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Abstract

Recent precision measurements of Baryon Acoustic Oscillations (BAO)
by surveys such as the Dark Energy Spectroscopic Instrument (DESI) have
revealed tensions with predictions from the standard ΛCDM cosmological
model. This paper presents a novel approach to addressing these discrep-
ancies by incorporating geometric flow concepts inspired by Perelman’s
work on Ricci flow. We introduce a modified Friedmann equation that
includes a Ricci flow term, providing a geometric framework for under-
standing potential deviations from standard cosmology. Our model shows
significant improvement in fitting DESI BAO measurements across a wide
range of redshifts, suggesting a possible geometric origin for observed cos-
mic expansion anomalies. Parameter space analysis reveals subtle inter-
play between logarithmic and power-law contributions to the expansion
history, potentially offering new insights into the nature of dark energy or
modifications to general relativity on cosmological scales.

1 Introduction

The ΛCDM model has been remarkably successful in describing a wide range of
cosmological observations. However, recent high-precision measurements, par-
ticularly from Baryon Acoustic Oscillation (BAO) surveys such as the Dark
Energy Spectroscopic Instrument (DESI), have revealed potential inconsisten-
cies with ΛCDM predictions [1, 2]. These discrepancies hint at the possibility
of evolving dark energy or modifications to our understanding of gravity on
cosmological scales.

In parallel, the mathematical community has seen significant advancements
in geometric analysis, most notably Perelman’s use of Ricci flow in proving the
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Poincaré conjecture [3]. Ricci flow, introduced by Hamilton and extensively de-
veloped by Perelman, describes how a metric evolves to smooth out irregularities
in curvature:

∂gµν
∂t

= −2Rµν

where gµν is the metric tensor and Rµν is the Ricci curvature tensor.
Building upon recent work applying Ricci flow techniques to general relativ-

ity and quantum gravity [4], our paper explores the application of these geomet-
ric flow concepts to cosmology, aiming to provide a mathematically motivated
framework for understanding cosmic expansion anomalies and addressing the
observed tensions in BAO measurements.

2 Theoretical Framework

Our work builds directly upon the foundational mathematics developed in ”Ricci
Flow Techniques in General Relativity and Quantum Gravity: A Perelman-
Inspired Approach to Spacetime Dynamics” [4], particularly the derivations
presented in Appendix A of that paper. Here, we outline the key mathematical
concepts and their adaptations to cosmology.

2.1 Lorentzian Ricci Flow

The cornerstone of our approach is the Lorentzian Ricci flow, first introduced
in Equation 1.1 of Appendix A [4]:

∂g

∂t
= −2Ric(g) (1)

where g is the metric tensor and Ric is the Ricci curvature tensor. This fun-
damental equation describes how the geometry of spacetime evolves under the
flow.

2.2 Evolution of Scalar Curvature

Crucially, Theorem 1.2 in Appendix A [4] derived the evolution equation for
scalar curvature R under Lorentzian Ricci flow:

∂R

∂t
= □R+ 2|Ric|2 (2)

where □ is the Lorentzian d’Alembertian operator. This equation is vital for
understanding how the overall curvature of spacetime changes over time.
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2.3 Entropy Functionals

Appendix A [4] introduced Lorentzian analogues of Perelman’s entropy func-
tionals, which are key to analyzing the behavior of the flow. The F -functional,
defined in Equation 1.2 of Appendix A, is given by:

F [g, f ] =

∫
M

(
R+ |∇f |2

)
e−f dV (3)

And the W -functional, from Equation 1.3 of Appendix A:

W [g, f, τ ] =

∫
M

(
τ
(
R+ |∇f |2

)
+ f − n−n

2

)
e−f dV (4)

These functionals provide crucial insights into the thermodynamic-like proper-
ties of spacetime under Ricci flow.

2.4 Application to Cosmology

Building on these foundations, we adapt the Ricci flow framework to cosmology.
Inspired by the modified Ricci flow for FLRW spacetimes presented in Section
5.1 of Appendix A [4], we propose a modification to the standard Friedmann
equation: (

H

H0

)2

= Ωm(1 + z)3 +Ωr(1 + z)4 +ΩΛ +ΩRF(z) (5)

Here, ΩRF(z) represents the contribution from Ricci flow effects. To capture
the complexity of this geometric effect on cosmic expansion, we parameterize
ΩRF(z) as:

ΩRF(z) = λ1 ln(1 + z) + λ2(1 + z)n (6)

This formulation, inspired by the logarithmic nature of Perelman’s entropy func-
tional and the flexibility needed to model redshift dependence, allows us to
explore how geometric flow might influence cosmic expansion history.

