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Abstract. We show that the result in [1] holds in the limiting cases using
1/0.
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1. Introduction

We consider oriented circles and oriented lines. Two figures are said to touch
if the orientations at the point of tangency are the same. Circles with counter-
clockwise orientation have radius with plus sign, otherwise minus. A line segment
AB has also length with signs, and the line segment with initial point B and end
point A is denoted by −AB. Hence we have AB + (−AB) = 0, which is denoted
by AB−AB = 0. The line having the opposite orientation to t is denoted by −t.
In [1], we obtain the following result (see Figure 1).
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Figure 1.

Theorem 1. Two lines t1 and t2 touch a circle γ of radius r. Another line t
touches γ at a point P and meets t1 and t2 in points A and B, respectively. If θ
is the angle between t1 and t2, then we have

(1) cot
θ

2
=

r

AP + PB
− r−1

AP−1 + PB−1
.

The angle between t1 and −t2 is considered in [1], which is denoted by 2θ
in the paper. If we denote the same angle by 2θ′ in this paper, then we have
θ + 2θ′ = π, i.e., cot θ/2 = tan θ′.
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2. Main result

In this section we give the next theorem using the fact 1/0 = 0 ([2]).

Theorem 2. Equation (1) in Theorem 1 holds if θ = 0 or θ = π.

Proof. Assume θ = 0 (see Figure 2). Then the lines t1 and t2 overlap. Hence we
have |AP | = |PB|, i.e., AP + PB = 0. This also implies AP−1 + PB−1 = 0.
Therefore the right side of (1) equals 0. Assume θ = π (see Figure 3). Then
the lines t1 and t2 are parallel. We consider using Cartesian coordinate with
origin at the center of the circle γ so that the line t1 has equation x = r > 0. Let
(r cos ρ, r sin ρ) be the coordinates of the point P . We may assume 0 < ρ < π. The
line t has equation x cos ρ+y sin ρ = r. Hence the points A and B have coordinates
(r, r(1− cos ρ)/ sin ρ) and (−r, r(1 + cos ρ)/ sin ρ), respectively. Therefore we get

|AP | = r tan
ρ

2
and |PB| = r cot

ρ

2
.

Since the line segments AP and PB overlap, they have the same sign, which is
plus in this case. Hence we have

r

AP + PB
=

sin ρ

2
and

r−1

AP−1 + PB−1
=

sin ρ

2
.

Therefore (1) holds. □
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Figure 2: θ = 0.
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Figure 3: θ = π.
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