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Abstract

A novel particle/quantum gravity correspondence framework is proposed and reviewed.
It is a combination of bottom-up and top-down approaches meeting each other at
the Chern-Simons action of supersymmetric fields. The former starts from our SM
composite particle model with spontaneously broken Chern-Simons binding. The latter
approach of other authors incorporates massive spinning fields into the Euclidean path
integral of three dimensional quantum gravity via a Chern-Simons formulation. The
GN and the mass renormalization to leading order in perturbation theory are reviewed.
On quantum level, all fundamental matter, as defined in this article, and gravity are
conjectured to be different limits of a single topological field theory.
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1 Introduction

We combine and review some recent work of several authors on bottom-up com-
posite particle physics model and top-down quantum gravity proposal, both
based on low dimensional spacetime. Particle physics is reviewed in part I.
Chern-Simons theory leading to 3d quantum gravity is covered in part II.

Part I Symmetry and Wave Functions

2 Composite Particles

The setup for composite particle scenario is as follows:

• Unbroken supersymmetry is adopted for fundamental parti-
cles.1 Dividing standard model (SM) fermions into three preons
a binding mechanism is constructed using spontaneously bro-
ken 3d Chern-Simons theory.2

• Preons, or chernons, are provided with two unbroken internal
gauge symmetries, U(1) for charge and SU(3) for color.

• Gravitation is introduced in the form 3d Chern-Simons theory
with single-particle states of massive spin s fields living on dS3,
with de Sitter radius ℓdS, as representations of su(2)L⊕ su(2)R.
It turns out that the partition function for for Chern-Simons
connection AL/R can be calculated. Furthermore, the Chern-
Simons path integral can be evaluated to any order in GN per-
turbation theory. A detailed review is presented.

• There must be freedom and predictions for dark matter and
dark energy.

• The scenario should match the cosmological standard model
with preheating observational data and baryon asymmetry of
matter.

1 The Minimal Supersymmetric SM does not fulfill this requirement (it leads rather to quark and lepton
kind of ”double counting”).

2 Preons, or here chernons, are free particles above the energy scale Λcr, numerically about ∼ 1010− 1016

GeV. It is close to reheating scale TR and the grand unified theory (GUT) scale. At Λcr chernons make a
phase transition by an attractive Chern-Simons model interaction into composite states of standard model
quarks and leptons, including gauge interactions. Chernons have undergone ”second quarkization”.
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The above properties make our preon scenario a worthy candi-
date beyond SM, call it Unbroken Supersymmetric SM (USSM),
which includes all four interactions. On the other hand, the gener-
ation problem as a composite system excitations and many details
remain to be calculated or cannot be done since data are not avail-
able. Finally, the scenario should, if possible, indicate the direction
to a UV finite theory.

3 Extending the Wess-Zumino action

The divisive point of the chernon model for visible and dark matter
is the following: supersymmetry should be unbroken and imple-
mented so that all particles needed to describe nature are written
together with their superpartners like in the Lagrangians ((1) - (3))
of this model. Our method was introduced in [1, 2]. The result
turned out to have close resemblance to the Wess-Zumino (WZ)
model [3], which contains three neutral fields: a spinor m, the real
fields s and p with JP = 1

2

+
, 0+, and 0−, respectively. The kinetic

WZ Lagrangian is

LWZ = −1

2
m̄γµ∂µm− 1

2
(∂s)2 − 1

2
(∂p)2 (1)

where m and s form the chiral supermultiplet. We assume that the
pseudoscalar p is the axion [4], and denote it below as a. It has a
fermionic superparther, the axino n, a candidate for dark matter
but not discussed further here.

To include charged matter we define the following charged chiral
field Lagrangian for fermion m−, complex scalar s− and the elec-
tromagnetic field tensor Fµν

LWZCharge
= −1

2
m̄−γµ∂µm

− − 1

2
(∂s−)2 − 1

4
FµνF

µν (2)

We set color to the neutral fermion m → m0
i (i = R,G,B) in

(1). The color sector Lagrangian is then

LWZColor
= −1

2

∑
i=R,G,B

[
m̄0

iγ
µ∂µm

0
i −

1

2
(∂gi)

2
]

(3)
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We now have the supermultiplets shown in table 1.

Multiplet Particle, Sparticle
chiral multiplets spins 0, 1/2 s−, m−; a, n
vector multiplets spins 1/2, 1 m0, γ; mi, gi

Table 1: The particle s− is a neutral scalar particle. The particles m−,m0 are
charged and neutral, respectively, Dirac spinors. The a is axion and n axino.
m0 is color singlet particle and γ is the photon. mi and gi (i = R, G, B) are
zero charge color triplet fermions and bosons, respectively.

Note that in table 1 there is a zero charge quark triplet mi but
no gluon octet. Instead, supersymmetry demands the gluons to
appear only in triplets at this stage of cosmological evolution. The
dark sector we get from (3) and the mi.

The matter-chernon correspondence for the first two flavors (r =
1, 2; i.e. the first generation) is indicated in table 2 for left handed
particles.

SM Matter 1st gen. Chernon state
νe m0

Rm
0
Gm

0
B

uR m+m+m0
R

uG m+m+m0
G

uB m+m+m0
B

e− m−m−m−

dR m−m0
Gm

0
B

dG m−m0
Bm

0
R

dB m−m0
Rm

0
G

W-Z Dark Matter Particle
boson (or BC) s, axion(s)
e′ axino n
meson, baryon o nn̄, 3n
nuclei (atoms with γ′) multi n
celestial bodies any dark stuff
black holes anything (neutral)

Table 2: Visible and Dark Matter with corresponding particles and chernon
composites. m0

i (i = R, G, B) is color triplet, m± are color singlets of charge
±1/3. e′ and γ′ refer to dark electron and dark photon, respectively. BC stands
for Bose condensate. Chernons obey anyon statistics.
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After quarks have been formed by the process described in section
5 the SM octet of gluons will emerge because it is known that
fractional charge states have not been observed in nature. To make
observable color neutral, integer charge states (baryons and mesons)
possible we proceed as follows. The local SU(3)color octet structure
is formed by quark-antiquark composite pairs as follows (with only
color charge indicated):

Gluons : RḠ,RB̄,GR̄,GB̄,BR̄,BḠ,
1√
2
(RR̄−GḠ),

1√
6
(RR̄ + GḠ− 2BB̄) (4)

With the gluon triplet the first hunch is that they form, with
octet gluons now available, the 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 bosonic
states with spins 1 and 3. These three gluon coupling states would
need a separate investigation.

Finally, we introduce the weak interaction. After the SM quarks,
gluons and leptons have been formed at scale Λcr there is no more
observable supersymmetry in nature [5]. To avoid a more compli-
cated vector supermultiplet in table 1, we may append the standard
model electroweak interaction in our model as an empirical fact.
The standard model has now been heuristically derived.

4 Baryon asymmetry of the Universe

A number of 1+2 dimensional models have properties close to 1+3
dimensional world as can be found in [6–8], see also [9]. Our choice
here is 1+2 dimensional Chern-Simons (CS) action is [10,11]

S =
k

4π

∫
M

tr(A ∧ dA) +
2

3
A ∧ A ∧ A) (5)

where k is the level of the theory and A the connection. (The
compatibility of different dimensions is discussed in section 6.)

The action for a Chern-Simons-QED3 model [12, 13] including
two polarization ± fermionic fields (ψ+, ψ−), a gauge field Aµ and
a complex scalar field φ with spontaneous breaking of local U(1)
symmetry is
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SCS−QED3
=

∫
d3x{−1

4
F µνFµν + iψ+γ

µDµψ+ + iψ−γ
µDµψ−

+
1

2
θϵµvαAµ∂vAα −mch(ψ+ψ+ − ψ−ψ−)

−y(ψ+ψ+ − ψ−ψ−)φ
∗φ+Dµφ∗Dµφ− V (φ∗φ)}, (6)

where the covariant derivatives are Dµψ± = (∂µ + ie3Aµ)ψ± and
Dµφ = (∂µ+ie3Aµ)φ. θ is the important topological parameter and
e3 is the coupling constant of the U(1) local gauge symmetry, here
with dimension of (mass)1/2. V (φ∗φ) represents the self-interaction
potential,

V (φ∗φ) = µ2φ∗φ+
ζ

2
(φ∗φ)2 +

λ

3
(φ∗φ)3 (7)

which is the most general sixth power renormalizable potential in
1+2 dimensions [14]. The parameters µ, ζ, λ and y have mass
dimensions 1, 1, 0 and 0, respectively. For potential parameters
λ > 0, ζ < 0 and µ2 ≤ 3ζ2/(16λ) the vacua are stable.

In 1+2 dimensions, a fermionic field has its spin polarization fixed
up by the sign of mass [15]. The model includes two positive-energy
spinors (two spinor families). Both of them obey Dirac equation,
each one with one polarization state according to the sign of the
mass parameter.

The vacuum expectation value v of the scalar field φ is given by:

⟨φ∗φ⟩ = v2 = −ζ/ (2λ) +
[
(ζ/ (2λ))2 − µ2/λ

]1/2
(8)

The condition for its minimum is µ2 + ζ
2v

2 + λv4 = 0. After the
spontaneous symmetry breaking, the scalar complex field can be
parametrized by φ = v+H+iθ, whereH represents the Higgs scalar
field and θ the would-be Goldstone boson. For manifest renormal-
izability one adopts the ’t Hooft gauge by adding the gauge fixing
term Sgt

Rξ
=
∫
d3x[− 1

2ξ (∂
µAµ −

√
2ξMAθ)

2] to the broken action.
Keeping only the bilinear and the Yukawa interaction terms one
has the following action
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SSSB
CS−QED =

∫
d3x

{
−1

4
F µνFµν +

1

2
M 2

AA
µAµ

− 1

2ξ
(∂µAµ)

2 + ψ+(iγ
µ∂µ −meff)ψ+

+ ψ−(iγ
µ∂µ +meff)ψ− +

1

2
θϵµvαAµ∂vAα

+ ∂µH∂µH −M 2
HH

2 + ∂µθ∂µθ −M 2
θ θ

2

− 2yv(ψ+ψ+ − ψ−ψ−)H − e3
(
ψ+γ

µAµψ+ + ψ−γ
µAµψ−

)}
(9)

where the mass parameters

M 2
A = 2v2e23, meff = mch+yv

2, M 2
H = 2v2(ζ+2λv2), M 2

θ = ξM 2
A

(10)
depend on the SSB mechanism. The Proca mass, M 2

Aoriginates
from the Higgs mechanism. The Higgs mass, M 2

H , is associated
with the real scalar field. The Higgs mechanism also contributes to
the chernon mass mch, resulting in an effective mass meff . There
are two photon mass-terms in (9), the Proca and the topological
one.

5 Chernon-Chernon interaction

The chernon-chernon scattering amplitude in the non-relativistic
approximation is obtained by calculating the t-channel exchange
diagrams of the Higgs scalar and the massive gauge field. The
propagators of the two exchanged particles and the vertex factors
are calculated from the action (9) [12].