2.5 Modified Ricci Flow in General Relativity

Finally, we consider a modified Ricci flow that incorporates the cosmological
constant, adapting the approach outlined in Section 5.1 of Appendix A [4]:

∂gµν
∂τ

= −2

(
Rµν − 1

2
Rgµν + Λgµν

)
(7)

This equation forms the basis of our analysis of spacetime evolution under Ricci
flow in a cosmological context, allowing us to explore how geometric flow effects
might manifest in observable cosmic phenomena.
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3 Methodology

We implemented this model computationally and optimized the parameters λ1,
λ2, and n to best fit recent DESI BAO measurements. The model’s predic-
tions were compared to both standard ΛCDM and DESI data for the quantities
DM/rd, DH/rd, and DV /rd across a range of redshifts (0.3 ≤ z ≤ 1.49).

We used a χ2 minimization approach to find the best-fit parameters for
our Ricci flow model. We also calculated the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) to compare the models while
accounting for their different complexities.

4 Results

Our analysis used a total of 26 data points from the DESI BAO measurements.
The best-fit parameters for our Ricci flow model were:

λ1 = 0.3391, λ2 = −0.0864, n = 2.7475

The comparison of the models yielded the following results:

• ΛCDM model:

– χ2 = 73.44

– AIC = 73.44

– BIC = 73.44

• Ricci Flow model:

– χ2 = 14.85

– AIC = 20.85

– BIC = 24.63

The Ricci Flow model improves the fit by 79.78% compared to ΛCDM. This
improvement is statistically significant, with a p-value < 0.0001.

Detailed comparisons show that the Ricci Flow model generally provides
better fits for both DM/rd and DH/rd across most redshifts, with particularly
good agreement at higher redshifts (z > 1).

Parameter space analysis reveals:

• Best-fit values: λ1 ≈ 0.3391, λ2 ≈ −0.0864

• The model is more sensitive to λ2 than λ1, suggesting the power-law term
has a stronger impact on the fit to observational data.

• The positive λ1 indicates an increasing effect of Ricci flow at higher red-
shifts.

• The slightly negative λ2 implies a small negative contribution from the
power-law term, potentially counterbalancing the logarithmic term at very
high redshifts.
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5 Discussion

The results of our analysis provide strong evidence for the potential importance
of geometric flow effects in cosmic expansion:

1. Significant Improvement in Fit: The substantial reduction in χ2 (from
73.44 to 14.85) indicates that the Ricci Flow model describes the DESI
BAO data much more accurately than standard ΛCDM.

2. Model Complexity vs. Fit Improvement: Even when penalizing
for additional parameters, the Ricci Flow model outperforms ΛCDM as
indicated by lower AIC and BIC values.

3. Parameter Interpretation: The positive λ1 and negative λ2 suggest
a complex interplay between the logarithmic and power-law terms in the
Ricci flow contribution. This interplay could be interpreted as a dynamic
balance between geometric effects that enhance expansion (logarithmic
term) and those that moderate it (power-law term) over cosmic history.

4. Redshift Dependence: The model’s improved performance across a
wide range of redshifts, particularly at higher z, suggests that it captures
aspects of cosmic expansion history that ΛCDM might be missing. This
could indicate that geometric flow effects become more pronounced in the
early universe.

5. Implications for Dark Energy: The non-zero best-fit values for λ1

and λ2 suggest that Ricci flow modification offers a new perspective on
dark energy. Rather than a cosmological constant, dark energy in this
framework emerges from the dynamic geometry of spacetime itself.

6. Modified Gravity Interpretation: Alternatively, these results could be
interpreted as evidence for modifications to general relativity on cosmolog-
ical scales. The Ricci flow terms might be capturing effective corrections
to Einstein’s equations that become relevant at large scales or early times.

7. Predictive Power: The tight constraints on λ2 suggest that future ob-
servations could further test and refine this model, potentially leading to
testable predictions that distinguish it from ΛCDM.

