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Abstract

The Riemann Hypothesis asserts that all non-trivial zeros of the
Riemann zeta function lie on the critical line ℜ(s) = 1

2 in the complex
plane. This paper explores an alternative geometric approach by ana-
lyzing the zeta function and its non-trivial zeros in polar coordinates.
Transforming the problem into this framework reveals a natural sym-
metry about the polar axis, which corresponds to the critical line in
Cartesian coordinates.

We demonstrate that the Ξ(s) function, a redefined version of the
zeta function, retains the symmetry Ξ(s) = Ξ(1 − s) in polar coordi-
nates, supporting the hypothesis that non-trivial zeros must lie on the
critical line.

This geometric perspective suggests a potential simplification in
verifying the Riemann Hypothesis and offers new insights into the
distribution of non-trivial zeros.
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1 Introduction

The Riemann Hypothesis (RH) stands as one of the most famous and long-
standing unsolved problems in mathematics. Formulated by Bernhard Rie-
mann in 1859, the hypothesis asserts that all non-trivial zeros of the Riemann
zeta function ζ(s) lie on the critical line ℜ(s) = 1

2
in the complex plane [1].

This conjecture is not only central to number theory but also has deep impli-
cations across mathematics, with connections to prime number distribution,
analytic number theory, and even mathematical physics.

Over the years, numerous approaches have been proposed to tackle this
problem, ranging from analytic techniques to complex function theory [3].
However, despite substantial progress, a complete proof remains elusive. In
this paper, we present an alternative geometric perspective by transforming
the analysis of the Riemann zeta function and its zeros into polar coordi-
nates. This transformation aims to provide fresh insight into the symmetry
properties of non-trivial zeros and their relationship to the critical line.

The primary motivation for using polar coordinates is the inherent sym-
metry observed in the non-trivial zeros of the zeta function. When expressed
in polar form, the zeros exhibit a natural reflection symmetry about the po-
lar axis, which corresponds to the critical line in Cartesian coordinates [4].
This symmetry is reflected in the functional equation of the Ξ(s) function,
which satisfies Ξ(s) = Ξ(1 − s) [3]. By reinterpreting this equation in polar
coordinates, we aim to establish a more intuitive geometric understanding of
why the non-trivial zeros must lie on the critical line.

In this paper, we explore several key concepts:

• The transformation of complex numbers s = σ + it into polar coordi-
nates, where s is expressed as s = reiθ with modulus r and argument
θ.

• The symmetry properties of the Ξ(s) function in polar coordinates,
which maintain the critical reflection symmetry Ξ(s) = Ξ(1− s) about
the polar axis [3].

• An analysis of the non-trivial zeros of the Riemann zeta function in
polar coordinates, demonstrating how the symmetry constraints imply
that these zeros must lie on σ = 1

2
[2].

This geometric approach, while not entirely novel, offers an alternative
approach to the Riemann Hypothesis as a problem of positional symmetry in
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polar coordinates. By transforming the analysis into a geometric context, we
aim to provide clearer and more accessible reasoning behind the hypothesis.
Additionally, this perspective allows us to validate known non-trivial zeros
using straightforward trigonometric identities and polar coordinate proper-
ties.

2 Polar Coordinate Representation of Com-

plex Zeros

In this section, we explore the polar coordinate representation of complex
numbers, specifically the zeros of the Riemann zeta function. This represen-
tation provides insight into the symmetry properties of these zeros.

2.1 Polar Coordinate Representation of the Complex
Number s = σ + it

For the complex number s = σ + it, where σ is the real part and t is the
imaginary part, the polar coordinate representation is as follows [4]:

• Modulus (Radius) r:

r = |s| =
√
σ2 + t2

• Argument (Angle) θ:

θ = arctan

(
t

σ

)
Thus, the complex number s = σ+ it can be represented in polar coordi-

nates as:
s = r(cos θ + i sin θ)

or equivalently:
s = reiθ

where r =
√
σ2 + t2 is the modulus and θ = arctan

(
t
σ

)
is the argument.
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2.2 Polar Coordinate Representation of the Complex
Number s = σ − it

Similarly, for the complex number s = σ − it:

• Modulus (Radius) r:

r = |s| =
√
σ2 + t2

• Argument (Angle) θ changes because the sign of the imaginary part
t becomes negative. In this case:

θ = arctan

(
−t

σ

)
Note that:

arctan

(
−t

σ

)
= − arctan

(
t

σ

)
Therefore, the complex number s = σ − it in polar coordinates is repre-

sented as:
s = r(cos(−θ) + i sin(−θ)) = r(cos θ − i sin θ)

or equivalently:
s = re−iθ

where r =
√
σ2 + t2 is the modulus, and −θ = − arctan

(
t
σ

)
is the argument.

2.3 Summary of the Symmetry

To summarize:
- The complex number s = σ + it in polar coordinates is represented as

reiθ, where r =
√
σ2 + t2 and θ = arctan

(
t
σ

)
.

- The complex number s = σ − it in polar coordinates is represented as
re−iθ, where r =

√
σ2 + t2 and θ = − arctan

(
t
σ

)
.

These two complex numbers s = σ + it and s = σ − it have the same
modulus but opposite arguments. This is the geometric explanation of their
symmetry about the polar axis in polar coordinates.
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3 Symmetry of the Ξ Function in Polar Co-

ordinates

To prove that the symmetry of the Ξ function, defined as [3]:

Ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

satisfies the simpler functional equation

Ξ(s) = Ξ(1− s)

in polar coordinates, let’s begin by expressing s in polar form.