The gauge invariant effective potential for the scattering consid-
ered is obtained in [16,17]

VCS(r) =
e2

2π

[
1− θ

mch

]
K0(θr) +

1

mchr2

{
l − e2

2πθ
[1− θrK1(θr)]

}2

(11)
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where K0(x) and K1(x) are the modified Bessel functions and l is
the angular momentum (l = 0 in this note). In (11) the first term
[ ] corresponds to the electromagnetic potential, the second one { }2
contains the centrifugal barrier

(
l/mr2

)
, the Aharonov-Bohm term

and the two photon exchange term.
One sees from (11) the first term may be positive or negative

while the second term is always positive. The function K0(x) di-
verges as x → 0 and approaches zero for x → ∞ and K1(x) has
qualitatively similar behavior. For our scenario we need negative
potential between equal charge chernons. Being embarrassed of
having no data points for several parameters in (11) we can give
one relation between these parameter values for a negative poten-
tial. We must have the condition3

θ ≫ mch (12)

The potential (11) also depends on v2, the vacuum expectation
value, and on y, the parameter that measures the coupling between
fermions and Higgs scalar. Being a free parameter, v2 indicates
the energy scale of the spontaneous breakdown of the U(1) local
symmetry.

6 Inflation and Supergravity

We discuss briefly, and in simple terms, the question of different
dimensions of CS theory and gravity. We assume that the universe
at t ∼ 0 included a subspace of one dimension less than the man-
ifold of general relativity MGR.

4 A promising example of such a
theory is Chern-Simons gauge theory defined in a smooth, compact
three-manifold MCS ⊂ MGR, having a gauge group G, which is
semi-simple and compact, and an integer parameter k. The Chern-
Simons field equations (5) require that A be flat [11]. The curvature

3 For applications to condensed matter physics, one must require θ ≪ me, and the scattering potential
given by (11) then comes out positive [12].

4 A line is one dimensional when looked from a distance but by getting very close to it one sees, or rather
knows, it consists of zero dimensional points, that is numbers.
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tensor may be decomposed, in any spacetime dimension, into a cur-
vature scalar R, a Ricci tensor Rµν, and a conformally invariant
Weyl tensor C σ

µνρ . In 1+2 dimensions the Weyl tensor vanishes
identically, and the Riemann curvature tensor Rµνρσ is determined
algebraically by the curvature scalar and the Ricci tensor. There-
fore any solution of the vacuum Einstein field equations is flat and
any solution of the field equations with a cosmological constant
Rµν = 2Λgµν has constant curvature. Physically, a 1+2 dimen-
sional spacetime has no local degrees of freedom. There are no
gravitational waves in the classical theory, and no gravitons in the
quantum theory

CS theory, defined earlier by the action (5), is a topological,
quantizable gauge field theory [11]. The appropriate observables
lead to vevs which correspond to topological invariants. The ob-
servables have to be gauge invariant. Secondly, they must be inde-
pendent of the metric. Wilson loops verify these two properties [11],
and they are therefore the key to observables to be considered in
Chern-Simons theory. Independence of metric gives CS theories the
desireable property of background independence. The CS interac-
tion (5) is effective only at energy scales near and above Λcr. This
we interpret as chernons living (mod 3) on surfaces of spheres with
diameter of the order of 1/Λcr. These composite states are quarks
and leptons of the standard model in 1+3 dimensions.

In summary, the potential (11) dominates over general relativity,
and Coulomb repulsion, at distances below 1/Λcr in the 1+2 dimen-
sional manifold MCS while at larger distances gravity is stronger.

At the beginning of inflation, t = ti ∼ 10−36 s, the universe is
modeled by 1+3 dimensional classical gravity, and Chern-Simons
theory as long as T ≥ Λcr. The Einstein-Hilbert action is

S =

∫
d4x

√
−g
(1
2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
(13)

The E-H action dominates rapidly leading inflation to end at tR ≈
10−32 s. Then the inflaton, which is actually coherently oscillating
homogeneous field, a Bose condensate, reaches the minimum of its
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potential. There it oscillates and decays to SM particles produced
from chernons in the earlier phase of inflation. This causes the
reheating phase, or the Bang, giving visible matter particles more
kinetic energy than dark matter particles have.

The CMB measurements of inflation can be well described by a
few simple slow-roll single scalar potentials in (13). One of the best
fits to Planck data [18] is obtained by one of the very oldest models,
the Starobinsky model [19]. The action is

S =
1

2

∫
d4x

√
−g
(
R +

R2

6M 2

)
(14)

where M ≪ MPl is a mass scale. Current CMB measurements
indicate scale invariant spectrum with a small tilt in scalar density
ns = 0.965 ± 0.004 and an upper limit for tensor-to-scalar ratio
r < 0.06. These values are fully consistent with the Starobinsky
model (14) which predicts r ≃ 0.003.

The model (14) has the virtue of being based on gravity only
physics. Furthermore, the Starobinsky model has been shown to
correspond to no-scale supergravity coupled to two chiral supermul-
tiplets. Some obstacles have to be sorted out first before reaching
supergravity. To do that we follow the review by Ellis et al. [20].

The first problem with generic supergravity models with mat-
ter fields is that their effective potentials do not provide slow-roll
inflation as needed. Secondly, they may have anti-deSitter vacua
instead of deSitter ones. Thirdly, looking into the future, any new
model of particles and inflation should preferably be consistent with
some string model properties. These problems can be overcome by
no-scale supergravity models. No-scale property comes from their
effective potentials having flat directions without specific dynamical
scale at the tree level. This has been derived from string models,
whose low energy effective theory supergravity is.

Other authors have studied other implications of superstring the-
ory to inflationary model building focusing on scalar fields in curved
spacetime [21] and the swampland criteria [22–24]. These studies
point out the inadequacy of slow roll single field inflation. We find
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it important to establish first a connection between the Starobinsky
model and (two field) supergravity.

The bosonic supergravity Lagrangian includes a Hermitian func-
tion of complex chiral scalar fields ϕi which is called the Kähler
potential K(ϕi, ϕ∗j). It describes the geometry of the model. In
minimal supergravity (mSUGRA) K = ϕiϕ∗i . Secondly the La-
grangian includes a holomorphic function called the superpotential
W (ϕi). This gives the interactions among the fields ϕi and their
fermionic partners. K and W can be combined into a function
G ≡ K + ln |W |2. The bosonic Lagrangian is of the form

L = −1

2
R+Kj

i ∂µϕ
i∂µϕ∗j −V − 1

4
Re(fαβ)F

α
µνF

βµν− 1

4
Im(fαβ)F

α
µνF̃

βµν

(15)
where Kj

i ≡ ∂2K/∂ϕi∂ϕ∗j and Im(fαβ) is the gauge kinetic function
of the chiral fields ϕi. In mSUGRA the effective potential is

V (ϕi, ϕ∗j) = eK
[
|Wi + ϕ∗iW |2 − 3|W |2

]
(16)

where Wi ≡ ∂W/∂ϕi. It is seen in (16) that the last term with
negative sign may generate AdS holes with depth−O(m2

3/2M
2
Pl) and

cosmological instability. Solution to this and the slow-roll problem
is provided by no-scale supergravity models. The simplest such
model is the single field case with

K = −3 ln(T + T ∗) (17)

where T is a volume modulus in a string compactification.
The single field (17) model can be generalized to include matter

fields ϕi with the followng Kähler potential

K = −3 ln

(
T + T ∗ − 1

3
|ϕi|2

)
(18)

The no-scale Starobinsky model is now obtained with some ex-
tra work from the potential (16) and assuming ⟨T | |=⟩ 1

2 . For the
superpotential the Wess-Zumino form is introduced [25]

W =
1

2
Mϕ2 − 1

3
λϕ3 (19)
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which is a function of ϕ only. Then WT = 0 and from V ′ = |Wϕ|2
the potential becomes as

V (ϕ) =M 2 |ϕ|2|1− λϕ/M |2

(1− |ϕ|2/3)2
(20)

The kinetic terms in the scalar field Lagrangian can be written now

L = (∂µϕ
∗, ∂µT

∗)
( 3

(T + T ∗ − |ϕ|2/3)2
)( (T + T ∗)/3 −ϕ/3

−ϕ∗/3 1

)(
∂µϕ
∂µT

)
(21)

Fixing T to some value one can define the canonically normalized
field χ

χ ≡
√
3 tanh−1

(
ϕ√
3

)
(22)

By analyzing the real and imaginary parts of χ one finds that the
potential (20) reaches its minimum for Imχ = 0. Reχ is of the
same form as the Starobinsky potential in conformally transformed
Einstein-Hilbert action [26] with a potential of the form

V =
3

4
M 2(1− e−

√
2/3ϕ)2 (23)

when

λ =
M√
3

(24)

Most interestingly, λ/M has to be very accurately 1/
√
3, better than

one part in 10−4, for the potential to agree with measurements.
This is briefly the basic mechanism behind inflation in the Wess-

Zumino mSUGRA model, which foreruns reheating of visible mat-
ter. But only the particles containing m chernons, i.e. the visible
matter gets reheated. The dark sector is going through reheating
unaffected and is distributed smoothly all over space. The quantum
fluctuations of the dark fields are enhanced by gravitation and pro-
vide a clumpy underlay for visible matter to form objects of various
sizes, from stars to large scale structures.
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7 Sakharov conditions

Sakharov suggested [27] three necessary conditions that must satis-
fied to produce matter and antimatter at different rates. They are
(i) baryon number B violation, (ii) C-symmetry and CP-symmetry
violation and (iii) interactions out of thermal equilibrium.

Baryon number violation is clearly needed to reach baryon asym-
metry. This is valid in our model because baryon number is not
defined conventionally. C-symmetry violation is needed so that
the interactions which produce more baryons than anti-baryons will
not be counterbalanced by interactions which produce more anti-
baryons than baryons. CP-symmetry violation is required because
otherwise equal numbers of left-handed baryons and right-handed
anti-baryons would be produced, as well as equal numbers of left-
handed anti-baryons and right-handed baryons. The observed pat-
tern of CP-violation [28] remarkably confirms the Cabibbo– Kobayashi–Maskawa
(CKM) description of three fermionic generations of particles [29,
30]. CP-violation phenomenology is discussed in detail in [31, 32].
Our present one generation ”skeleton” model cannot satisfy this
condition but in principle, by completing the model and deriving
the low energy limit, it could be explained. In the SM, the CKM
model gives an explanation of why the breaking is so small, despite
the phase associated to it being of order one. Thirdly, interactions
are out of thermal equilibrium in a rapidly expanding universe.

8 Baryon asymmetry

We now examine the potential (11) in the early universe. Consider
large number of groups of twelve chernons each group consisting
of four m+, four m− and four m0 particles. Any bunch may form
only electron and proton (hydrogen atoms H), only positron and
antiproton (H̄) or some combination of both H and H̄ atoms [1,
2]. This is achieved by arranging the chernons appropriately (mod
3) using table 1. This way the transition from matter-antimatter
symmetric universe to matter-antimatter asymmetric one happens
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straightforwardly.
Because the Yukawa force (11) is the strongest force the light e−,

e+ and the neutrinos are expected to form first at the very onset of
inflation. To obey condition B − L = 0 of baryon-lepton balance
and to sustain charge conservation, for one electron made of three
chernons, nine other chernons have to be created simultaneously,
these form a proton. Accordingly for positrons. One neutrino re-
quires a neutron to be created. The m0 carries in addition color
enhancing neutrino formation. This makes neutrinos different from
other leptons and the quarks.