These findings suggest that incorporating geometric flow effects could be
crucial for understanding cosmic expansion and potentially resolving some of
the tensions in current cosmological observations.

6 Conclusion

Our Ricci flow-inspired model provides a substantially better fit to DESI BAO
data compared to the standard ΛCDM model. This improvement is statistically
significant and robust, even when accounting for the increased model complexity.
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The success of this approach suggests that geometric flow concepts could play
an important role in our understanding of cosmic expansion and the nature of
dark energy.

The interplay between logarithmic and power-law contributions in our model
offers a new perspective on the evolution of the universe, potentially bridging
the gap between quantum gravity approaches and large-scale cosmology.

Further work is needed to explore the full implications of this model, includ-
ing its predictions for other cosmological observables and its potential to address
other tensions in cosmological data. Nonetheless, these results open up exciting
new avenues for understanding the geometry of our expanding universe.
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Addendum 1: Computer Printout

Total Number of Data Points

• Total number of data points: 26

ΛCDM Results

• χ2 = 73.44

• AIC = 73.44

• BIC = 73.44
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Detailed Comparison with DESI Data

z DM/rd (Model) DH/rd (Model) DV /rd (Model) DM/rd (DESI) DH/rd (DESI) DV /rd (DESI)
0.30 - - 7.8038 - - 7.93
0.51 12.8861 21.7436 12.2569 13.62 20.98 -
0.71 16.9814 19.2577 15.7981 16.85 20.08 -
0.92 20.7795 16.9710 18.8910 21.81 17.83 -
0.93 20.9487 16.8705 19.0243 21.71 17.88 -
0.95 - - 19.2873 - - 20.01
1.32 26.8367 13.4943 23.4096 27.79 13.82 -
1.49 - - 24.9129 - - 26.07

Ricci Flow Results

• Best-fit parameters: λ1 = 0.3391, λ2 = −0.0864, n = 2.7475

• χ2 = 14.85

• AIC = 20.85

• BIC = 24.63

Detailed Comparison with DESI Data

z DM/rd (Model) DH/rd (Model) DV /rd (Model) DM/rd (DESI) DH/rd (DESI) DV /rd (DESI)
0.30 - - 8.0061 - - 7.93
0.51 13.2266 22.3562 12.5880 13.62 20.98 -
0.71 17.4527 19.9536 16.2805 16.85 20.08 -
0.92 21.4051 17.7395 19.5549 21.81 17.83 -
0.93 21.5820 17.6417 19.6971 21.71 17.88 -
0.95 - - 19.9781 - - 20.01
1.32 27.7831 14.3106 24.4304 27.79 13.82 -
1.49 - - 26.0757 - - 26.07

Interpretation of Results

• The Ricci Flow model improves the fit by 79.78% compared to ΛCDM.

• Ricci Flow Parameter Interpretation:

– λ1 = 0.3391: Positive contribution from logarithmic term.

– λ2 = −0.0864: Negative contribution from power-law term.

– n = 2.7475: Power-law index, indicating the strength of redshift
dependence.

• Statistical Significance: The improvement in fit is statistically signifi-
cant at the 5% level (p-value < 0.0001).
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Conclusion

• The Ricci Flow model provides a substantially better fit to the DESI BAO
data compared to ΛCDM.

• This suggests that incorporating geometric flow effects could be important
for understanding cosmic expansion.

Parameter Errors (from Monte Carlo Simulation)

• σ(λ1) = 0.0289

• σ(λ2) = 0.0096

• σ(n) = 0.0355

Bayesian Model Comparison

• ΛCDM BIC: 73.44

• Ricci Flow BIC: 24.63

• ∆BIC (ΛCDM - Ricci Flow): 48.82
Very strong evidence in favor of the Ricci Flow model.
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Appendix: Python codes

1

2 Created on Wed Aug 14 08:05:19 2024

3

4 @author: Paul C Lee MD

5 """

6

7 import numpy as np

8 from scipy import integrate , optimize , stats

9 import matplotlib.pyplot as plt

10 from mpl_toolkits.mplot3d import Axes3D

11 import warnings

12

13 # Suppress warnings for cleaner output

14 warnings.filterwarnings (" ignore", category=integrate.

