2, . . . ,N. It turns out that
∑N

m=1 G j,m,n = 0 and
∑N

n=1 G j,m,n = 0. We
denote q|x=x∗n = dqen = q,n. Then⌈

∂ui

∂x j

⌉
n

=

N∑
α=1

G j,n,αui,α,

⌈
∂p
∂xi

⌉
n

=

N∑
α=1

Gi,n,αp,α, (14)

⌈
∂2ui

∂x j
2

⌉
n

=

N∑
α=1

G j,n,α

⌈
∂ui

∂x j

⌉
α

=

N∑
α=1

N∑
β=1

G j,n,αG j,α,βui,β, (15)

and ⌈
∂ui

∂t

⌉
n

=
∂

∂t
duien =

∂

∂t
ui,n. (16)
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Equations (11), (12) at x = x∗n imply

∂

∂t
duien +

3∑
j=1

⌈
u j

⌉
n

⌈
∂ui

∂x j

⌉
n

= ν

3∑
j=1

⌈
∂2ui

∂x j
2

⌉
n

−

⌈
∂p
∂xi

⌉
n

(17)

and
3∑

j=1

⌈
∂u j

∂x j

⌉
n

= 0 (18)

respectively. Equations (17), (18) imply

∂

∂t
ui,n +

3∑
j=1

N∑
α=1

u j,nG j,n,αui,α = ν

3∑
j=1

N∑
α=1

N∑
β=1

G j,n,αG j,α,βui,β −

N∑
α=1

Gi,n,αp,α (19)

and
3∑

j=1

N∑
α=1

G j,n,αu j,α = 0 (20)

respectively. Let U be a matrix where Ui,n = ui,n and let P be a matrix where
Pα,n = p,α. Then equations (19), (20) imply

∂U
∂t

+ U(A(n)U) = νUB(n) − A(n)T P (21)

and
trace(UA(n)) = 0 (22)

respectively. Herein A(n) and B(n) are matrices where

A(n)α, j = G j,n,α (23)

and

B(n)β,n =

3∑
j=1

N∑
α=1

G j,n,αG j,α,β. (24)

The i, n component of (21) recovers (19) since

[U(A(n)U)]i,n =

N∑
l=1

Ui,l[A(n)U]l,n =

N∑
l=1

Ui,l

 3∑
m=1

A(n)l,mUm,n


=

3∑
j=1

N∑
α=1

Ui,αA(n)α, jU j,n =

3∑
j=1

N∑
α=1

Ui,αG j,n,αU j,n, (25)
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[UB(n)]i,n =

N∑
l=1

Ui,lB(n)l,n =

N∑
β=1

Ui,βB(n)β,n =

3∑
j=1

N∑
α=1

N∑
β=1

Ui,βG j,n,αG j,α,β, (26)

and

[
A(n)T P

]
i,n

=

N∑
l=1

A(n)T
i,lPl,n =

N∑
l=1

A(n)l,iPl,n =

N∑
l=1

Gi,n,lPl,n

=

N∑
α=1

Gi,n,αPα,n =

N∑
α=1

Gi,n,αp,α. (27)

Equation (22) recovers (20) since

trace(UA(n)) =

3∑
j=1

[UA(n)] j, j =

3∑
j=1

N∑
l=1

U j,lA(n)l, j

=

3∑
j=1

N∑
l=1

U j,lG j,n,l =

3∑
j=1

N∑
α=1

U j,αG j,n,α. (28)

Let Q(n) be a matrix such that (A(n)T P)Q(n) = 0. We have

[(
A(n)T P

)
Q(n)

]
i, j

=
[
A(n)T (PQ(n))

]
i, j

=

N∑
l=1

A(n)T
i,l(PQ(n))l, j

=

N∑
l=1

N∑
m=1

A(n)T
i,l p,lQ(n)m, j = 0. (29)

For example we can choose Q(n) = B(n). Then (21) implies

∂U
∂t

Q(n) + (U(A(n)U))Q(n) = (νUB(n))Q(n). (30)

Equation (30) is the same as we would get for the Burgers equations. Now we
consider a matrix Riccati equation problem.

∂X
∂t

= aX + bY, (31)

∂Y
∂t

= cX + dY, (32)

with
X = (Uλ)Y. (33)
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Then we get (
∂U
∂t
λ

)
Y + (Uλ)

∂Y
∂t

= a((Uλ)Y) + bY (34)

which implies (
∂U
∂t
λ

)
Y + (Uλ)[c((Uλ)Y) + dY] = a((Uλ)Y) + bY (35)

implying
∂U
∂t
λ + (Uλ)(c(Uλ)) + (Uλ)d = a(Uλ) + b. (36)

We then let a = b = 0, λ = Q(n), c = Q(n)−1A(n), d = −νQ(n)−1(B(n)Q(n)) to
recover (30). The matrix inverses that appear here exist in the sense that opera-
tional matrices of differentiation have inverses in terms of operational matrices of
integration. Then (31) implies

X = X|t=0. (37)

Equation (32) implies
∂Y
∂t

= cX|t=0 + dY (38)

and so
∂

∂t

(
e−dtY

)
= e−dt (cX|t=0) (39)

which integrating with respect to t yields

e−dtY =

∫ t

0
e−dτ (cX|t=0) dτ + Y |t=0 (40)

to obtain

Y = edt

[∫ t

0
e−dτ (cX|t=0) dτ + Y |t=0

]
. (41)

Equation (33) then implies

Uλ = X|t=0Y−1

= ((U |t=0λ)Y |t=0)


[∫ t

0
e−dτ (c ((U |t=0λ)Y |t=0)) dτ + Y |t=0

]−1

e−dt


= (U |t=0λ)


[∫ t

0
e−dτ (c(U |t=0λ)) dτ + I

]−1

e−dt

 . (42)

No blowup is possible since the Burgers equations are regular. �
For the Euler equations we have

Uλ = (U |t=0λ) [c(U |t=0λ)t + I]−1 . (43)
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Blowup is possible since the inviscid Burgers equations are not regular. We have
for odd N that the equation

det (c(U |t=0λ)t + I) = 0 (44)

can have a solution t where 0 < t < ∞.
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