Later, when the protons were formed, because chernons had the
freedom to choose whether they are constituents of H or H̄ there
are regions of space of various sizes dominated by H or H̄ atoms.
Since the universe is the largest statistical system it is expected that
there is only a very slight excesses of H atoms (or H̄ atoms which
only means a charge sign redefinition) which remain after the equal
amounts of H and H̄ atoms have annihilated. The ratio nB/nγ is
thus predicted to be ≪ 1. The ratio nB/nγ is a multiverse-like
concept.

Fermionic dark matter has in this scenario no mechanism to be-
come ”baryon” asymmetric like visible matter. Therefore we expect
that part of fermionic dark matter has annihilated into bosonic dark
matter. Secondly, we predict there should exist both dark matter
and anti-dark matter clumps attracting visible matter in the uni-
verse. Collisions of anti-dark matter and dark matter celestial bod-
ies would give us a new source for wide spectrum gravitational wave
production (the lunar mass alone is ∼ 1049 GeV).

Part II Subtleties, localization and generalized symmetries

In the rest of this article we follow closely the references. Briefly,
Part II material is glued to Part I. A good starting point in refer-
ences is [33].
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9 Chern-Simons gravity

Low-dimensional gravity is an exciting arena to explore and test the
gravitational path integral. In two and three spacetime dimensions,
there is no propagating graviton and all of the effective degrees
of freedom are long-range. A prime example of this phenomenon
is the rewriting of pure Einstein gravity with a cosmological con-
stant (of either sign) as a Chern-Simons gauge theory [34] which
is the quintessential example of a topological field theory in three-
dimensions. A full leveraging of this fact allows the exact evaluation
of the gravitational path integral either about a saddle point [35] or
as a non-perturbative sum over saddles [36]. While Chern-Simons
gravity is not a UV-complete model of quantum gravity [36], its
all-loop exactness provides strong tests for potential microscopic
models in the spirit of e.g. [37].

One feature that is expected of a UV-complete model of quantum
gravity is that it includes matter, in particular massive fields that
couple to gravity. The manifest topological invariance that makes
Chern-Simons theory so powerful as a description of the gravita-
tional path integral also presents a challenge to incorporating mat-
ter. On a practical level, this is simple to illustrate: the action
of a massive field theory minimally coupled to a geometry involves
both inverse metrics and metric determinants. The rewriting of
these terms as Chern-Simons connections is highly non-linear and
indicates that integrating out of the massive field will result in a
non-local effective action. However, we can take inspiration from
the general philosophy that the low-energy avatar of the worldline
of a massive degree of freedom is a line-operator of the effective
gauge theory [39].

This philosophy was made precise in [40] for massive scalar fields
minimally coupled to gravity with a positive cosmological constant.
The key result was the expression of the one-loop determinant of a
massive scalar field coupled to a background metric, gµν, as a gauge
invariant object of the Chern-Simons connections, AL/R:
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Zscalar[gµν] = exp
1

4
W[AL, AR] . (25)

The object W[AL, AR], coined the Wilson spool, is a collection
of Wilson loop operators wrapped many times around cycles of
the base geometry. The equality in (25) is expected to apply to
three-dimensional gravity of either sign of cosmological constant,
and this was explicitly shown for Euclidean black holes in Anti-de
Sitter (i.e., Euclidean BTZ) and Euclidean de Sitter (i.e., the three-
sphere S3) in [40, 42]. It has also been upheld on T T̄ deformations
of AdS3 [43]. The importance of (25) is not only conceptual, it
is practical: it was additionally shown in [40] that certain ”exact
methods” in Chern-Simons theory (such as Abelianisation [44] and
supersymmetric localization [45]) extend to three-dimensional de
Sitter (dS3) Chern-Simons gravity with the Wilson spool inserted
into the path integral. This allows a precise and efficient calculation
of the quantum gravitational corrections to Zscalar at any order of
perturbation theory of Newton’s constant, GN .

To be specific, we state our main result, the generalization of (25)
for massive spinning fields, as the following. Consider the local path
integral,5 Z∆,s, of a spin-s field Φµ1µ2...µs

with mass

m2

Λ
= (∆ + s− 2)(s−∆) , (26)

minimally coupled to a metric geometry, (M3, gM3
), where M3 is

topologically either Euclidean BTZ or Euclidean dS3. Then, it is
proposed that

logZ∆,s[gM3
] =

1

4
WjL,jR[AL, AR] , (27)

where

WjL,jR[AL, AR] =
i

2

∫
C

dα

α

cos
(
α
2

)
sin
(
α
2

) (1 + s2 sin2
(α
2

))
×

5 Including any additional Stückelberg fields to fix its invariances and associated ghosts.
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∑
RL⊗RR

TrRL

(
Pe

α
2π

∮
γ
AL

)
TrRR

(
Pe−

α
2π

∮
γ
AR

)
. (28)

The details of WjL,jR will be made explicit below, however let us
briefly summarize the parts appearing in (28). The Chern-Simons
connections, AL/R, are related to the metric, gM3

, in (27) through
the usual Chern-Simons gravity dictionary and they are integrated
over a non-trivial cycle, γ, of the base geometry. The representa-
tions, RL/R, appearing in the Wilson loops are summed over a set
determined by the mass and spin, (∆, s), of (27) and labeled by
weights (jL, jR). Lastly the parameter α is integrated along a con-
tour, C, determined by a regularization scheme appropriate for the
sign of cosmological constant. The ultimate effect of the α integral
is to implement a ”winding” of the Wilson loop operators around
γ; this occurs through the summing the residues of the poles of its
measure (as well as any of representation traces themselves). The
above object, (28), is coined the spinning Wilson spool.

10 Non-standard spinning representations of su(2)

In this section, single-particle states of massive spin-s fields living on
dS3, with de Sitter radius ℓdS, as representations of su(2)L⊕su(2)R,
are described. The guiding principle of the construction is to mimic
the unitary representations of the Lorentzian dS3 isometry group,
so(1, 3). In [40] this was done for cases with s = 0, and here,
following the same arguments and conventions, that construction is
extended to include spin.

Unitary representations of so(1, 3) are labeled by a conformal
dimension ∆ (the eigenvalue of the dilatation operator D) and a
spin s (the eigenvalue of the spin operator iM) and come in two
series:6

∆ =1 + ν , ν ∈ (−1, 1) , s = 0 ,

∆ =1− iµ , µ ∈ R , s ∈ Z . (29)

6 See [40] for a basic introduction on so(1, 3) representation theory and for our notation here.
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The first line is the complementary series describing light scalars
with masses ℓ2dSm

2 = 1 − ν2 while the second line is the spinning
principal series describing spinning particles with masses ℓ2dSm

2 =
(s− 1)2 + µ2.

To connect this to su(2)L ⊕ su(2)R, let us introduce some basic
aspects of su(2). The algebra is generated by L3 and L±, where

[L3, L±] = ±L± , [L+, L−] = 2L3 . (30)

The Casimir of the representation is c
su(2)
2 = 1

2(L+L− + L−L+) +
L2
3. Representations of su(2) will be characterized by j, the eigen-

value of L3. The so(1, 3) algebra shares a complexification with
su(2)L ⊕ su(2)R, such that the dilatation and spin generators can
be identified with the Cartan elements of su(2) as

D = −L3 − L̄3 , M = iL3 − iL̄3 , (31)

respectively. Similar relations follow for the remaining generators,
which can be found in [40]. In (31) we have distinguished the gen-
erators of su(2)R from those of su(2)L by an overbar. Within this
complexification, the quadratic Casimir of so(1, 3) is equal to the
sum of the su(2) Casimirs:

c
so(1,3)
2 = −2c

su(2)L
2 − 2c

su(2)R
2 . (32)

Equation (31) suggests that we need to look for su(2)L ⊕ su(2)R
representations with

∆ = −jR − jL , s = jR − jL , (33)

where jL is the eigenvalue of L3 in su(2)L, and similarly for jR.
The relations (33), together with (29), indicate that one has to

construct representations with continuous and complex eigenvalues
(jL, jR). These do not fall into the standard finite dimensional rep-
resentation theory of su(2). However, in [40] it was shown how
to construct an alternative inner product in su(2) (or equivalently,
an alternative notion of Hermitian conjugation) allowing for high-
est weight representations with a continuous and complex weight
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while preserving norm-positivity. Such representations were coined
non-standard representations in the latter reference. These repre-
sentations are built from a highest weight state, |j, 0⟩, satisfying

L3|j, 0⟩ = j|j, 0⟩ , L+|j, 0⟩ = 0 , (34)

and j ∈ C is the weight of the representation. Acting with lowering
operators defines

|j, p⟩ = Nj,p (L−)
p |j, 0⟩ , (35)

for some normalizations Nj,p that we will determine shortly.
The key ingredient distinguishing the non-standard representa-

tions is a map, S, between highest weight representations

S|j, p⟩ = |j∗, p⟩ , (36)

where j∗ is the complex conjugate of j. This map is utilized in
Hermitian conjugation in the following way:

L†
3 := S−1L3S , L†

± := −S−1L∓S . (37)

Note that j
S→ j∗ is consistent with the action of L†

3.
In [40], norm-positive inner products were constructed for non-

standard representations with j = −1
2(1+ν) or j = −1

2(1−iµ) (and
µ, ν ∈ R) which relate to the scalar complementary and principal
series with s = 0. Here we will relax this condition and show that a
norm-positive inner product can be constructed for any complex j.

We will first determine the normalizations Nj,p. We note that

⟨j, p− 1|L+|j, p⟩ =
Nj,p

Nj,p−1
p(2j + 1− p)⟨j, p− 1|j, p− 1⟩ , (38)

which can be seen from replacing L+L− with c
su(2)
2 +L3−L2

3 in the
matrix element. Alternatively, utilizing (37) and (36), this same
matrix element is

⟨j, p− 1|L+|j, p⟩ = ⟨j, p|L†
+|j, p− 1⟩∗ = −

(
Nj∗,p−1

Nj∗,p

)∗
⟨j, p|j, p⟩ .