3.1 Polar Coordinate Representation

Let s = σ+ it be the complex variable in Cartesian coordinates, and express
s in polar coordinates as [4]:

s = reiθ

where:

r =
√
σ2 + t2, θ = arctan

(
t

σ

)
Thus, the function Ξ(s) in polar coordinates becomes:

Ξ(reiθ) = Ξ(1− reiθ)

3.2 Applying the Functional Equation

The functional equation for Ξ(s) is [3]:

Ξ(s) = Ξ(1− s)

In polar coordinates, s = reiθ, so the functional equation in these coordinates
becomes:

Ξ(reiθ) = Ξ(1− reiθ)

Now, let’s express 1− s in polar form. Using the identity [4]:

1− s = 1− reiθ
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However, 1− reiθ is not immediately in polar form. We can rewrite this as:

1− reiθ =
1

r
e−iθ ·

(
1− reiθ

)
Given that all the components of the Ξ(s) function—the polynomial part,

the Gamma function, and the Riemann zeta function—satisfy the required
functional equation symmetries in polar coordinates [4], we conclude that:

Ξ(reiθ) = Ξ(1− reiθ)

This proves that the symmetry of the Ξ(s) function, as expressed in the
simpler functional equation Ξ(s) = Ξ(1−s), is maintained when the function
is expressed in polar coordinates.

4 Non-Trivial Zeros in Polar Coordinates

The non-trivial zeros of the Riemann ζ(s) function are known to have the
form s = 1

2
+ it, where t ∈ R. In polar coordinates, a complex number s can

be expressed as:
s = reiθ,

where

r =
√
σ2 + t2 and θ = tan−1

(
t

σ

)
.

For the non-trivial zeros s = 1
2
+ it, this becomes:

r =

√
1

4
+ t2 and θ = tan−1(2t).

The corresponding reflection 1− s = 1
2
− it has the same modulus r but a

negated angle −θ. Therefore, the non-trivial zeros in polar coordinates can
be expressed as:

s =

√
1

4
+ t2 · ei tan−1(2t) and 1− s =

√
1

4
+ t2 · e−i tan−1(2t).
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4.1 Symmetry Analysis of the Ξ(s) Function

Substituting these polar coordinate expressions into the Ξ(s) function, we
obtain:

Ξ

(√
1

4
+ t2 · eiθ

)
=

1

2

(√
1

4
+ t2 · eiθ

)(√
1

4
+ t2 · eiθ − 1

)
·π−

√
1
4+t2·eiθ

2 ·Γ


√

1
4
+ t2 · eiθ

2

·ζ

(√
1

4
+ t2 · eiθ

)
.

Similarly, for the reflection 1− s, we have:

Ξ

(√
1

4
+ t2 · e−iθ

)
=

1

2

(√
1

4
+ t2 · e−iθ

)(√
1

4
+ t2 · e−iθ − 1

)
·π−

√
1
4+t2·e−iθ

2 ·Γ


√

1
4
+ t2 · e−iθ

2

·ζ

(√
1

4
+ t2 · e−iθ

)
.

The expressions demonstrate that Ξ(s) is symmetric with respect to the
polar axis (i.e., the polar axis or θ = 0):

Ξ
(
reiθ
)
= Ξ

(
re−iθ

)
.

This symmetry indicates that the non-trivial zeros are symmetric about
the polar axis, with θ and −θ corresponding to mirrored points across the
real axis.

Therefore, we have shown that the non-trivial zeros of the Riemann Ξ(s)
function are symmetric about the polar axis in polar coordinates. This sym-
metry is reflected in the function’s behavior, where the reflection s 7→ 1− s
results in identical function values for mirrored points. The analysis is appli-
cable not only to the first billion non-trivial zeros but to all non-trivial zeros,
as the underlying symmetry is a fundamental property of the Ξ(s) function.

5 Symmetry of Non-Trivial Zeros Based on

the Ξ(s) Function

In this section, we explore the implications of the symmetry of the Ξ(s)
function in polar coordinates and how it constrains the possible symmetry
of non-trivial zeros of the Riemann zeta function.
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5.1 The Ξ(s) Function and Polar Coordinates

The Ξ(s) function, defined as:

Ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

satisfies the symmetry property:

Ξ(s) = Ξ(1− s)

where s = σ + it is a complex number. In polar coordinates, this can be
expressed as:

s = reiθ, 1− s = r′e−iθ′

where θ and −θ represent the angles corresponding to the points s and 1− s
in the complex plane.

5.2 Symmetry of θ and −θ

The relationship between θ and −θ in the Ξ(s) function indicates a positional
symmetry around the polar axis. Specifically, the symmetry of the Ξ(s)
function requires that for every non-trivial zero s = σ+ it, the corresponding
point 1 − s = (1 − σ) − it must satisfy the condition that θ and −θ are
opposites. This condition reflects the mirror symmetry about the polar axis
(θ = 0).

5.3 Implications for Non-Trivial Zeros

Given the symmetry requirement that θ and −θ must be opposites, it follows
that non-trivial zeros of the Riemann zeta function can only exhibit up-down
symmetry with respect to the polar axis. In other words, non-trivial zeros
must be symmetric about the polar axis (θ = 0), leading to an up-down
mirror symmetry.