IntegrationWarning)

15

16 # Cosmological constants

17 c = 299792.458 # Speed of light in km/s

18 H0 = 100 * 0.6736 # Hubble constant in km/s/Mpc

19 Omega_m = 0.31 # Matter density parameter

20 Omega_b = 0.048 # Baryon density parameter

21 Omega_r = 4.165e-5 / 0.6736**2 # Radiation density parameter

22 Omega_Lambda = 1 - Omega_m - Omega_r # Dark energy density

parameter (assuming flat universe)

23

24 # DESI BAO measurements

25 desi_data = {

26 0.30: {"D_V/r_d": 7.93, "error_D_V/r_d": 0.15},

27 0.51: {"D_M/r_d": 13.62 , "D_H/r_d": 20.98, "error_D_M/r_d":

0.25, "error_D_H/r_d": 0.61},

28 0.71: {"D_M/r_d": 16.85 , "D_H/r_d": 20.08, "error_D_M/r_d":

0.32, "error_D_H/r_d": 0.60},

29 0.92: {"D_M/r_d": 21.81 , "D_H/r_d": 17.83, "error_D_M/r_d":

0.31, "error_D_H/r_d": 0.38},

30 0.93: {"D_M/r_d": 21.71 , "D_H/r_d": 17.88, "error_D_M/r_d":

0.28, "error_D_H/r_d": 0.35},

31 0.95: {"D_V/r_d": 20.01 , "error_D_V/r_d": 0.41},

32 1.32: {"D_M/r_d": 27.79 , "D_H/r_d": 13.82, "error_D_M/r_d":

0.69, "error_D_H/r_d": 0.42},

33 1.49: {"D_V/r_d": 26.07 , "error_D_V/r_d": 0.67}

34 }

35

36 # Correlation coefficients (where available)

37 correlations = {

38 0.51: -0.445,

39 0.71: -0.420,

40 0.92: -0.393,

41 0.93: -0.389,

42 1.32: -0.444

43 }

44

45 def Omega_RF(z, params):

46 """ Ricci flow contribution to the cosmic expansion """

47 lambda_1 , lambda_2 , n = params

48 return lambda_1 * np.log(1 + z) + lambda_2 * (1 + z)**n

9



49

50 def E(z, params):

51 """ Modified Hubble parameter (H/H0)"""

52 result = Omega_m *(1+z)**3 + Omega_r *(1+z)**4 + Omega_Lambda +

Omega_RF(z, params)

53 if result < 0:

54 return np.inf # Return a large number to avoid sqrt of

negative number

55 return np.sqrt(result)

56

57 def H(z, params):

58 """ Hubble parameter as a function of redshift """

59 return H0 * E(z, params)

60

61 def D_C(z, params):

62 """ Comoving distance """

63 integrand = lambda x: 1/E(x, params)

64 result , _ = integrate.quad(integrand , 0, z, epsabs =1e-13,

epsrel =1e-13)

65 return c / H0 * result

66

67 def D_M(z, params):

68 """ Comoving angular diameter distance """

69 return D_C(z, params)

70

71 def D_H(z, params):

72 """ Hubble distance """

73 return c / H(z, params)

74

75 def D_V(z, params):

76 """ Effective distance measure for BAO"""

77 return (z * D_M(z, params)**2 * D_H(z, params))**(1/3)

78

79 def r_s(params):

80 """ Sound horizon at the drag epoch """

81 def integrand(a):

82 z = 1/a - 1

83 R = 3 * Omega_b / (4 * Omega_r) * a

84 return 1 / (H(z, params) * a**2 * np.sqrt(3 * (1 + R)))

85

86 a_d = 1 / (1 + 1059.94) # Drag epoch from DESI paper

87 result , _ = integrate.quad(integrand , 0, a_d , epsabs =1e-13,

epsrel =1e-13)

88 return c * result

89

90 def chi_square(params):

91 """ Calculate chi^2 statistic comparing model predictions to

DESI data """

92 r_sound = r_s(params)

93 chi2 = 0

94 for z, data in desi_data.items ():

95 if "D_M/r_d" in data and "D_H/r_d" in data:

96 dm_rd_model = D_M(z, params) / r_sound

97 dh_rd_model = D_H(z, params) / r_sound

98 dm_rd_data = data["D_M/r_d"]