(39)
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If one assumes that we can set ⟨j, p − 1|j, p − 1⟩ = 1 and also
⟨j, p|j, p⟩ = 1, then (38) and (39) imply(

Nj∗,p−1

Nj∗,p

)∗
= p(p− 2j − 1)

(
Nj,p

Nj,p−1

)
. (40)

To solve this constraint, we write

αj,p = Arg (Nj,p) , ϕj,p = Arg (p− 2j − 1) , (41)

leading to recurrence relations

|Nj∗,p−1|
|Nj∗,p|

=p|p− 2j − 1| |Nj,p|
|Nj,p−1|

,

αj∗,p − αj∗,p−1 =αj,p − αj,p−1 + ϕj,p mod(2π) . (42)

There is a lot of freedom in solving these recurrence relations. We
will choose a particular solution by fixing

|Nj,p| = |Nj∗,p| , αj,0 = αj∗,0 = 0 , αj,p = −αj∗,p ∀ p .
(43)

This sets
|Nj,p−1|
|Nj,p|

=
|Nj∗,p−1|
|Nj∗,p|

=
√
p|p− 2j − 1| (44)

and7

αj,p = −1

2

p∑
p′=1

ϕj,p′ . (45)

For concreteness, we summarize the generator actions on this
representation as

L3|j, p⟩ = (j − p)|j, p⟩ ,
L−|j, p⟩ = eiϕj,p/2

√
(p+ 1)|p− 2j||j, p+ 1⟩ ,

L+|j, p⟩ = −eiϕj,p/2
√
p|p− 2j − 1||j, p− 1⟩ , (46)

with the action on |j∗, p⟩ obtained by simply replacing j → j∗ in
the above formulas. We can now show norm-positivity by induction

7 Note that ϕj∗,p = −ϕj,p.
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starting with ⟨j, 0|j, 0⟩ = 1. Let us investigate the first descendant
state:

|L−|j, 0⟩|2 =− ⟨j, 0|S−1L+SL−|j, 0⟩
=eiϕj,1/2+iϕj∗,1/2

√
|2j|
√

|2j|⟨j, 0|j, 0⟩
=|2j| > 0 . (47)

Similarly norm-positivity of |j, p⟩ induces norm-positivity of |j, p+
1⟩8:

|L−|j, p⟩|2 =− ⟨j, p|S−1L+SL−|j, p⟩
=eiϕj,p+1/2+iϕj∗,p+1/2

√
(p+ 1)|p− 2j|

√
(p+ 1)|p− 2j|⟨j, p|j, p⟩

=(p+ 1)|p− 2j|⟨j, p|j, p⟩ > 0 . (48)

This establishes norm positivity for all states in the representation.
We additionally note that these representations have well defined
characters

χj(z) = Trj
(
ei2πzL3

)
=

∞∑
p=0

ei2πz(j−p) =
eiπ(2j+1)z

2i sin(πz)
. (49)

In [40] the restrictions of the highest-weights, j = −1
2(1 + ν) or

j = −1
2(1 − iµ), followed from Hermiticity of the su(2) Casimirs,

separately. Here we take a more Lorentzian perspective, and impose
reality of the so(1, 3) Casimir at the level of (32); doing so ties the
su(2)L/R representations together and the highest weights take the
generic form

jL = −1

2
(1 + s− iµ) , jR = −1

2
(1− s− iµ) . (50)

Let us briefly show this now. Assuming that jL and jR are generi-
cally complex the condition for reality of the so(1, 3) Casimir is that

Im (jL(jL + 1)) = −Im (jR(jR + 1)) , (51)

8 We are assuming j is a generic complex number and ignoring the potential for possible null states
when j ∈ 1

2N0. Of course, in these cases the representation simply terminates and we recover the standard,
finite-dimensional, representations of su(2).
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or equivalently

Im(jL) (1 + 2Re(jL)) = −Im(jR) (1 + 2Re(jR)) . (52)

If both sides are simultaneously zero then we must have either
j ∈ R or j ∈ −1

2 + iR (for either jL or jR) which lead to the
complimentary and principal-type representations discussed in [40].
More generally there will be a family of highest weight solutions
satisfying (52). However, if we further insist9 that jL− jR ∈ R then
it must be the case that

Im(jL) = Im(jR) , Re(jL) + Re(jR) = −1 , (53)

which lead to the highest weights appropriate for the spinning prin-
cipal series, (50). We will refer to such representations as the spin-
ning principal-type representations.

As noted already in [40], our non-standard characters can be
massaged into the suggestive Lorentzian form via

χjL(zL)χjR(zR) + χj∗L
(zL)χj∗R

(zR) =
wsq∆ + w−sq∆̄

(1− w−1q)(1− wq)
, (54)

where q = e−iπ(zL+zR) and w = eiπ(zL−zR) and we have identified (33)
as well as ∆̄ = 2−∆. This matches the Harish-Chandra character,
Tr
(
qDwiM

)
, for the so(1, 3) spinning principal series.

11 Spinning spool on S3

We now present the construction of the Wilson spool for massive
spin-s fields on S3. That is, we will derive an expression for the one-
loop determinant of these fields on S3 in terms of the representations
of su(2)L ⊗ su(2)R constructed in the previous section.

To start, let us describe the path integral of a single massive spin-
s field, with no self-interactions. The local partition function for this
theory contains a symmetric spin-s tensor, Φµ1µ2...µs

, as well as a

9 At this point we will impose this by hand; we will see later that in the quantum theory only represen-
tations with jL − jR ∈ Z contribute to the matter one-loop determinant.
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tower of Stückelberg fields which enforce that Φµ1µ2...µs
is transverse

and traceless [41]:

∇νΦνµ2...µs
= Φν

νµ3...µs
= 0 . (55)

As emphasized in [37], on a compact manifold the path integral over
symmetric, transverse, traceless (STT) tensors leads to non-local
divergences which cannot be canceled by local counterterms. This
path integral must be compensated by the path integral over the
Stückelberg fields and ghosts which leave behind a finite product
from integrating over normalizable zero modes. To that end, we
write

Z∆,s = ZzeroZSTT , (56)

where

ZSTT =

∫
[DΦµ1µ2...µs

]STTe
− 1

2

∫
Φ(−∇2

(s)+ℓ2dSm̄
2
s)Φ . (57)

Above ∇2
(s) is the Laplace-Beltrami operator[

∇2
(s)Φ
]
µ1µ2...µs

= ∇ν∇νΦµ1µ2...µs
, (58)

and m̄2
s is an effective mass

ℓ2dSm̄
2
s = ℓ2dSm

2 + 3s− s2 , (59)

where we recall that m2 is the standard mass parameter in dS3 [37],
and related to the representation theory of section 10 via

ℓ2dSm
2 = (∆ + s− 2)(s−∆) . (60)

The zero mode contribution in (56) follows from counting conformal
Killing tensor modes on S3 and is given by [37]10

Zzero =
[
(∆− 1)(∆̄− 1)

] s2
2

s−2∏
n=0

[
(∆ + n)(∆̄ + n)

]−(n+1+s)(n+1−s)
,

(61)
where we recall that ∆̄ = 2−∆.

10 This is true for s ≥ 2 while for s = 0, 1 the product over n is replaced by 1.
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In the following, we will show that

logZ∆,s =
1

4
WjL,jR , (62)

for fields on S3. That is, we will express Z∆,s as a function of the
Chern-Simons connections which we will explicitly construct utiliz-
ing the non-standard representation theory of section 10. While our
construction takes place on a fixed classical background, we will see
that WjL,jR is an integral over gauge invariant Wilson loop opera-
tors and naturally generalizes into an off-shell operator that can be
inserted into the Chern-Simons path integral, which we will discuss
in section 14.

The roadmap to derive (62) is as follows. We will first focus
on ZSTT. This determinant can be evaluated via the method of
quasinormal modes pioneered in [38]. We will adapt this method
such that each component has a group theoretic interpretation: we
will show how defining properties of quasinormal modes can be
translated to conditions on the representation of the fields. This
follows [40], however, for spinning fields, we will take particular
care with the role of global conditions (i.e., Euclidean solutions are
regular and single-valued) in isolating physical contributions to the
quasinormal mode product. The additional contribution of Zzero,
which is not part of the quasinormal mode product but crucial for
maintaining locality of Z∆,s, will permit a Schwinger parameteriza-
tion of logZ∆,s, regularized by an iε prescription. This will orga-
nize the quasinormal mode sum into an integral over representation
traces of the background holonomies. From this follows our main
result.

11.1 A group theory perspective on S3 quasinormal modes

As the first step in our construction, we will recast the functional
determinant

ZSTT = det
(
−∇2

(s) + ℓ2dSm̄
2
s

)− 1
2

(63)
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in su(2) representation theoretic language. We recall that the DHS
method [38] instructs us to treat Z2

STT as meromorphic function
of ∆. Then, up to a holomorphic function, Z2

STT is equal to the
product containing the same zeros and poles. Here ZSTT only has
poles on states satisfying (−∇2

(s) + m̄2
s )Φµ1µ2...µs

= 0. These are pre-
cisely the spin-s quasinormal modes. We have explicitly computed
these modes and their product to obtain ZSTT directly. Here we
will reinterpret these modes in terms of su(2) representation the-
ory to obtain an expression natural to the Chern-Simons theory
formulation of gravity.

We note that the isometry algebra of the three-sphere is gener-
ated by two mutually commuting sets of su(2) vector fields {ζa} and
{ζ̄b} which are the infinitesimal left and right group actions acting
on S3 ≃ SU(2). On spin-s STT tensors the Casimirs of their Lie
derivatives, {Lζa} and {Lζ̄b}, act as the Laplace-Beltrami operator:

−2δab
(
LζaLζb + Lζ̄aLζ̄b

)
Φµ1µ2...µs

=
[
∇2

(s) − s(s+ 1)
]
Φµ1µ2...µs

.

(64)
Hence we can write (63) suggestively as

ZSTT = det
(
2c

su(2)L
2 + 2c

su(2)R
2 +∆(2−∆)− s2

)− 1
2

. (65)

Following the DHS methodology, we then expect Z2
STT to have pole

contributions from states in su(2)L ⊕ su(2)R representations satis-
fying (

−2c
su(2)L
2 − 2c

su(2)R
2

)
|ψ⟩ =

[
∆(2−∆)− s2

]
|ψ⟩ . (66)

This is precisely the condition satisfied by the non-standard repre-
sentations constructed in section 10 with highest weights (jL, jR) =
(−∆+s

2 ,−∆−s
2 ). We are interested in the poles in Z2

STT arising from
weights of the representations RjL ⊗ RjR as we continue ∆ in the
complex plane.11 In principle we should consider all representa-
tions that satisfy (66), so for a given (∆, s), we also encounter

11 It will be important as we progress to take special care of the cases when ∆ is such that jL/R ∈ 1
2N; in

these cases the weight spaces terminate discontinuously to finite-dimensional representations.
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poles associated to highest weight representations arrived at by
sending ∆ → ∆̄ = 2 − ∆ as well as s → −s.12 If we define
(jL, jR) = (−∆+s

2 ,−∆−s
2 ) then we will denote

(j̄L, j̄R) =

(
−∆̄ + s

2
,−∆̄− s

2

)
, (67)

while s → −s is equivalent to jL ↔ jR. We will then have pole
contributions from any of the representations appearing in

R∆,s =
{
RjL ⊗ RjR,Rj̄L ⊗ Rj̄R,RjR ⊗ RjL,Rj̄R ⊗ Rj̄L

}
. (68)

We make a special note that for scalar representations (jL = jR = j)
it is sufficient to consider the smaller set

R∆,scalar =
{
Rj ⊗ Rj,Rj̄ ⊗ Rj̄

}
(69)

as in [40].
The ”mass-shell condition” (66) is only a necessary condition to

contribute a physical pole to Z2
STT. Functional determinants come

with boundary and regularity conditions on their functional domain
and we must impose these on weight spaces satisfying (66) to obtain
a physical answer. We will state these up-front in an su(2) natural
language as the following:

Condition I. Single-valued solutions: A configuration constructed
from a representation RL ⊗ RR ∈ R must return to itself un-
der parallel transport around any closed cycle in the Euclidean
manifold.