5.4 Exclusion of Left-Right Symmetry

In the case where 0 < σ < 1, if we assume the existence of symmetry at
σ = 1

4
and σ = 3

4
about σ = 1

2
, then the corresponding angles θ and θ′ in

polar coordinates would not satisfy the relationship of being opposites.

8



Specifically, if we assume that the points σ = 1
4
and σ = 3

4
are symmetric

zeros, then according to the polar coordinate representation, their arguments
θ and θ′ would not simply be related as positive and negative values. This is
because θ is determined by arctan

(
t
σ

)
, and θ′ is determined by arctan

( −t
1−σ

)
.

If σ is not equal to 1
2
, then θ and θ′ cannot simply be opposites.

As a result, the assumption of symmetry at σ = 1
4
and σ = 3

4
leads to

a situation where θ and θ′ do not exhibit the required opposite relationship.
This indicates that the assumption does not align with the symmetry prop-
erties in polar coordinates or the symmetry required by the Ξ(s) function.

Thus, the left-right symmetry such at σ = 1
4
and σ = 3

4
is not valid. If

σ is not equal to 1
2
, the corresponding θ and θ′ cannot simply be opposites,

which violates the symmetry analysis based on the Ξ(s) function.

5.5 Symmetry Around σ = 1
2 and the Ξ(s) Function

Let’s consider the case where s = 1
4
+ it and its corresponding point 1− s =

3
4
− it are symmetric around the real part σ = 1

2
, with t being positive for s

and negative for 1−s. This setup assumes symmetry in terms of the real part,
as the points are equidistant from σ = 1

2
. However, this symmetry does not

satisfy the symmetry conditions required by the Ξ(s) function, particularly
the symmetry about θ = 0 either.

The Ξ(s) function requires that for any non-trivial zero s = σ + it, its
corresponding point 1 − s = 1 − σ − it must have their polar angles θ and
−θ to be exact opposites.

For the points s = 1
4
+ it and 1 − s = 3

4
− it, while the real parts are

symmetrically placed around σ = 1
2
, the polar angles θ and θ′ associated

with these points do not satisfy the condition θ = −θ′ required by the Ξ(s)
function’s symmetry. This is because:

θ = arctan

(
t
1
4

)
, θ′ = arctan

(
−t
3
4

)
These angles are not opposites unless t = 0, which would correspond to a
trivial zero on the real line, not a non-trivial one.

Additionally, since s = 1
4
+ it and 1 − s = 3

4
− it have different real

parts, they do not share the same modulus r in polar coordinates, leading
to a further violation of the symmetry required by the Ξ(s) function. The
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modulus r for each point would be:

r =

√(
1

4

)2

+ t2, r′ =

√(
3

4

)2

+ t2

Since r ̸= r′, the points cannot be symmetric about the polar axis (θ = 0).
The points s = 1

4
+ it and 1− s = 3

4
− it violate the symmetry conditions

required by the Ξ(s) function. While they may appear symmetric with re-
spect to the real part σ = 1

2
, they do not exhibit the necessary symmetry in

terms of the polar angle θ, nor do they have matching moduli r. Therefore,
such points cannot be valid non-trivial zeros of the Riemann zeta function.
This reinforces the conclusion that the real part σ of all non-trivial zeros
must be exactly 1

2
, ensuring both modulus and angle symmetry about the

polar axis.
In summary, the symmetry properties of the Ξ(s) function imply that

non-trivial zeros of the Riemann zeta function can only be symmetric with
respect to the polar axis (θ = 0), resulting in up-down symmetry. Left-
right symmetry around σ = 1

2
is excluded, as it would disrupt the necessary

relationship between θ and −θ in the Ξ(s) function.

6 Geometric Symmetry and the Critical Line

In this section, we explore the relationship between the symmetry of the
non-trivial zeros of the Riemann zeta function and the critical line σ = 1

2
.

We demonstrate that if the non-trivial zeros must exhibit symmetry about
the critical line, then the real part σ of these zeros must equal 1

2
. This means

that σ is a constant value of 1
2
, as posited by the Riemann Hypothesis.

6.1 Symmetry of Complex Numbers in Polar Coordi-
nates

Let’s start with the symmetry of a complex number s = σ + it and its
reflection 1 − s = 1 − σ − it in the context of polar coordinates. We’ll
examine the properties of the modulus r and the argument θ of the complex
number in these cases.

First, express the complex number s = σ + it in polar coordinates:

s = reiθ
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where:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
Similarly, express the reflection 1− s = 1− σ− it = (1− σ)− it in polar

coordinates:
1− s = r′eiθ

′

where:
r′ =

√
(1− σ)2 + t2

θ′ = arctan

(
−t

1− σ

)
Assume symmetry with respect to σ, meaning the moduli must be equal:

r = r′

This is because symmetry about the polar axis preserves the distance of
each point from the origin, meaning their magnitudes remain the same.

Substituting the expressions for r and r′, we have:
√
σ2 + t2 =

√
(1− σ)2 + t2

Square both sides to eliminate the square roots:

σ2 + t2 = (1− σ)2 + t2

Subtracting t2 from both sides:

σ2 = (1− σ)2

Expanding the square on the right-hand side:

σ2 = 1− 2σ + σ2

Canceling σ2 from both sides:

0 = 1− 2σ

Thus:

2σ = 1 ⇒ σ =
1

2
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This confirms that σ = 1
2
is required for the symmetry with respect to σ.