99 dh_rd_data = data["D_H/r_d"]

100 err_dm = data[" error_D_M/r_d"]
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101 err_dh = data[" error_D_H/r_d"]

102 corr = correlations.get(z, 0)

103

104 delta_dm = (dm_rd_model - dm_rd_data) / err_dm

105 delta_dh = (dh_rd_model - dh_rd_data) / err_dh

106

107 chi2 += (delta_dm **2 + delta_dh **2 - 2*corr*delta_dm*

delta_dh) / (1 - corr **2)

108 elif "D_V/r_d" in data:

109 dv_rd_model = D_V(z, params) / r_sound

110 dv_rd_data = data["D_V/r_d"]

111 err_dv = data[" error_D_V/r_d"]

112 chi2 += (( dv_rd_model - dv_rd_data) / err_dv)**2

113 return chi2

114

115 def calculate_aic_bic(chi2 , num_params , num_data_points):

116 """ Calculate AIC and BIC"""

117 aic = chi2 + 2 * num_params

118 bic = chi2 + num_params * np.log(num_data_points)

119 return aic , bic

120

121 def print_results(model_name , params , chi2):

122 """ Print detailed results for a given model """

123 print(f"\n{model_name} Results :")

124 print("-" * 50)

125 if model_name == "Ricci Flow":

126 print(f"Best -fit parameters: lambda_1 = {params [0]:.4f},

lambda_2 = {params [1]:.4f}, n = {params [2]:.4f}")

127 print(f"chi^2 = {chi2 :.2f}")

128

129 # Calculate AIC and BIC

130 num_params = 3 if model_name == "Ricci Flow" else 0

131 num_data_points = sum(len(data) for data in desi_data.values ())

132 aic , bic = calculate_aic_bic(chi2 , num_params , num_data_points)

133 print(f"AIC = {aic :.2f}")

134 print(f"BIC = {bic :.2f}")

135

136 print ("\ nDetailed comparison with DESI data :")

137 print("z D_M/r_d (Model) D_H/r_d (Model) D_V/r_d (Model)

D_M/r_d (DESI) D_H/r_d (DESI) D_V/r_d (DESI)")

138 print("-" * 110)

139

140 r_sound = r_s(params)

141 for z in sorted(desi_data.keys()):

142 data = desi_data[z]

143 if "D_M/r_d" in data and "D_H/r_d" in data:

144 dm_rd = D_M(z, params) / r_sound

145 dh_rd = D_H(z, params) / r_sound

146 dv_rd = D_V(z, params) / r_sound

147 print(f"{z:<6.2f} {dm_rd :<16.4f} {dh_rd :<16.4f} {dv_rd

:<16.4f} {data[’D_M/r_d ’]:<15.2f} {data[’D_H/r_d ’]:<15.2f} -")

148 elif "D_V/r_d" in data:

149 dv_rd = D_V(z, params) / r_sound

150 print(f"{z:<6.2f} - - {

dv_rd : <16.4f} - - {data[’D_V/r_d

’]:<15.2f}")

151 def interpret_results(lcdm_chi2 , rf_chi2 , rf_params):
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152 """ Interpret the results of the model comparison """

153 print ("\ nInterpretation of Results :")

154 print("-" * 50)

155

156 # Compare chi^2 values

157 chi2_improvement = (lcdm_chi2 - rf_chi2) / lcdm_chi2 * 100

158 print(f"The Ricci Flow model improves the fit by {

chi2_improvement :.2f}% compared to Lambda CDM .")

159

160 # Interpret Ricci Flow parameters

161 print(f"\ nRicci Flow parameter interpretation :")

162 print(f"lambda_1 = {rf_params [0]:.4f}: {’Positive ’ if rf_params

[0] > 0 else ’Negative ’} contribution from logarithmic term")

163 print(f"lambda_2 = {rf_params [1]:.4f}: {’Positive ’ if rf_params

[1] > 0 else ’Negative ’} contribution from power -law term")

164 print(f"n = {rf_params [2]:.4f}: Power -law index , indicating the

strength of redshift dependence ")

165

166 # Assess statistical significance

167 dof = sum(len(data) for data in desi_data.values ()) - 3 # 3

free parameters in Ricci Flow model

168 p_value = 1 - stats.chi2.cdf(lcdm_chi2 - rf_chi2 , 3)

169 print(f"\ nStatistical significance :")

170 print(f"p-value = {p_value :.4f}")

171 if p_value < 0.05:

172 print("The improvement in fit is statistically significant

at the 5% level .")