Condition II. Globally regular solutions: A configuration con-
structed from a representation RL ⊗ RR ∈ R must be globally
regular on the Euclidean manifold. When the base space is ho-
mogeneous this means RL ⊗ RR lifts from a representation of
the isometry algebra to a representation of the isometry group.

12 This is consistent with the Lorentzian picture: a spin-s field is built out of so(1, 3) representations
labelled by both (∆,±s) while the (∆, s) representation is isomorphic to that labelled by (∆̄,−s) through
the so(1, 3) shadow map [54].
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Let us first expand upon Condition I for spin-s fields on S3.
A field Φ living in a representation RL ⊗ RR is parallel transported
around a cycle, γ, through the background connections:

Φf = RL

[
P exp

(∮
γ

aL

)]
Φi RR

[
P exp

(
−
∮
γ

aR

)]
. (70)

When aL/R are flat this conjugation is trivial. However for the
backgrounds appropriate for describing the S3 metric geometry, the
background connections take non-trivial holonomies

P exp

(∮
γ

aL

)
= u−1

L ei2πL3h
(γ)
L u−1

L , P exp

(∮
γ

aR

)
= u−1

R ei2πL̄3h
(γ)
R u−1

R ,

(71)
when γ wraps one of two lines on the base S3 [40]. These lines
are Hopf linked and Wick rotate to the coordinate positions of the
static patch origin and horizon. They yield respective holonomies

γorig. : (hL, hR) = (1, 1) , γhor. : (hL, hR) = (1,−1) . (72)

The salient point is that a single-valued field will satisfy

λLhL − λRhR ∈ Z , (73)

for each of the two sets of holonomies in (72) and for all weights
(λL, λR) in the representation RL ⊗ RR.

From cycles wrapping the origin weights must satisfy

λL − λR ∈ Z (74)

to contribute a pole to Z2
STT. Weights of a highest-weight represen-

tation RjL/R
necessarily take the form

λL/R = jL/R − pL/R , pL/R ∈ N0 , (75)

simply via the structure of the su(2) algebra. Single-valuedness
around the static patch origin then requires

jL − jR ∈ Z ⇔ s ∈ Z . (76)
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This condition is the same for all other representations in R∆,s. We
pause here to note that while the representation theory in section
10 only relies on jL − jR ∈ R, we now see that only fields with
quantized spin can contribute physical poles to Z2

STT. We will thus
fix s ∈ Z and consider the analytic structure of Z2

STT as a function
of ∆. This analytic structure is constrained by single-valuedness
around the static patch horizon, which requires

λL + λR ∈ Z . (77)

We will return to this condition shortly.
We now address Condition II, that configurations contribut-

ing to Z2
STT are globally regular. Without loss of generality we

will state this for RjL ⊗ RjR ∈ R∆,s. For the S3 background in
question the isometry group acts transitively. Thus regularity at
a point guarantees global regularity as long as the isometry group,
SU(2)L × SU(2)R, acts faithfully on the field in question: that is,
RjL⊗RjR lifts to a representation of the isometry group. The Peter-
Weyl theorem states that these must be finite-dimensional represen-
tations of su(2)L⊗su(2)R , where such representations have weights
(75) satisfying

λL/R = jL/R−pL/R , 0 ≤ pL/R ≤ 2jL/R , jL/R ∈ 1

2
N0 . (78)

To be clear about interpretation: the DHS method instructs us
to consider the structure of Z2

STT as ∆ continues to the complex
plane. The mass-shell condition, (66), then instructs us to consider
representations with generically complex highest weights, jL/R ∈
C. Such representations are non-standard and infinite-dimensional.
However Condition II simply tells us that the poles of Z2

STT are
located at ∆ ∈ Z≤−s and the orders of these poles are correctly
counted not by weights of an infinite dimensional representation but
instead by (78). In this counting we notice that weights of finite
dimensional representations of SU(2) are centered about zero and so
for any weight satisfying λL+λR = N > 0 there is a corresponding
weight with λL + λR = −N . Thus for the purposes of counting the
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number of weights contributing to a particular pole, we can restate
(77) as

λL + λR = |N | , N ∈ Z (79)

as a necessary condition for incorporating Condition II.
We pause to note that for minimally coupled scalar fields (79)

is also sufficient to imply Condition II. Thus the scalar one-loop
determinant can be written as

Zscalar =
∏

(λL,λR)

∈Rj⊗Rj

∏
N∈Z

(|N | − λL − λR)
−1/2×

∏
(λ̄L,λ̄R)

∈Rj̄⊗Rj̄

∏
N̄∈Z

(∣∣N̄ ∣∣− λ̄L − λ̄R
)−1/2

,

(80)
where we have written explicitly the product over the two represen-
tations appearing in R∆,scalar. From here the expression of Zscalar as
a Wilson spool follows the procedure in [40].

For massive spin-s fields, (79) is no longer sufficient and we must
impose additional constraints to reproduce Z2

STT. For a given |N | in
(79), Condition II additionally implies the weights λL/R = jL/R−
pL/R must satisfy

pL ≥ −|N | − s , pR ≥ −|N |+ s . (81)

While the first of these is always satisfied (for positive s) the sec-
ond is an additional constraint on counting the order of the poles
appearing in Z2

STT and is only non-trivial when |N | ≤ s. For these
2s + 1 cases we observe that p̃R = pR + |N | − s ≥ 0 and (79) is
equivalently written

jL + jR − pL − p̃R = s , pL, p̃R ≥ 0 . (82)

We can thus treat this as a condition on the weights (λL, λ̃R) =
(jL − pL, jR − p̃R) of highest-weight representations RjL ⊗ RjR and
for each pole arising from this condition being satisfied, it arises
2s+ 1 times.

Applying this same procedure to all representations appearing in
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R∆,s we arrive at

ZSTT =
∏
R∆,s

∏
(λL,λR)

(s− λL − λR)
− 2s+1

2

∏
N∈Z,
|N |>s

(|N | − λL − λR)
− 1

2

 ,

(83)
where the first product is understood to take the product over all
pairs RL ⊗ RR ∈ R∆,s and the second product is taken over all
weights (λL, λR) ∈ RL ⊗ RR of a particular pair in R∆,s. Where it
does not cause confusion we will maintain this shorthand (in both
products and sums) for compactness of notation.

As mentioned at the beginning to this section, the local spin-
s partition function, Z∆,s, includes, in addition to this quasinor-
mal product, the product from integrating over normalizable zero
modes, (61):

Z∆,s = ZzeroZSTT . (84)

In the next section we will show how this combination, with the
expression of ZSTT as a product over representation weights, (83),
will lead to the Wilson spool.

11.2 Constructing the spool

The procedure to cast logZ∆,s as an integral over Wilson loop op-
erators starts by rearranging (61) and (83). We first make use of
the Schwinger parameterization of the logarithm

logM = −
∫ ∞

×

dα

α
e−αM , (85)

with a regularization of the divergence at α → 0 that we will leave
unspecified for now. We will address this regularization through a
suitable iε prescription below. Applying (85) to (83), we first see
that the sum over weights in logZSTT can then be organized into
representation traces∑

(λL,λR)

eα(λL+λR) = TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
, (86)
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which are the characters of the non-standard representation in (49).
This then leads to

log(ZSTT) =
1

2

∫ ∞

×

dα

α

∑
N∈Z
|N |>s

e−|N |α + (2s+ 1)e−sα

×

∑
R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
.

(87)

Similarly, we can introduce a Schwinger parameter to logZzero,
where now (61) reads

logZzero =

∫ ∞

×

dα

α

(
s−2∑
n=0

((n+ 1)2 − s2)e(jL+jR−n)α − s2

2
e(jL+jR+1)α

)
+ (jL/R → j̄L/R)

=
1

2

∫ ∞

×

dα

α
(eα − 1)2e−2α

(
s−2∑
n=0

((n+ 1)2 − s2)e−nα − s2

2
eα

)
×∑

R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
.

(88)

In the first line, we used ∆ = −jL − jR, and in the second, the
characters (49) to cast this as a trace. The zero mode contribution
(88) combines nicely with log (ZSTT) to give

logZ∆,s =
1

2

∫ ∞

×

dα

α

(
cosh

(
α
2

)
sinh

(
α
2

) − s2 sinh(α)

)∑
R∆,s

TrRL

(
eαL3

)
TrRR

(
eαL̄3

)
,

(89)
where we used ∑

n∈Z

e−|n|α =
cosh

(
α
2

)
sinh

(
α
2

) . (90)

At this point we use the even parity of the integrand to regulate
the divergence through the following iε prescription:∫ ∞

×

dα

α
f(α) := lim

ε→0

1

4

∑
±

∫ ∞

−∞

dα

α± iε
f(α± iε) . (91)
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This is a choice of regularization scheme for the one-loop determi-
nant. Finally, under a change of integration variables α → −iα we
can write the partition function as

logZ∆,s =
i

8

∫
C

dα

α

(
cos
(
α
2

)
sin
(
α
2

) + 2s2 cos
(α
2

)
sin
(α
2

))∑
R∆,s

TrRL

(
eiαL3

)
TrRR

(
eiαL̄3

)
,

(92)

where the contour C runs upwards along the imaginary α axis to the
left and right of the divergence at the origin, as depicted in figure
1.

Re(α)

Im(α)
C

Figure 1: The integration contour regulating the α → 0 divergence.

As a final step we now rewrite the holonomies inside the traces
to restore the background connections, arriving at (62) with WjL,jR

the spinning Wilson spool:

WjL,jR[aL, aR] :=
i

2

∫
C

dα

α

cos
(
α
2

)
sin
(
α
2

) (1 + 2s2 sin2
(α
2

))
×∑

R∆,s

TrRL

(
Pe

α
2π

∮
γ
aL
)
TrRR

(
Pe−

α
2π

∮
γ
aR
)
, (93)

where above γ = γhor. is a cycle wrapping the singular point corre-
sponding to the horizon.

At this point let us make several comments:

• The spinning Wilson spool takes a form similar to that of the
scalar spool found in [40,42]; importantly the ”operator pieces”
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of the expression (93) have been organized into gauge invari-
ant Wilson loop operators. The only modification the spinning
spool brings is in the integration measure.

• The modification to the integration measure, proportional to
s2, will have the effect of lowering the degree of each pole at
α ∈ 2πZ by two. As we will shortly see, this effect reproduces
the ”edge partition function” of [37].

• Mathematically the holonomies corresponding to γhor. appear
in the one-loop determinant because they are sensitive to ∆ on
which ZSTT is treated as an meromorphic function. The physics
behind this is clear: we are reproducing a one-loop determinant
of massive fields. In the worldline quantum mechanics frame-
work this corresponds to averaging over worldlines of a massive
particle in the static patch. Such wordlines are timelike and
rotate to a contour gauge equivalent to γhor..

11.3 Testing the Wilson spool

We now uphold equations (62) and (93) by verifying that it indeed
reproduces the correct path integral of a massive spinning field on
S3. There are several ways how to evaluate this path integral, and
here we will focus on two approaches to use as a comparison. The
first is to implement the DHS method traditionally. We evaluate
this path integral by explicitly listing the quasinormal modes and
applying DHS. The second approach we can compare to are the
expressions found in [37], which cast the results in terms of so(1, 3)
characters.