Next, let’s assume symmetry with respect to t. In this case, we analyze:

s = σ + it and 1− s = −σ + 1− it = −σ + (1− it)

Set s = 1− s, so:

σ + it = −σ + 1− it = −σ + (1− it)

Equate the moduli r and r′ again:

r =
√
σ2 + t2, r′ =

√
σ2 + (1− t)2

Setting r = r′: √
σ2 + t2 =

√
σ2 + (1− t)2

Square both sides:
σ2 + t2 = σ2 + (1− t)2

Canceling σ2 from both sides:

t2 = (1− t)2

Expanding the square on the right-hand side:

t2 = 1− 2t+ t2

Cancel t2 from both sides:

0 = 1− 2t

Thus:

2t = 1 ⇒ t =
1

2
In summary:

• When analyzing the symmetry with respect to σ, we found that σ = 1
2

must hold for the symmetry of s and 1− s.

• When analyzing the symmetry with respect to t, we found that t = 1
2

is required.

However, the Riemann Hypothesis specifically concerns the symmetry of
non-trivial zeros about the real part σ = 1

2
. This is why the condition σ = 1

2

is the relevant and necessary condition, rather than t = 1
2
.

Using polar coordinates, we confirm that for the symmetry s = 1− s, the
modulus r of the complex number is preserved, leading to the conclusion that
the real part σ of non-trivial zeros must be 1

2
without any other possibilities.
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6.2 The Same Modulus r and Opposite Angles θ for
s = 1− s

Moreover, we need to prove that when s = 1−s, the two symmetric complex
points have the same modulus r and opposite angles θ on the complex plane.
This will further confirm that σ = 1

2
is a necessary condition for symmetry.

Given a complex number s = σ + it, it can be expressed in polar coordi-
nates as:

s = reiθ

where the modulus r and the angle θ are given by:

r =
√
σ2 + t2

θ = arctan

(
t

σ

)
The complex number 1− s = 1− σ − it = (1− σ)− it can be expressed

as:
1− s = r′eiθ

′

where r′ and θ′ are given by:

r′ =
√

(1− σ)2 + t2

θ′ = arctan

(
−t

1− σ

)
Then, we prove that under the condition s = 1 − s, the moduli r and r′

are equal.
As:

σ + it = 1− σ − it = (1− σ)− it

And we have already derived that the necessary condition for this equality
is σ = 1

2
. Therefore:

r =
√
σ2 + t2 =

√(
1

2

)2

+ t2

r′ =
√

(1− σ)2 + t2 =

√(
1

2

)2

+ t2
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Clearly, when σ = 1
2
, we have r = r′, meaning the moduli are equal.

Next, we prove that the angles θ and θ′ of these two symmetric complex
numbers are opposite.

Given:
θ = arctan (2t)

θ′ = arctan (−2t)

Since arctan(−x) = − arctan(x), it follows that:

θ′ = −θ

In summary, we have shown that when s = 1 − s, the two symmetric
complex points s = σ + it and 1 − s = 1 − σ − it have equal moduli r = r′

and opposite angles θ = −θ′. This analysis further supports that σ = 1
2
is a

necessary condition for symmetry with respect to the non-trivial zeros.

6.3 The Validity of This Analytical Approach

The approach of using s = σ+it and its symmetric counterpart s′ = 1−σ−it
can be justified by the inherent symmetry properties of the Ξ(s) function [3]:

Ξ(reiθ) = Ξ(1− reiθ)

exhibits symmetry about the polar axis and the critical line σ = 1
2
. This

symmetry implies that if s = σ + it is a zero, then s′ = (1− σ)− it is also a
zero.

To explore this symmetry, we assumed the condition:
√
σ2 + t2 =

√
(1− σ)2 + t2

which leads to σ = 1
2
as the only solution. This result directly supports the

Riemann Hypothesis, which posits that all non-trivial zeros lie on the critical
line σ = 1

2
.

The use of σ = 1− σ as an analytical tool is necessary in order to under-
stand the distribution of non-trivial zeros. This relationship between σ and
1− σ is derived from the zeta function’s inherent properties and is crucial in
proving the symmetry about the critical line. By confirming that σ = 1

2
is

the only value that satisfies this condition, we further validate the hypothesis
that all non-trivial zeros must lie on this line.

Therefore, for all non-trivial zeros and all complex numbers requiring
symmetry about the critical line σ = 1

2
, the real part σ must equal 1

2
.
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6.4 Symmetry Analysis of Trivial Zeros Using Polar
Coordinates

In this subsection, we analyze the symmetry of the trivial zeros of the Rie-
mann zeta function solely within the framework of polar coordinates. The
trivial zeros are defined as s = −2n, where n is a positive integer. These
zeros lie on the negative real axis in the complex plane. Our objective is to
demonstrate that these zeros exhibit symmetry about the polar axis (which
corresponds to the imaginary axis in the complex plane) by analyzing them
in polar coordinates.

The trivial zeros can be expressed in polar coordinates as:

s = reiθ

where r is the modulus and θ is the argument (angle).
For a trivial zero s = −2n, the modulus r and argument θ are given by:

r =
√
(−2n)2 = 2n

θ = arg(s) = π

Thus, in polar coordinates, the trivial zeros are represented as:

s = 2n · eiπ

This representation indicates that the trivial zeros correspond to points with
an angle of π radians, meaning they lie on the negative real axis.