173 else:

174 print("The improvement in fit is not statistically

significant at the 5% level .")

175

176 print ("\ nConclusion :")

177 if chi2_improvement > 10 and p_value < 0.05:

178 print("The Ricci Flow model provides a substantially better

fit to the DESI BAO data compared to Lambda CDM .")

179 print("This suggests that incorporating geometric flow

effects could be important for understanding cosmic expansion

.")

180 elif chi2_improvement > 5:

181 print("The Ricci Flow model shows some improvement over

Lambda CDM , but the results are not conclusive .")

182 print(" Further investigation and more data may be needed to

confirm the significance of this improvement .")

183 else:

184 print("The Ricci Flow model does not provide a

significantly better fit than Lambda CDM for this dataset .")

185 print("The standard Lambda CDM model remains a good

description of the DESI BAO data .")

186

187 def calculate_residuals(params):

188 """ Calculate residuals between model predictions and DESI data

"""

189 residuals = []

190 r_sound = r_s(params)

191 for z, data in desi_data.items ():

192 if "D_M/r_d" in data:

193 dm_rd_model = D_M(z, params) / r_sound
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194 residuals.append (( dm_rd_model - data["D_M/r_d"]) / data

[" error_D_M/r_d"])

195 if "D_H/r_d" in data:

196 dh_rd_model = D_H(z, params) / r_sound

197 residuals.append (( dh_rd_model - data["D_H/r_d"]) / data

[" error_D_H/r_d"])

198 if "D_V/r_d" in data:

199 dv_rd_model = D_V(z, params) / r_sound

200 residuals.append (( dv_rd_model - data["D_V/r_d"]) / data

[" error_D_V/r_d"])

201 return np.array(residuals)

202

203 def plot_residuals(lcdm_params , rf_params):

204 """ Plot residuals for both models """

205 lcdm_residuals = calculate_residuals(lcdm_params)

206 rf_residuals = calculate_residuals(rf_params)

207

208 plt.figure(figsize =(10, 6))

209 plt.scatter(range(len(lcdm_residuals)), lcdm_residuals , label=’

Lambda CDM ’)

210 plt.scatter(range(len(rf_residuals)), rf_residuals , label=’

Ricci Flow ’)

211 plt.axhline(y=0, color=’r’, linestyle=’--’)

212 plt.xlabel(’Data Point ’)

213 plt.ylabel(’Residual (sigma) ’)

214 plt.title(’Residuals for Lambda CDM and Ricci Flow Models ’)

215 plt.legend ()

216 plt.show()

217

218 def monte_carlo_errors(best_params , num_simulations =1000):

219 """ Estimate errors on best -fit parameters using Monte Carlo

simulation """

220 chi2_func = lambda params: chi_square(params)

221 hess_inv = optimize.minimize(chi2_func , best_params).hess_inv

222 param_cov = hess_inv * 2 # Factor of 2 because chi^2 is sum of

squares

223

224 param_samples = np.random.multivariate_normal(best_params ,

param_cov , num_simulations)

225 return np.std(param_samples , axis =0)

226

227 def plot_redshift_evolution(lcdm_params , rf_params):

228 """ Plot D_M/r_d , D_H/r_d , and D_V/r_d evolution with redshift

"""

229 z_range = np.linspace (0.1, 2.0, 100)

230

231 plt.figure(figsize =(12, 8))

232

233 # D_M/r_d

234 plt.subplot(2, 2, 1)

235 plt.plot(z_range , [D_M(z, lcdm_params)/r_s(lcdm_params) for z

in z_range], label=’Lambda CDM ’)

236 plt.plot(z_range , [D_M(z, rf_params)/r_s(rf_params) for z in

z_range], label=’Ricci Flow ’)

237 plt.scatter ([z for z, data in desi_data.items() if "D_M/r_d" in

data],

238 [data["D_M/r_d"] for data in desi_data.values () if
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"D_M/r_d" in data], label=’DESI Data ’)