Since we are not turning on gravity (GN → 0), we evaluate the
Wilson loop operators in (93) as characters with the appropriate
holonomies in (72). Using the form of our non-standard represen-
tation character, (49), we then write

logZ∆,s = − i

8

∫
C

dα

α

(
cos
(
α
2

)
sin3(α2 )

+ 2s2
cos
(
α
2

)
sin
(
α
2

)) eiα(1−∆) , (94)
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where we note that the sum over representations in R∆,s is already
neatly packaged into our two contours. We recognize the first term
in the parentheses of (94) as twice the on-shell scalar Wilson spool
found in [40]. We evaluate both terms by deforming the α contours
to run above and below the real α axis to pick up the residues at
the poles lying at 2πZ̸=0. This deformation is depicted in figure 2.

Re(α)

Im(α)

C

Figure 2: We deform the α integration contour to wrap the poles lying
along the real axis.

Summing the towers of poles and expressing the su(2)L/R highest-
weight labels in terms of µ and s as in (50), we write this as

logZ∆,s =
∑
±

(
− 1

4π2
Li3
(
e∓2πµ

)
∓ µ

2π
Li2
(
e∓2πµ

)
− µ2 + s2

2
Li1
(
e∓2πµ

))
= 2 logZscalar −

s2

2

∑
±

Li1
(
e∓2πµ

)
,

(95)

where

Lip(z) =
∞∑
n=1

zn

np
(96)

is the polylogarithm. As mentioned above, logZscalar is the one-
loop determinant of a massive scalar field on S3 with a mass set
by ℓ2dSm

2 = ∆(2 − ∆) = 1 + µ2. Up to an overall phase, unfixed
by the quasinormal mode method, (95) matches the path integral
of a massive spin-s field on S3 via DHS in and the results reported
in [37].
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12 dS3 gravity and Chern-Simons theory

In this section we will review the relation between Chern-Simons
theory and three-dimensional general relativity with a positive cos-
mological constant, i.e., dS3 gravity [11]. Our presentation follows
the work of [36,37], which discusses the tree-level and loop relation
between the two theories.

In the first half of this section we review geometrical properties of
dS3, and then classical (tree-level) aspects of the theories at hand.
The second half is devoted to quantum aspects of dS3. Our aim
is to capture perturbative corrections to all orders in GN via the
Chern-Simons formulation. An important and novel portion of our
analysis is to alter known methods to quantize Chern-Simons theory
such that we meet the basic features that give Chern-Simons theory
a gravitational interpretation. These alterations are to incorporate
a non-trivial background connection and a complex level in the
path integral. This is done in section 12.3, where we show how
to adapt the derivation of the exact Chern-Simons path integral
on S3 via two different methods commonly used in the literature:
Abelianisation and supersymmetric localization. In section 12.4
we discuss how these modifications are in perfect agreement with
perturbative results in the metric formulation of the gravitational
theory.

12.1 A primer on dS3 spacetime

Three-dimensional Lorentzian de Sitter space can be realised as the
hypersurface in R1,3 (what we will call embedding space) given by

ηABX
AXB = ℓ2 , η = diag(−1, 1, 1, 1) , (97)

where A,B ∈ {0, 1, 2, 3} and ℓ is the dS3 radius. Embedding space
makes it manifest that the isometry group of dS3 is SO(1, 3) which
is generated by Killing vectors preserving this hypersurface

LAB = XA
∂

∂XB
−XB

∂

∂XA
. (98)
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Different parametrizations of (97) give different coordinate patches
of global de Sitter. A particular coordinate patch of interest to us in
this paper is the coordinate patch available to an observer moving
along a timelike geodesic, called the static patch. Due to the accel-
erated expansion of the spacetime, individual observers lose causal
contact with increasing portions of space which become hidden be-
hind a causal horizon. Thus the static patch covers a finite causal
diamond, depicted as the blue region of the Penrose diagram found
in figure 3. The parametrization for this static patch is given by

X0 =ℓ cos(ρ) sinh(t/ℓ) ,

X1 =ℓ cos(ρ) cosh(t/ℓ) ,

X2 =ℓ sin(ρ) cos(φ) ,

X3 =ℓ sin(ρ) sin(φ) ,

(99)

for which the metric takes the following form

ds2 = ηABdX
AdXB = − cos2 ρ dt2 + ℓ2dρ2 + ℓ2 sin2 ρ dφ2 . (100)

The coordinates range over t ∈ (−∞,∞), ρ ∈ [0, π/2), φ ∈ [0, 2π)
which covers the right-wedge (”north-pole”) of the static patch. The
point ρ = 0 corresponds to the worldline of the observer defining
the static patch, while ρ = π/2 corresponds to this observer’s causal
horizon. The metric (100) has an obvious time-like Killing vector,
ζ = ∂t. This Killing vector is in fact the same as the ”dilatation”
Killing vector, D = L03, of so(1, 3). As depicted in figure 3, this
Killing vector is not globally time-like, however.

Euclidean de Sitter can be defined through the Wick rotation
X0 = −iX0

E, which at the level of the static patch coordinates
can be achieved through t = −iℓτ . The defining equation (97) then
defines a three-sphere and indeed the Lorentzian static patch metric
rotates to

ds2

ℓ2
= cos2 ρ dτ 2 + dρ2 + sin2 ρ dφ2 , (101)

which is the metric for S3 in torus coordinates. Regularity at the
horizon, ρ = π/2, requires the identification τ ∼ τ + 2π, consistent
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Figure 3: The Penrose diagram of dS3. The blue region is the static patch
covered by the coordinates (99). The observer defining the patch lies at ρ = 0.
Their causal horizon lies at ρ = π

2 . Also depicted are the flow lines of D which
are time-like in this patch.

with it being a coordinate for S3. The isometry group of Euclidean
de Sitter is easily seen to be SO(4) ≃ SU(2) × SU(2)/Z2. The
SU(2)’s are the left and right group actions acting on S3 which
itself is diffeomorphic to SU(2). As such we will label these two
groups by subscripts L and R.

12.2 Chern-Simons theory and dS3 gravity: tree-level

Now let us briefly review the Chern-Simons formulation of three-
dimensional gravity [11]; see [36] for more details and complemen-
tary aspects. Much like the previous subsection, this portion is
intended to lay out the necessary ingredients and to establish our
notation.

As we noted in section 12.1, the splitting so(4) ≃ su(2)L⊕su(2)R
of the isometry algebra of Euclidean dS3 indicates that we will be
interested in quantizing a pair of SU(2) Chern-Simons theories

S = kLSCS[AL] + kRSCS[AR] , (102)

where

SCS[A] =
1

4π
Tr

∫
M

(
A ∧ dA+

2

3
A3

)
, (103)

and the trace is taken in the fundamental representation. The lev-
els, kL/R, will be non-integer and ultimately related to G−1

N . Fol-
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lowing [48], the correct framework for approaching this theory is
through its complexification sl(2,C) with su(2) taken as a real form.
As emphasized in that paper a decomposition of levels consistent
with reality of the action and with Euclidean gravity with positive
cosmological constant is given by13

kL = δ + is , kR = δ − is , (104)

where δ ∈ Z and s ∈ R. As further discussed in [48], quantum
effects lead to a finite renormalization of the levels

kL → rL = kL + 2 , kR → rR = kR + 2 . (105)

Importantly these are renormalized in the same way and can be
regarded as a renormalization of δ to δ̂ = δ+2. For the rest of this
section we will work with the renormalized levels.

To see that indeed this can be related to a theory of gravity, we
can decompose the connections as

AL = i

(
ωa +

1

ℓ
ea
)
La , AR = i

(
ωa − 1

ℓ
ea
)
L̄a , (106)

where {La} and {L̄a} generate su(2)L and su(2)R, respectively.
14 It

is natural to interpret ea as the dreibein and ωa = 1
2ε

abcωbc is the
(dual) spin-connection. Indeed the action (102) is equivalent to

iS = −IEH − iδ̂IGCS , (108)

where IEH is the Einstein-Hilbert action written in first-order (or
Palatini),

IEH = − s

4πℓ

∫
εabce

a ∧
(
Rbc − 1

3ℓ2
eb ∧ ec

)
. (109)

13 Strictly speaking, sl(2,C) Chern-Simons theory parameterized in this way describes Lorentzian gravity
with positive cosmological constant and with sl(2,R) as its real form. We obtain the Euclidean theory from
the Wick rotation: i.e. (supposing the negative sign of the metric is associated with e3) e3 → ie3, L3 → iL3.

14 With respect to this basis, we have

Tr(LaLb) = Tr
(
L̄aL̄b

)
=

1

2
δab . (107)
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Here Rab = εabc
(
dωc − 1

2ε
c
deω

d ∧ ωe
)
is the Riemann two-form, and

we have a positive cosmological constant, Λ = ℓ−2. This identifies
the imaginary part of the levels with Newton’s constant

s =
ℓ

4GN
, (110)

which establishes that the semi-classical regime of this theory is
the large s limit. The second part of this action, once restricted
to torsion-free spin connections, is the gravitational Chern-Simons
action:

IGCS =
1

2π

∫
Tr

(
ω ∧ dω +

2

3
ω3

)
+

1

2πℓ2

∫
Tr (e ∧ T ) , (111)

where T a = dea − εabcω
b ∧ ec is the torsion two-form.

It is also simple to establish a relation at the level of the equations
of motion. The classical equations of motion of the Chern-Simons
theories (102) are

dAL + AL ∧ AL = 0 , dAR + AR ∧ AR = 0 . (112)

The sum and difference of these equations translate, in terms of ea

and ωa, to the vacuum Einstein equation (with positive cosmological
constant) and the vanishing of the torsion two-form:

Rab =
1

ℓ2
ea ∧ eb , T a = 0 . (113)

These derivations establish a correspondence between classical solu-
tions in the metric formulation of dS3 gravity and classical solutions
in the Chern-Simons theory.

Background configuration It will be important to make explicit how
to cast Euclidean dS3 space, i.e., the three-sphere, in the language
of Chern-Simons theory. We start by constructing the appropriate
flat connections on S3, which we will coin (aL, aR). Given the metric
(101), a convenient choice of dreibein is

e1 = ℓdρ , e2 = ℓ sin ρ dφ , e3 = ℓ cos ρ dτ , (114)
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with associated torsion-free spin connection

ω1 = 0 , ω2 = − sin ρ dτ , ω3 = − cos ρ dφ . (115)

From these expressions, we find

aL =iL1dρ+ i (sin ρL2 − cos ρL3) (dφ− dτ) = g−1
ρ g−1

− d (g−gρ) ,

aR =− iL̄1dρ− i
(
sin ρ L̄2 + cos ρ L̄3

)
(dφ+ dτ) = −d (gρg+) g

−1
+ g−1

ρ ,
(116)

where we used (106). The second equality of each line above em-
phasizes that aL and aR are pure gauge with

gρ = eiL1ρ , g± = e−iL3(τ±φ) . (117)

The connections (116) are locally flat, however they possess a point-
like singularity. These are singularities for dτ and dφ at ρ = π/2
and ρ = 0, respectively. These will be treated, as distributions, by

d(dφ) = δ(ρ)dρ ∧ dφ , d(dτ) = −δ(ρ− π/2)dρ ∧ dτ . (118)

It is simple to extract the holonomies of aL and aR, which are
important to record for later use. For any cycle γ wrapping the sin-
gular points of the connections, the connections possess holonomies

P exp

∮
γ

aL = g−1
ρ ei2πL3hLgρ , P exp

∮
γ

aR = gρe
i2πL̄3hRg−1

ρ .