To analyze the symmetry, we consider that in polar coordinates, sym-
metry can be understood in terms of reflection across the polar axis. The
symmetry would imply that for a given point s = reiθ, there exists a corre-
sponding point s′ = re−iθ that is its mirror image across the polar axis.

For the trivial zeros, if we consider a point with an argument θ = π, its
symmetric counterpart would have an argument −θ = −π:

s′ = re−iθ = 2n · e−iπ

However, because eiπ = e−iπ, this ”symmetric” point is actually identical to
the original point. This reveals that the trivial zeros are inherently symmetric
about the polar axis, as they coincide with their own reflections in polar
coordinates.
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Through this polar coordinate analysis, we observe that the trivial zeros
s = −2n have a fixed modulus r = 2n and an argument θ = π. These zeros
lie on the negative real axis, corresponding to θ = π in polar coordinates.
The symmetry analysis shows that these zeros are self-symmetric about the
polar axis because their reflection in polar coordinates does not change their
position. This self-symmetry reinforces the understanding of the trivial zeros’
positions and their distribution.

7 Proof of the Riemann Hypothesis

7.1 Establishing the Validity of the Polar Coordinate
Representation

The first step involves expressing the Riemann zeta function, the Xi func-
tion, and the trivial and non-trivial zeros in polar coordinates. Consider any
complex number s = σ + it, where σ and t are real numbers. Transforming
s into polar coordinates yields:

s = reiθ,

where

r =
√
σ2 + t2, θ = arctan

(
t

σ

)
.

7.2 Symmetry of the Xi Function about the Polar Axis
(θ = 0)

The next step is to analyze the symmetry of the Riemann Xi function Ξ(s)
based on the polar axis θ = 0. The Xi function is defined as:

Ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s).

It satisfies the functional equation:

Ξ(s) = Ξ(1− s).

Even if the correctness of the Riemann Hypothesis is not assumed, this sym-
metry remains valid for all non-trivial zeros. In polar coordinates, the Xi
function exhibits symmetry about the polar axis θ = 0, as:

Ξ(reiθ) = Ξ(1− reiθ) = Ξ(re−iθ).
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This demonstrates that Ξ(s) is symmetric with respect to the polar axis for
all non-trivial zeros.

7.3 Deriving σ = 1
2 from Symmetry Conditions

Given the confirmed symmetry of the Xi function about the polar axis, the
next step is to determine the value of σ that maintains this symmetry. Con-
sider the functional equation Ξ(s) = Ξ(1−s), expressed in polar coordinates:

r =
√
σ2 + t2 =

√
(1− σ)2 + t2,

θ = arctan

(
t

σ

)
= − arctan

(
t

1− σ

)
.

For this symmetry to hold, the only solution is σ = 1
2
. Thus, σ = 1

2
is the

unique value that applies to all non-trivial zeros; otherwise, the symmetry in
the Xi function is broken.

7.4 Fundamental Symmetry and Its Implications for
Non-Trivial Zeros

The key observation is that all non-trivial zeros are fundamentally symmetric
with respect to the polar axis (θ = 0). The requirement that σ = 1

2
arises

from the need to maintain this symmetry. Although it appears that the ze-
ros are symmetric about σ = 1

2
in Cartesian coordinates, this symmetry is

inherently based on the polar axis. This analysis excludes any other possi-
bilities, leading to the conclusion that σ = 1

2
is the only valid real part for

all non-trivial zeros.

7.5 Conclusion and Formula for Non-Trivial Zeros

Given that σ = 1
2
holds universally for all non-trivial zeros, the zeros can be

expressed in polar coordinates as:

ζ

(√
1

4
+ t2 ei arctan(2t)

)
= 0,

where:

r =

√
1

4
+ t2 and θ = arctan(2t)
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This formula provides a geometric representation of all non-trivial zeros,
reinforcing the conclusion that σ = 1

2
is the unique value consistent with the

required symmetry.

8 Symmetry of Trivial and Non-Trivial Zeros

in Polar Coordinates

In this section, we analyze the distinct symmetry properties of the trivial
and non-trivial zeros of the Riemann zeta function when expressed in polar
coordinates. Specifically, we demonstrate that while the trivial zeros exhibit
symmetry with respect to θ = π, the non-trivial zeros are symmetric about
θ = 0. The requirement that non-trivial zeros must lie on the critical line
σ = 1

2
is a consequence of this symmetry about θ = 0.

8.1 Symmetry of Trivial Zeros

The trivial zeros of the Riemann zeta function are given by s = −2n for
positive integers n. These zeros are located on the negative real axis in the
complex plane, which corresponds to θ = π in polar coordinates. The polar
coordinate representation of these zeros is:

s = reiθ = 2neiπ.

In this representation, r = 2n is the modulus, and θ = π is the argument.
The symmetry of these zeros can be understood by considering their

reflection across the polar axis (corresponding to θ = 0). The symmetric
point of s = 2neiπ is s′ = 2ne−iπ, which is equivalent to the original point
s = 2neiπ due to the periodicity of the exponential function:

eiπ = e−iπ.

This indicates that the trivial zeros are self-symmetric with respect to θ = π,
reinforcing their alignment along the negative real axis.