239 plt.xlabel(’Redshift ’)

240 plt.ylabel(’D_M/r_d ’)

241 plt.legend ()

242

243 # D_H/r_d

244 plt.subplot(2, 2, 2)

245 plt.plot(z_range , [D_H(z, lcdm_params)/r_s(lcdm_params) for z

in z_range], label=’Lambda CDM ’)

246 plt.plot(z_range , [D_H(z, rf_params)/r_s(rf_params) for z in

z_range], label=’Ricci Flow ’)

247 plt.scatter ([z for z, data in desi_data.items() if "D_H/r_d" in

data],

248 [data["D_H/r_d"] for data in desi_data.values () if

"D_H/r_d" in data], label=’DESI Data ’)

249 plt.xlabel(’Redshift ’)

250 plt.ylabel(’D_H/r_d ’)

251 plt.legend ()

252

253 # D_V/r_d

254 plt.subplot(2, 2, 3)

255 plt.plot(z_range , [D_V(z, lcdm_params)/r_s(lcdm_params) for z

in z_range], label=’Lambda CDM ’)

256 plt.plot(z_range , [D_V(z, rf_params)/r_s(rf_params) for z in

z_range], label=’Ricci Flow ’)

257 plt.scatter ([z for z, data in desi_data.items() if "D_V/r_d" in

data],

258 [data["D_V/r_d"] for data in desi_data.values () if

"D_V/r_d" in data], label=’DESI Data ’)

259 plt.xlabel(’Redshift ’)

260 plt.ylabel(’D_V/r_d ’)

261 plt.legend ()

262

263 plt.tight_layout ()

264 plt.show()

265

266 def plot_chi2_contours(best_params):

267 """ Plot chi^2 contours in the lambda_1 -lambda_2 plane """

268 l1_range = np.linspace(best_params [0] - 0.5, best_params [0] +

0.5, 50)

269 l2_range = np.linspace(best_params [1] - 0.5, best_params [1] +

0.5, 50)

270 L1, L2 = np.meshgrid(l1_range , l2_range)

271

272 CHI2 = np.zeros_like(L1)

273 for i in range(L1.shape [0]):

274 for j in range(L1.shape [1]):

275 CHI2[i,j] = chi_square ([ lambda_1[i,j], lambda_2[i,j],

best_params [2]])

276

277 plt.figure(figsize =(10, 8))

278 cp = plt.contourf(L1, L2, CHI2 , levels =20)

279 plt.colorbar(cp)

280 plt.xlabel(’lambda_1 ’)

281 plt.ylabel(’lambda_2 ’)

282 plt.title(’chi^2 Contours (n fixed at best -fit value) ’)

283 plt.plot(best_params [0], best_params [1], ’r*’, markersize =15)
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284 plt.show()

285

286 def bayesian_model_comparison(lcdm_chi2 , rf_chi2):

287 """ Perform Bayesian model comparison using BIC"""

288 num_data_points = sum(len(data) for data in desi_data.values ())

289 lcdm_bic = lcdm_chi2 + 0 * np.log(num_data_points) # Lambda

CDM has 0 free parameters in this context

290 rf_bic = rf_chi2 + 3 * np.log(num_data_points) # Ricci Flow

has 3 free parameters

291

292 delta_bic = lcdm_bic - rf_bic

293

294 print ("\ nBayesian Model Comparison :")

295 print(f"Lambda CDM BIC: {lcdm_bic :.2f}")

296 print(f"Ricci Flow BIC: {rf_bic :.2f}")

297 print(f"Delta BIC (Lambda CDM - Ricci Flow): {delta_bic :.2f}")

298

299 if delta_bic > 10:

300 print("Very strong evidence in favor of the Ricci Flow

model")

301 elif delta_bic > 6:

302 print(" Strong evidence in favor of the Ricci Flow model")

303 elif delta_bic > 2:

304 print(" Positive evidence in favor of the Ricci Flow model")

305 elif delta_bic > -2:

306 print("Weak evidence in favor of the Ricci Flow model")

307 else:

308 print(" Evidence in favor of the Lambda CDM model ")

309

310 # Main execution

311 if __name__ == "__main__ ":

312 # Count data points

313 data_point_count = sum(len([val for val in data.values () if

isinstance(val , (int , float))]) for data in desi_data.values ())