(119)
Requiring that the above group elements’ action on S3 ≃ SU(2)
itself is single-valued implies that hL, hR ∈ Z with either both even
or both odd.15 In particular, for cycles wrapping the causal horizon
at ρ = π

2 , we have

hL = 1 , hR = −1 . (120)

Finally, we report on the value of the on-shell action for this
background. A short calculation, which uses (118), shows that they

15 Namely, this geometric action is in the fundamental representation. In that case ei2πL3hL/R is obviously
the identity if hL/R is even. If hL and hR are both odd this yields the group element (−1,−1) ∈ SU(2)L ×
SU(2)R which is also the identity inside the Z2 quotient.
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have non-trivial action

rLSCS[aL] = −πrL = −πδ̂− iπs , rRSCS[aR] = πrR = πδ̂− iπs ,
(121)

and thus
iS|tree−level = irLSCS[aL] + irRSCS[aR]

=
πℓ

2GN
,

(122)

where we used (110). This is the correct on-shell action for dS3
[36]. Note that the gravitational Chern-Simons term of S3 vanishes
identically.

12.3 SU(2) Chern-Simons theory: the partition function

We now turn to quantum aspects of dS3 gravity. Our aim is to
perform the gravitational path-integral about a fixed background
S3 saddle. This will be done in the Chern-Simons formulation of
the theory which we introduced in section 12.2.

It is well-known that many observables in Chern-Simons theory
can be evaluated exactly, i.e., to all orders in perturbation theory
and also including non-perturbative effects. However, for our gravi-
tational purpose, some caution is needed since these results are not
always applicable due to the subtle relation between Chern-Simons
and gravity. Here we will address these subtleties at the level of
evaluating the path integral on S3. In a nutshell, we will re-derive
Zk[S

3] for SU(2) Chern-Simons theory with level k, while allowing
the level to be complex and also allowing non-trivial background
connections. These are two key features that are persistent in the
relation among the two theories, as we reviewed in the previous
subsection.

Let us therefore begin by reviewing some basic facts and defini-
tions. The Chern-Simons partition function over a three-manifold,
M , is the path-integral

Zk[M ] =

∫
DA
V

eikSCS[A] (123)
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over the action (103). Here A = AaLa is to be regarded as a
connection one-form of a principal SU(2) bundle over M , where
{La} generates the su(2) Lie algebra.16 In the measure we indicate,
schematically, a division by the gauge group as 1/V .

There are three remarks that will be important in what follows.
First, the action (103) is clearly topological and the quantum theory
itself is almost topological: its sole geometric input is a choice of
framing which arises from regularizing the phase of Zk.While there
is no ”rule” for establishing the framing, partition functions differ-
ing by choices of framing are related by well-established phases [34].
In this paper we will be careful to work with a fixed convention for
the phase of Zk.

17

Second, our evaluation of (123) will cover complex values of the
level k. In particular, our derivations will hold for a decomposition
as in done in (104)-(105).

Third, we will incorporate a flat background connection to the
path integral (123). To that end we will write

A = a+B . (124)

Here a is a flat background connection on M—for most of our pur-
poses M = S3. It is important to emphasize at this point that,
unlike what is typical for Chern-Simons theory quantized on S3, we
will not take the trivial background a = 0: such a background leads
to a degenerate metric which is an unnatural saddle for a theory
of gravity. Instead we want connections corresponding to a round
S3 metric, i.e., they will be (116), with holonomies (119)-(120), for
each copy of the SU(2) theory. The field B captures the quantum
fluctuations that we will integrate over in the path integral shortly
afterward.

Adapting exact results We now turn to the tools we will use for
evaluating Zk[S

3]. There are several ways to obtain Zk[S
3], and

16 Note that given the form of (103), we are working with the convention that A is anti-Hermitian in the
fundamental representation, i.e. Aa

µ ∈ iR. We will use this convention consistently throughout.
17 Which is ultimately related to two-units away from so-called ”canonical framing”.
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we do not attempt to describe them all. We selected methods for
which the choice of background connections and background topol-
ogy (and later, expectation values for Wilson loops) are tractable in
the path integral of SU(2)k Chern-Simons theory. The two methods
we will discuss in detail are:

Abelianisation. The process of Abelianisation was developed in [44,
47]. In a nutshell, it demonstrates how the non-Abelian Chern-
Simons path integral can be reduced to a two-dimensional Abelian
theory, under suitable conditions present on the manifold M .

Supersymmetric localization. As a complementary method, we will
show how one obtains Zk[S

3] via supersymmetric localization tech-
niques [46] (see also [45]). The biggest penalty here is the intro-
duction of fermions in the path integral. Still, the outcome is
robust and completely agrees with Abelianisation.

Both methods will be capable of successfully accommodating the
features necessary for dS3 gravity, and we stress that they report
the same result (up to a trivial normalization). This subsection
will summarize the main steps of both methods, highlighting in
particular the features that need to be altered to accommodate
gravity.

12.3.1 Abelianisation

Abelianisation is a powerful method for evaluating the Chern-Simons
path integral for compact, connected and simply connected Lie
groups with Lie algebra g on particular types of three manifolds [44].
In particular, Abelianisation is useful when it is possible to choose
the background M to be a circle fibration over a two dimensional
base, Σg, i.e. M = M(g,p) can seen as a principal U(1) bundle:

U(1) → M(g,p)
π→ Σg with monopole degree p. This is obviously

relevant for us by considering M = S3 as a Hopf fibration.
The approach in [44] reduces computations from non-Abelian

Chern-Simons theory in three dimensions to computations in a two-
dimensional Abelian q-deformed Yang-Mills theory on Σg in the
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following way. Using the geometry ofM we decompose. the Chern-
Simons connection A ∈ Ω1(M, g) into ”vertical” and ”horizontal”
parts,

A = σκ+ AH , (125)

with respect to a globally-defined real-valued one-form κ on M ,
and where σ is a g-valued scalar.18 Abelianisation works by adding
BRST-exact terms to the action to fix the gauge so that σ is a
U(1)-invariant section of M × g. This allows us to ”push” σ down
to the base, Σg, where it can be diagonalised, setting σ ∈ t (where
t ⊂ g is a Cartan subalgebra). The result of the gauge-fixing and
the Abelianisation is that σ is t-valued and constant along the U(1)
fibers ofM . The remaining fields can then be easily integrated out.

With an eye towards applying Abelianisation [47] to a back-
ground saddle relevant for gravity, we will expand the Chern-Simons
action, (103), about a flat background connection, a, which is gener-
ically non-zero:

A = a+B , da+ a ∧ a = 0 . (126)

The difference between the Chern-Simons action for A and that of
the background connection is then

SCS[A]− SCS[a] =
k

4π

∫
Tr

(
B ∧ daB +

2

3
B3

)
, (127)

where we have imposed flatness for a and dropped a total derivative.
We have defined above a ”background exterior derivative” acting
on p-forms as

daωp = dωp + a ∧ ωp − (−1)pωp ∧ a . (128)

We now will try to adapt Abelianisation to B, however we need to
address the non-canonical kinetic term in (127). We will write the
background connection in terms of a group element, g, as

a := g−1dg . (129)

18 We will differ in notation slightly from previous literature [44] where σ is called ϕ. This is to keep
notation throughout the paper uniform and to make comparison of results clearer.
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In writing above, it might be the case that g is not single-valued on
M . This fact manifests itself in the possible existence of holonomies
of a around the closed curve, γ, along a U(1) fibre of M :

P exp

(∮
γ

a

)
= g−1

f gi = exp 2πm , (130)

where m ∈ g. Performing the field redefinition

B̃ := gBg−1 , (131)

we can recover a canonical kinetic form for B̃:∫
Tr

(
B ∧ daB +

2

3
B3

)
=

∫
Tr

(
B̃ ∧ dB̃ +

2

3
B̃3

)
. (132)

The cost of this, however, is that B̃ now possesses twisted boundary
conditions: going around the cycle γ defining (130) gives

B̃f = gfBg
−1
f = e−2πm̃ B̃i e

2πm̃ , (133)

where e2πm̃ = g−1
i e2πmgi. We can state these boundary conditions

more clearly by decomposing B into a root space compatible with
m̃. That is writing B̃ = B̃(i)Ti + B̃(α)Tα where Ti is a basis of a
Cartan subalgebra containing m̃ and Tα is a basis of the root space
for this Cartan, then

B̃
(i)
f = B̃

(i)
i , B̃

(α)
f = e−2πα·m̃B̃

(α)
i , (134)

that is the fields aligned with the Cartan defined by m̃ retain their
periodicity along γ while fields aligned with roots transform by
phases. In terms of g = su(2) we can write m̃ = ihL3 in which case

B̃
(3)
f = B̃

(3)
i , B̃

(±)
f = e∓i2πhB̃

(±)
i . (135)

At this point, we will procede to adapt the Abelianisation procedure
[47] to B̃. To be explicit, we will specialize to the case where M =
S3.
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Abelianisation on B̃

From here many of the steps mirror those in [47]. Namely, the
connection B̃ is split into

B̃ = Bκ +BH := σκ+BH , (136)

and similarly the exterior derivative onM is split into a ”horizontal”
piece (that is, along the base, Σ) and an action along the fibre

d = (π∗dΣ) + κ ∧ Lξ , (137)

where Lξ = {d, ιξ} is the Lie derivative along the fundamental
vector field generating the U(1) action. The action (132) can then
be massaged to the form

k

4π

∫
Tr

(
B̃ ∧ dB̃ +

2

3
B̃3

)
=

k

4π

∫
Tr
(
σ2κ ∧ dκ+ 2σκ ∧ dBH +BH ∧ κ ∧ LσBH

)
,

(138)

up to total derivative. Above we have also defined

Lσ = Lξ + [σ, ·] . (139)

Fixing a gauge

The choice of gauge that allows the Abelianisation procedure to be
applied is 19

Lξ(σκ) = 0 ⇔ Lξσ = ιξdσ = 0 , (140)

which states that σ is U(1)-invariant. We additionally gauge-fix
that σ is valued in the Cartan, t:

σl = 0 , (141)

where g = t⊕ l. Without loss of generality we will choose this Car-
tan to align with that defined by the holonomy of the background

19 Note that ιξκ = 1 and ιξdκ = 0, so Lξκ = 0.

47



connection, a, (130) so that σ remains single-valued on M . This
gauge is fixed [47] by adding the following BRST-exact action∫

M

Tr (E ⋆ σ + c̄ ⋆ Lσc) =

∫
M

Tr (E ⋆ σ + κ ∧ dκ c̄Lσc) , (142)

where E is a Lagrange-multiplier, and c and c̄ are ghosts. It is
understood that the U(1) invariant modes of these fields (i.e. those
satisfying LξE

t = Lξc
t = Lξ c̄

t = 0) are not path-integrated [47].
We can now describe integrating out modes.