8.2 Symmetry of Non-Trivial Zeros and the Critical
Line

In contrast, the non-trivial zeros of the Riemann zeta function are hypothe-
sized to lie on the critical line σ = 1

2
, which corresponds to symmetry about
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θ = 0 in polar coordinates. The non-trivial zeros are expressed as s = 1
2
+ it

for some real number t, and their polar coordinate representation is:

s =

√
1

4
+ t2ei arctan(2t).

For these zeros, symmetry about the real axis (θ = 0) is preserved by the
reflection s 7→ 1− s, where the modulus remains unchanged and the angle is
negated:

s′ =

√
1

4
+ t2e−i arctan(2t).

This symmetry implies that the non-trivial zeros must be symmetric with
respect to θ = 0, resulting in an up-down mirror symmetry about the real
axis.

The condition σ = 1
2
is essential for maintaining this symmetry in polar

coordinates. If σ ̸= 1
2
, the corresponding angles θ and −θ would not satisfy

the required symmetry relationship, leading to a breakdown in the function’s
behavior. Therefore, the real part σ of the non-trivial zeros must be exactly
1
2
to ensure that the symmetry about θ = 0 is preserved.

8.3 Geometric Interpretation of the Symmetry Differ-
ence

The difference in symmetry between the trivial and non-trivial zeros high-
lights their distinct geometric properties. Trivial zeros are symmetric about
θ = π, corresponding to reflection across the negative real axis. In contrast,
non-trivial zeros are symmetric about θ = 0, corresponding to reflection
across the positive real axis, which aligns with the critical line σ = 1

2
.

This geometric perspective emphasizes that the non-trivial zeros must lie
on the critical line σ = 1

2
to maintain the symmetry required by the Riemann

zeta function. Any deviation from this line would disrupt the function’s
intrinsic symmetry, thereby violating the critical conditions for these zeros.

Thus, the symmetry properties of the trivial and non-trivial zeros are
distinct in polar coordinates. The trivial zeros are symmetric with respect to
θ = π, reflecting their alignment along the negative real axis. On the other
hand, the non-trivial zeros are symmetric with respect to θ = 0, necessitating
that their real part σ equals 1

2
for the symmetry to hold. This analysis further

supports the Riemann Hypothesis by showing that the non-trivial zeros must
lie on the critical line σ = 1

2
to maintain the required symmetry about θ = 0.
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9 Conclusion

We have explored a geometric approach to understanding the hypothesis
by representing the non-trivial zeros of the Riemann zeta function in polar
coordinates. By transforming the problem into polar form, we have high-
lighted the inherent symmetry of the Ξ(s) function and demonstrated that
this symmetry provides significant insight into the distribution of non-trivial
zeros.

The key findings of our analysis can be summarized as follows:

• The transformation of the complex number s = σ + it into polar co-
ordinates reveals a natural reflection symmetry about the polar axis,
which corresponds to the critical line σ = 1

2
in Cartesian coordinates

[4].

• The functional equation Ξ(s) = Ξ(1−s) preserves this symmetry when
expressed in polar coordinates, indicating that the non-trivial zeros
must be symmetric about the polar axis. This symmetry directly im-
plies that the real part σ of these zeros must be 1

2
, consistent with the

Riemann Hypothesis [3].

• Our analysis of both trivial and non-trivial zeros within the framework
of polar coordinates further supports the conclusion that all non-trivial
zeros lie on the critical line. The geometric interpretation of this sym-
metry reinforces the hypothesis and offers a more intuitive understand-
ing of the zeta function’s behavior.

The results presented here suggest that polar coordinates provide an al-
ternative framework for analyzing the Riemann zeta function. By leveraging
geometric principles, we have been able to reframe the Riemann Hypothesis
as a problem of positional symmetry, leading to an alternative understanding
of why the non-trivial zeros are constrained to the critical line.

While this paper may offer a fresh perspective, the approach is not with-
out its limitations. The geometric analysis relies on the assumption that
the symmetry observed in polar coordinates is sufficient to fully describe the
distribution of zeros. Further research is needed to rigorously establish the
connection between this symmetry and the broader analytic properties of the
zeta function.

Looking ahead, future work could explore the extension of this polar
coordinate framework to other L-functions or investigate whether similar
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symmetries arise in related contexts. Additionally, the interplay between
polar and Cartesian representations may yield new insights into the nature
of non-trivial zeros and their relationship to prime number distribution.

In conclusion, this paper provides evidence that the symmetry of the
Riemann zeta function in polar coordinates is a key factor underlying the
Riemann Hypothesis. By framing the problem geometrically, we have moved
closer to understanding one of the greatest unsolved puzzles in mathematics.
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Appendix A: Symmetry Illustrations of the First

Ten Non-Trivial Zeros

List of the First Ten Non-Trivial Zeros

1. 1
2
+ 14.134725i

2. 1
2
+ 21.022040i

3. 1
2
+ 25.010858i

4. 1
2
+ 30.424876i

5. 1
2
+ 32.935062i

6. 1
2
+ 37.586178i

7. 1
2
+ 40.918719i

8. 1
2
+ 43.327073i

9. 1
2
+ 48.005150i

10. 1
2
+ 49.773832i
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Calculation of Moduli and Angles

Then we calculate the moduli r and angles θ for each of the first ten non-
trivial zeros and their symmetric points.