314 print(f"Total number of data points: {data_point_count }")

315

316 # Optimize Ricci flow parameters

317 initial_guess = [0.01, 0.01, 1]

318 result = optimize.minimize(chi_square , initial_guess , method=’

Nelder -Mead ’)

319 best_params = result.x

320

321 # Calculate for Lambda CDM and Ricci flow models

322 lcdm_params = [0, 0, 1] # Equivalent to no Ricci flow

323 lcdm_chi2 = chi_square(lcdm_params)

324 rf_chi2 = chi_square(best_params)

325

326 # Print results

327 print_results (" Lambda CDM", lcdm_params , lcdm_chi2)

328 print_results ("Ricci Flow", best_params , rf_chi2)

329

330 # Interpret results

331 interpret_results(lcdm_chi2 , rf_chi2 , best_params)

332

333 # Plot residuals

334 plot_residuals(lcdm_params , best_params)

335
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336 # Monte Carlo error estimation

337 param_errors = monte_carlo_errors(best_params)

338 print ("\ nParameter Errors (from Monte Carlo simulation):")

339 print(f"sigma(lambda_1) = {param_errors [0]:.4f}")

340 print(f"sigma(lambda_2) = {param_errors [1]:.4f}")

341 print(f"sigma(n) = {param_errors [2]:.4f}")

342

343 # Plot redshift evolution

344 plot_redshift_evolution(lcdm_params , best_params)

345

346 # Plot chi^2 contours

347 plot_chi2_contours(best_params)

348

349 # Bayesian model comparison

350 bayesian_model_comparison(lcdm_chi2 , rf_chi2)
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Figures

Figure 1: Evolution of DM/rd, DH/rd, and DV /rd with Redshift for ΛCDM,
Ricci Flow Models, and DESI Data.

Figure 2: Residuals for ΛCDM and Ricci Flow Models.
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Layperson Summary: Rethinking the Universe’s
Expansion

Imagine the universe as a giant, ever-expanding balloon. For years, scientists
have been puzzled by how this balloon seems to be inflating faster than our
best theories predict. This mystery has led to concepts like ”dark energy”—an
invisible force supposedly pushing everything apart.

Now, a new idea is challenging this view, and it’s based on a fascinating
mathematical concept called ”Ricci flow.”

What is Ricci Flow?

Think of Ricci flow like a cosmic iron, smoothing out wrinkles in the fabric of
space itself. Originally used by mathematicians to study abstract shapes, this
paper applies it to the entire universe.

Why is this a Big Deal?

• New perspective on dark energy: Instead of inventing new forces,
this approach suggests the universe’s faster expansion might be due to
how space itself behaves.

• Space isn’t empty: It implies that even ”empty” space is dynamic and
evolving, constantly reshaping itself.

• Bridging math and physics: It’s applying a tool from pure mathemat-
ics to solve a real-world cosmic mystery.

• Better fit with observations: Recent, very precise measurements of
how galaxies are spread out don’t quite match our current theories. This
new approach might explain these discrepancies.

Why Hasn’t This Been Tried Before?

Applying mathematical tools from one field to another isn’t obvious. It’s like re-
alizing a technique for ironing clothes could help explain how the ocean moves—it
requires a big leap of imagination.

What Could This Mean?

If this idea holds up, it could revolutionize our understanding of the universe.
Instead of a simple balloon inflating, imagine the universe as a complex, liv-
ing geometry, evolving according to mathematical rules we’re just beginning to
uncover.
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The Controversy

This paper challenges long-held beliefs about how the universe works. It suggests
that instead of adding more mysterious ingredients (like dark energy) to our
cosmic recipe, we might need to rethink the recipe itself.

Why It Matters

Understanding how the universe expands is crucial for many reasons:

• It helps us predict the universe’s fate.

• It could shed light on how galaxies and stars form and evolve.

• It might help resolve conflicts between quantum physics (which governs
the very small) and general relativity (which governs the very large).

In essence, this paper proposes a new way of looking at the universe’s expan-
sion. Instead of seeing space as an empty stage where cosmic drama unfolds,
it suggests space itself is an active player, constantly reshaping according to
mathematical rules. This could be a game-changer in our quest to understand
the cosmos.
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