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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier—Stokes equations are thought to govern the motion of a fluid in R?,
see [1-5]. Let u = u(x,r) € R? be the fluid velocity and let p = p(x,t) € R
be the fluid pressure, each dependent on position x € R? and time ¢ > 0. I take
the externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity v > 0 and to fill all of R3.
The Navier—Stokes equations can then be written as

0
a—‘; +(u-V)u = vWu - Vp, 1)
V-u=0 (2)
with initial condition
ux,0) =u’ 3)
where u° = u°(x) € R>. In these equations
o 9d 0
V=l—”, —,— 4
((9X1 (9X2 8X3) ( )
is the gradient operator and
3 62
V2 = — 5
2 ox2 )

is the Laplacian operator. When v = 0 equations (1), (2), (3) are called the Euler
equations. When Vp = 0 equations (1), (3) are called the Burgers equations.
Solutions of (1), (2), (3) are to be found with

u’(x +e¢) = u’(x) (6)

for 1 < i < 3 where ¢; is the i unit vector in R?. The initial condition u° is a given
C* divergence-free vector field on R?. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

ux +e;, 1) =ux,1), p(x+e;,t)=pX,i1) (7
onR? x [0, 00) for 1 <i< 3 and

u, p € C(R? x [0, 0)). (8)
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2. Solution of the Navier—Stokes problem

Theorem. Take v > 0. Let u® be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R? x [0, co) that satisfy (1), (2),
(3), (1), ().

Proof. A Fourier derivative collocation method is as follows. Let u, p be given by

u= Z uLeikL-x’ 9)
L=—c0

p= ) pe (10)
L=-0c0

respectively. Here uy, = up,(1) € C3, pp = pL(H) € C,i= V-1,k =2, and Y5> _
denotes the sum over all L € Z3. The initial condition u° is a Fourier series [2] of
which is convergent for all x € R?. Equations (1), (2) can be written as

ou; 3 ou; 0%u;
— + — — - = f =1,2,3, 11
at ,Z‘ Wox, - Z ax 2 ax, or 1= (1)
and
3
6uj
> ZL=0 (12)
=1 0%
respectively. In this method we have for a quantity g that
dq
- [l "
valid at x = x*, forn = 1,2,..., N. Here [Gj] is a known constant N X N matrix

with [G ,-] = G and [7] means to vectorise r where the components are equal
Ydm,;n k
to 7ly=x-,, n = 1,2,...,N. We denote gl|y-x-, = [¢], = g.». Then

Bﬂ ZG,MMW, P—’ﬂ ZGmpa, (14)
J In

a=1
u; a ou; VY
—| = G'n(l — = G'na/G'a i3 15
LxﬁL ; " L?XJL ;; e et (>
and 5 5 5
u; _ 9 1 -9
’r_t“n - ot |—Uz-|n aluz,n- (16)



Equations (11), (12) at x = x*,, imply

8 : o, 2 [ 6%, ap
a2, FRNE=R an
and
3
g (18)
Z Oxj . B

respectively. Equations (17), (18) imply

3 N 3 N N
u1n+ZZu ]naula:VZZZGjna japUip — ZGlnapw (19)

j=1 a=1 Jj=1 a=1 B=1

and

3 N
D> Ginaltza =0 (20)

j=1 a=1

respectively. Let U be a matrix where U,, = u;, and let P be a matrix where
Py, = p.o- Then equations (19), (20) imply

2+ UAMU) = vUB - An)' P @1

and
trace(UA(n)) = 0 (22)

respectively. Herein A(n) and B(n) are matrices where
A(n)a,j = Gj,n,oz (23)

and

3 N
Bgn = D Y GinaGius (24)

j=1 a=1

The i, n component of (21) recovers (19) since

N N
D UUAMUY, = ) Uy
=1 =1

3 N
Ui,aA(n)a/,j U]n Z Z Ul an,n,a Uj,n’ (25)

j=1 a=1

3

D AU,

m=1

[UAMmU)]in

w |l

M=

~
1l
<
1l



N N 3 N N
[UBip = ) UiyBOiy = > UigB)gn = ) " > UigGinaGiag, (26)
=1 B=1

=1 a=1 p=1

and

N
DA Py, = ZA(n)l,Pln ZGln,P,n

=1

[a@],,

M=

GinaPon = Z Ginab.a- 27)

S
Il

Equation (22) recovers (20) since

;
Z UAM);; = Z Z Ui,

]lll

N
D UG = Z Z U;0G o (28)

=1 j=1 a=1

trace(UA(n))

M- T

~.
1l
—

Let O(n) be a matrix such that (A(n)" P)Q(n) = 0. We have

A" (PO, ZA(n),xPQ(n»l,

(ao7) 0on)

3 N
- Z ZA(”)ZIP timQ(W)m,j = 0. (29)

=1 m=1

Here nonzero Q(n) is possible to construct because p at one arbitrary x point is
arbitrary and can be set to zero without loss of generality. Then (21) implies

ou
(E) Q(n) + (U(A(m)U)Q(n) = (vUB(n))Q(n). (30)

Equation (30) is the same as we would get for the Burgers equations. Now we
consider a matrix Riccati equation problem.

0X

i aX + by, (31)
Y
%—t =cX + dy, (32)
with
X = (UDY. (33)
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Then we get

ou oY
(EA)Y+ (UA)E =a(UD)Y +bY (34)
which implies
ou
(Eﬂ) Y+ (UD[c(UADY +dY] = a(UA)Y + bY (35)
implying
a—U/l + (UD)c(UAD) + (UAd =a(UA) +b. (36)

ot

Wethenleta = b =0, 1 = Q(n), c = Q) 'A(n), d = —vQ(n)"'B(n)Q(n) to
recover (30). Then (31) implies

X = Xli=o- (37)
Equation (32) implies
oY
i cX|=o +dY (38)
and so 5
o (eY) = e Xl (39)
which integrating with respect to ¢ yields
!
e Y = f e "cX|i=o dt + Y=o (40)
0
which implies
Y = [e(=d)™ eXlimo] + V1o @1
to obtain .
Y =(e) (e - 1) (=d) " cXlizo + Ylmo} 42)

Equation (33) then implies

Ul = XY™
-1
Uleo) Vo (€7 = 1) () cUlaoAV 1) + Yico] e

Uleo) [ = 1) - elo) + 1) 7. (43)

No blowup is possible since the Burgers equations are regular. O
For the Euler equations we have

Ul = (Ulod) {c(Ulzot + 1} (44)
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and blowup is possible since for odd N the equation

det (c(Ul;zo)t+1) =0 (45)
can have a solution ¢ where 0 < ¢ < co.
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