• r1 =
√(

1
2

)2
+ 14.1347252 ≈ 14.14392

• θ1 = arctan(2× 14.134725) ≈ 88.018◦

• r2 =
√(

1
2

)2
+ 21.0220402 ≈ 21.02813

• θ2 = arctan(2× 21.022040) ≈ 88.639◦

• r3 =
√(

1
2

)2
+ 25.0108582 ≈ 25.015

• θ3 = arctan(2× 25.010858) ≈ 88.854◦

• r4 =
√(

1
2

)2
+ 30.4248762 ≈ 30.42898

• θ4 = arctan(2× 30.424876) ≈ 89.061◦

• r5 =
√(

1
2

)2
+ 32.9350622 ≈ 32.93985

• θ5 = arctan(2× 32.935062) ≈ 89.131◦

• r6 =
√(

1
2

)2
+ 37.5861782 ≈ 37.58954

• θ6 = arctan(2× 37.586178) ≈ 89.238◦

• r7 =
√(

1
2

)2
+ 40.9187192 ≈ 40.92279

• θ7 = arctan(2× 40.918719) ≈ 89.303◦

• r8 =
√(

1
2

)2
+ 43.3270732 ≈ 43.33187

• θ8 = arctan(2× 43.327073) ≈ 89.342◦

• r9 =
√(

1
2

)2
+ 48.0051502 ≈ 48.01036

• θ9 = arctan(2× 48.005150) ≈ 89.404◦
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• r10 =
√(

1
2

)2
+ 49.7738322 ≈ 49.77976

• θ10 = arctan(2× 49.773832) ≈ 89.427◦

Therefore, the first ten non-trivial zeros and their symmetric points show
the same properties:

• The moduli r for each zero and its symmetric point are equal.

• The angles θ and −θ are opposite.

These calculations reinforce the understanding that all non-trivial zeros
have a real part equal to 1

2
, supporting the Riemann Hypothesis.

Verification of Zeta Function at Symmetric Points

We verify the Riemann Zeta function at the symmetric points 1
2
− it for the

first ten non-trivial zeros. The results are as follows:

1. t = 14.134725: ζ
(
1
2
− 14.134725i

)
≈ 1.77× 10−8 + 1.11× 10−7i

2. t = 21.022040: ζ
(
1
2
− 21.022040i

)
≈ 8.98× 10−8 − 4.01× 10−7i

3. t = 25.010858: ζ
(
1
2
− 25.010858i

)
≈ −1.89× 10−7 − 5.44× 10−7i

4. t = 30.424876: ζ
(
1
2
− 30.424876i

)
≈ −8.40× 10−8 + 1.41× 10−7i

5. t = 32.935062: ζ
(
1
2
− 32.935062i

)
≈ −3.09× 10−7 − 4.78× 10−7i

6. t = 37.586178: ζ
(
1
2
− 37.586178i

)
≈ −8.91× 10−8 + 2.94× 10−7i

7. t = 40.918719: ζ
(
1
2
− 40.918719i

)
≈ −3.68× 10−9 + 1.77× 10−8i

8. t = 43.327073: ζ
(
1
2
− 43.327073i

)
≈ 3.10× 10−7 + 4.11× 10−7i

9. t = 48.005150: ζ
(
1
2
− 48.005150i

)
≈ −1.04× 10−6 + 9.11× 10−7i

10. t = 49.773832: ζ
(
1
2
− 49.773832i

)
≈ 3.11× 10−7 + 6.02× 10−7i

The Riemann Zeta function values at the symmetric points 1
2
− it for the

first ten non-trivial zeros are extremely close to zero, with minor deviations
due to numerical precision. This confirms that these symmetric points are
indeed zeros of the Riemann Zeta function, further supporting the symmetry
and the Riemann Hypothesis.
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A Appendix B: Mathematical Transformations

and Properties

A.1 Transformation to Polar Coordinates

The Riemann zeta function ζ(s) is defined for complex numbers s = σ + it
with σ > 1 as:

ζ(s) =
∞∑
n=1

1

nσ+it
=

∞∑
n=1

1

ns
[3]

This series converges absolutely for σ > 1 and can be analytically continued
to other values of s (except s = 1).

The analytic continuation of the zeta function extends its domain to the
entire complex plane, excluding s = 1. This continuation is essential for
defining ζ(s) beyond the region where the original series converges.

Two key formulas used in analytic continuation are:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)[3]

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx

These integral representations converge for all s in the complex plane except
s = 1, preserving the analytic nature of ζ(s) in polar coordinates as well.
The functional equation of the Riemann zeta function implies a symmetry
about the critical line σ = 1

2
[3]:

ζ(reiθ) = 2re
iθ

πreiθ−1 sin

(
πreiθ

2

)
Γ(1− reiθ)ζ(1− reiθ)

The Ξ function, defined as:

Ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

satisfies the simpler functional equation:

Ξ(s) = Ξ(1− s)

and in polar coordinates:

Ξ(reiθ) = Ξ(1− reiθ)
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To express s in polar coordinates, we write:

s = σ + it = reiθ

where:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
Given a complex number s = σ+it, we transform it into polar coordinates

as follows [4]:
s = r(cos θ + i sin θ)

where:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
The magnitude r of the complex number s in the traditional system is

[4]:
|s| =

√
σ2 + t2

In the polar coordinate system, the magnitude r is defined as [4]:

r =
√
σ2 + t2

Since the magnitude is preserved, we have:

|s| = r

The phase θ in the traditional system is:

ϕ = arctan

(
t

σ

)
In the polar coordinate system, the phase θ is [4]:

θ = arctan

(
t

σ

)
Since the phase is preserved, we have:

ϕ = θ
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To show that s = σ + it is preserved in polar coordinates, we start with
[4]:

s = r(cos θ + i sin θ)

Substitute r and θ:

s =
√
σ2 + t2

(
cos

(
arctan

(
t

σ

))
+ i sin

(
arctan

(
t

σ

)))
Using the trigonometric identities [4]:

cos(arctan(x)) =
1√

1 + x2
, sin(arctan(x)) =

x√
1 + x2

Let x = t
σ
, then [4]:

cos

(
arctan

(
t

σ

))
=

σ√
σ2 + t2

sin

(
arctan

(
t

σ

))
=

t√
σ2 + t2

Substituting these back [4]:

s =
√
σ2 + t2

(
σ√

σ2 + t2
+ i

t√
σ2 + t2

)
Simplifying:

s = σ + it

This confirms that the transformation preserves the representation s =
σ + it and this also applies to s = σ − it.

A.2 Verification of Properties

To verify that the zeta function’s properties are consistent in polar coordi-
nates, we provide detailed steps:

1. Series Representation:

ζ(reiθ) =
∞∑
n=1

1

nreiθ
[3]
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2. Continuity and Differentiability: The transformation from Carte-
sian to polar coordinates is smooth, and ζ(reiθ) inherits the continuity
and differentiability of ζ(s).

3. Functional Equation in Polar Form: The functional equation ζ(s) =
2sπs−1 sin

(
πs
2

)
Γ(1− s)ζ(1− s) in polar coordinates becomes [3]:

ζ(reiθ) = 2re
iθ

πreiθ−1 sin

(
πreiθ

2

)
Γ(1− reiθ)ζ(1− reiθ)

Given that the gamma function Γ(s) and the sine function sin(s) are
well-defined and analytic in the complex plane [4], the symmetry and
analytic continuation properties hold in the polar form.

4. Symmetry: Using the Ξ function [3], which satisfies Ξ(s) = Ξ(1 −
s), we confirm that the symmetry about the critical line σ = 1

2
is

maintained:
Ξ(reiθ) = Ξ(1− reiθ)

B Appendix C: Verification and Analysis of

Non-Trivial Zeros

B.1 Verification of Formula for Non-Trivial Zeros

To verify the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
= 0 for non-trivial zeros of the

Riemann zeta function, we selected 30 known non-trivial zeros and computed
the zeta function values using the given formula.

The results are summarized in the following table:

B.2 Analysis

The values of ζ
(√

1
4
+ t2 ei arctan(2t)

)
for the selected non-trivial zeros are

extremely close to zero, with both real and imaginary parts being on the
order of 10−13 or smaller. This strongly suggests that the given formula
holds true for these zeros.

These results indicate that the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
= 0 accu-

rately represents the non-trivial zeros of the Riemann zeta function for the
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t (Imaginary part of zero) ℜ(ζ) ℑ(ζ)
14.1347251417347 −1.61× 10−16 4.93× 10−15

21.0220396387716 1.41× 10−14 4.77× 10−14

25.0108575801457 −4.07× 10−15 1.50× 10−14

30.4248761258595 −2.80× 10−15 −1.03× 10−14

32.9350615877392 −5.02× 10−15 1.17× 10−14

37.5861781588256 −3.73× 10−14 −1.26× 10−13

40.9187190121475 7.62× 10−15 3.32× 10−15

43.327073280914 1.11× 10−12 −1.46× 10−12

48.0051508811672 3.72× 10−14 2.82× 10−14

49.7738324776723 −3.64× 10−15 6.71× 10−15

52.9703214777145 −6.67× 10−15 9.52× 10−14

56.4462476970634 1.33× 10−14 4.67× 10−15

59.3470440026026 1.57× 10−13 3.08× 10−13

60.8317785246098 1.17× 10−14 −3.83× 10−15

65.1125440480819 4.63× 10−13 4.89× 10−13

67.0798105294942 −5.28× 10−15 3.99× 10−14

69.5464017111739 6.91× 10−14 −1.62× 10−13

72.0671576744819 1.79× 10−14 −1.92× 10−15

75.7046906990839 −5.06× 10−14 −3.79× 10−14

77.1448400688748 8.12× 10−15 −6.14× 10−15

79.3373750202493 1.27× 10−13 −1.37× 10−13

82.910380854086 −5.32× 10−14 −5.85× 10−14

84.7354929805171 −5.97× 10−15 9.47× 10−14

87.4252746131252 −1.32× 10−14 −5.74× 10−14

88.8091112076345 −2.34× 10−14 5.16× 10−14

92.4918992705583 −3.63× 10−13 −3.92× 10−13

94.6513440405198 −6.37× 10−14 −1.07× 10−13

95.8706342282453 4.79× 10−14 −2.13× 10−14

98.8311942181937 −1.89× 10−14 8.13× 10−14

101.317851005731 −3.04× 10−13 −1.19× 10−12

Table 1: Verification of the formula for known non-trivial zeros of the Rie-
mann zeta function

tested cases, providing further support to the hypothesis that all non-trivial
zeros lie on the critical line σ = 1

2
.
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