Effect of integrating over fields

• The part of BH valued in the Cartan sub-algebra, denoted Bt
H ,

contains the U(1)-invariant modes B̂t
H obeying LξB̂

t
H = 0. Be-

cause they are t-valued, and since σ = σt as a result of the gauge-
fixing, (141), the term LσB̂

t
H vanishes from (138). Thus the only

term of (138) in which the fields B̂t
H enter is

2σκ ∧ dB̂t
H , (143)

and integrating over these fields imposes the constraint that σ =
constant on M .

• The Gaussian integrals over the fields Bl
H , B

t
H , (where B

t
H are

not U(1)-invariant), and over the ghost fields cl, ct give ratios of
determinants [47]:

Det (iLσ)Ω0
H(S3,l)Det

′ (iLξ)Ω0
H(S3,t)

Det1/2 (⋆κ ∧ iLσ)Ω1
H(S3,l)Det

′1/2 (⋆κ ∧ iLξ)Ω1
H(S3,t)

. (144)

At this point we need to pause to emphasize that these deter-
minants are, in principle, to be taken over fields with twisted
boundary conditions defined by (134) along the U(1) fibre. These
boundary conditions do not affect the determinants over the Cartan-
valued fields. For fields living in the α root space, given the form
of Lσ, (139), the effect of the twisted boundary conditions, (134),
is to shift the eigenvalues of iLσ

2πn+ iα · σ → 2πn+ iα · σ − i2πα · m̃ , n ∈ Z . (145)
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The absolute value of the ratio of these determinants can then be
evaluated in manner similar to [47] to give

Abs

[
Det (iLσ)Ω0

H(S3,l)Det
′ (iLξ)Ω0

H(S3,t)

Det1/2 (⋆κ ∧ iLσ)Ω1
H(S3,l)Det

′1/2 (⋆κ ∧ iLξ)Ω1
H(S3,t)

]
= TS1(σ−2πm̃) ,

(146)
where

TS1(x) = detl (1− Adex) =
∏
α>0

4 sin2(iα · x/2) (147)

is the Ray-Singer torsion of the connection along the fibre. For
g = su(2) we can set σ = −i2πσL3 (where σ is now a real con-
stant) and m̃ = ihL3; for this choice we have

TS1(σ − 2πm̃) = 4 sin2 (π(σ + h)) . (148)

We have stated this result somewhat generally, however it is use-
ful to keep in mind that for the backgrounds of interest for this
paper, h will always be integer valued (as discussed at the end of
section 12.2) and so (146) reduces to TS1 = 4 sin2(πσ). This is of
course consistent with (134) reducing to single-valued boundary
conditions when h ∈ Z. The phase of the determinants (144) can
be defined through a regularized eta invariant and is responsible
for the renormalization of level k → r = k + 2 for g = su(2) [47].

The end result of this is the expression20 of the Chern-Simons
partition function as a simple integral over a Cartan-valued field σ

Zk[S
3] = eirSCS[a]

∫
t

dσ TS1(σ − 2πm̃) exp
[
−i r

4π
Trσ2

]
, (149)

up to inessential overall normalization and constant (r-independent)
phase. We fix this normalization/phase by fiat. More explicitly set-
ting σ = −i2πσL3 and m̃ = ihL3, we normalize Zk as

Zk[S
3] = eirSCS[a]

∫
R
dσ sin2 (π(σ + h)) ei

π
2 r σ

2

. (150)

20 We shift the level of the classical action trivially when SCS[a] ∈ Z.
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While the integral over σ begins life along the real axis, this inte-
gral is Gaussian and we can formally define it through appropriate
contour deformations depending on the phase of r. It is simple to
perform the integral (letting h ∈ Z)

Zk[S
3] = eirSCS[a] eiϕ

√
2

r
sin

π

r
, (151)

where the phase of Zk

ϕ =
3π

4
− π

r
=
π

6
c+

π

4
, c ≡ 3(r − 2)

r
, (152)

can be identified with a framing phase [34] (two-units away from
canonical framing) plus a phase stemming from a σ contour rota-
tion.21

12.3.2 N = 2 supersymmetric localization

We now describe an alternative route to the exact calculation of
the Chern-Simons partition through localization techniques. We
will focus particularly on N = 2 supersymmetric localization [46].
One benefit of this approach is that much of the basic machinery
has been established with a non-trivial background connection, a,
in mind allowing a fairly straightforward incorporation of a ̸= 0.
However: the situations with non-trivial background connections
have historically arisen on manifolds with interesting topology (e.g.
Lens spaces) and many of the explicit results for S3 have been
established with a = 0. Below we collect and synthesize these
results in a way that is useful for dS3 gravity.

Before jumping in, let us also make the following brief comments.
Supersymmetry in the context of de Sitter is a contentious subject,
with much of the difficulty arising from realizing unitary represen-
tations of the supersymmetry algebra in Lorentzian signature. In
this paper we will take a somewhat agnostic stance on this topic:

21 This latter phase is entirely a by-product of our conventions and does not occur in usual Chern-Simons
formulas. However we will give it a gravitational interpretation below.
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by working directly in Euclidean signature, we are ultimately dis-
cussing SU(2)k Chern-Simons theory on S3 whose N = 2 super-
symmetric extension is well-established. We use the existence of
this symmetry to our advantage to localize the path integral all
while verifying that the extension to N = 2 does not alter essential
features of the original partition function. Ultimately, however, this
localization will simply verify the results of section 12.3.1.

Let us set the stage and collect the necessary background. Much
of what follows mirrors the friendly review [45]. The vector multi-
plet of three dimensional N = 2 gauge theory is given by fields

{Aµ, σ, D, λ, λ̄} , (153)

where A is a g = su(2) connection, σ, D are scalars,22 and λ, λ̄
are Dirac spinors. Note the same field content as in (2). All fields
are g-valued and by convention we will take them all to be anti-
Hermitian,23 with supersymmetry variations parameterized by two
Grassmann variables ϵ̄ and ϵ as specified in [45]. The supersymmet-
ric Chern-Simons action is

SSCS =
1

4π

∫
Tr

(
A ∧ dA+

2

3
A3

)
− 1

4π

∫
d3x

√
gTr

(
λ̄λ− 2Dσ

)
,

(154)
and enters the path integral multiplied by the level k

ZSCS
k [S3] =

∫
DA
VG

Dλ̄DλDDDσ eikSSCS . (155)

To make subsequent notation less cumbersome, we will drop the
”[S3]” above with it understood that we are always working on
the three sphere. Note that on a formal level, as far as the func-
tion dependence on k is concerned, the addition of the auxiliary
fields in the multiplet does not alter ZSCS

k with respect to the non-
supersymmetric path integral, Zk [45].

The deformation that allows us to localize the path integral ZSCS
k

is the super Yang-Mills action

22 The σ appearing here is a priori a different field than what appeared in section 12.3.1. We give it the
same name because, ultimately, it will play the same role in the final result.

23 In comparison to the notation of [45], a field here is related to a field there by Φhere = iΦthere.
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SSYM = −
∫

Tr

(
1

2
F ∧ ⋆F +Dσ ∧ ⋆Dσ

)
−
∫
d3x

√
gTr

(
1

2
(D+ σ)2 +

i

2
λ̄γµDµλ− 1

2
λ̄[σ, λ]− 1

4
λ̄λ

)
,

(156)

where Dµ is the gauge covariant derivative and γµ can be taken
to be the Pauli-matrices acting on spinor indices. SSYM is itself a
super-derivative and therefore Q-exact. Adding this to the path
integral with coefficient t, i.e.,

ZSCS+SYM
k (t) =

∫
DA
VG

Dλ̄DλDDDσ eikSSCS−tSSYM , (157)

is then innocuous: ZSCS+SYM
k (t) = ZSCS

k for any t, including in the
limit t → ∞ where the path-integral localizes on the saddle of SSYM.

Localization locus

In the t → ∞ limit, the path integral localizes on the following
equations of motion

F = 0 , Dσ = dσ + [A,σ] = 0 , D+ σ = 0 . (158)

We expand the solutions around a flat connection a = g−1dg, for
some group element g. Again, g may not be single-valued and a
may possess a holonomy, à la (130),

P exp

(∮
γ

a

)
= exp(2πm) , (159)

for some curve γ. The other fields that have saddle solutions to
(158) are given by

σ
(g)
0 = g−1σ0g , D0 = −σ

(g)
0 , λ0 = 0 , λ̄0 = 0 , (160)

for σ0 a constant element of g. We require σ
(g)
0 to be single-valued

and so the constant element defining the saddle must obey

[m,σ0] = 0 . (161)
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With this we can take σ0 to be in a Cartan subalgebra containing
m. We will scale fluctuations as

A =a+
1√
t
B , σ = σ

(g)
0 +

1√
t
σ̂ , D = −σ

(g)
0 +

1√
t
D̂ ,

λ =
1√
t
λ̂ , λ̄ =

1√
t
ˆ̄λ ,

(162)
and perturb the action (154) around the saddle (160) as t → ∞.
The leading contribution to SSCS is

lim
t→∞

SSCS = SCS[a]−
Vol(S3)

2π
Trσ2

0 . (163)

Meanwhile the leading contribution to tSSYM is

tSSYM =−
∫

Tr

(
1

2
daB ∧ ⋆daB + (daσ̂ + [B,σ

(g)
0 ]) ∧ ⋆(daσ̂ + [B,σ

(g)
0 ])

)
−
∫
d3x

√
gTr

(
1

2

(
D̂+ σ̂

)2
+
i

2
ˆ̄λγµD(a)

µ λ̂− 1

2
ˆ̄λ[σ

(g)
0 , λ̂]− 1

4
ˆ̄λλ̂

)
+ . . .

(164)

where da is the background exterior derivative (128), and D
(a)
µ is

the spinor covariant derivative with fixed connection, a. This action
can be made Gaussian under a suitable gauge fixing and then path
integrated in standard fashion. We briefly highlight the main points
of that procedure below, but many details can be found [45] and
references therein.

Gauge choice

We will choose the gauge24

Ga[B] = d†aB ≡ − ⋆ da ⋆ B = 0 , (165)

whose Fadeev-Popov determinant, ∆a[B], can be enacted through
adding ghosts c̄, c:

24 This gauge fixing is only consistent when a is a flat-connection, implying that d2a = 0 defines an
equivariant cohomology.
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ZSCS+SYM
k = eikSCS[a]

∫
dσ0 e

−i k
2πvol(M3)Trσ

2
0

×
∫

DB
V

Dˆ̄λDλ̂DD̂Dσ̂Dc̄Dc δ[d†aB] e−tSSYM−Sghost , (166)

with action

Sghost =

∫
Tr
(
c̄ ∧ ⋆d†ada+t−1/2B c

)
=

∫
d3x

√
gTr

(
c̄ ∧ ⋆∆0

a c
)
+O(t−1/2) ,

(167)
where ∆0

a = d†ada is the a-deformed Laplacian acting on g-valued
zero-forms.25 The ghost determinants simply cancel the determi-
nants from D̂ and σ̂ (as well as a Jacobian from δ[d†aB]) and so we
arrive at the promised Gaussian path-integral:

ZSCS+SYM
k = eikSCS[a]

∫
dσ0 e

−i k
2πvolM3Trσ

2
0 ZGauss[σ0] , (168)

with

ZGauss[σ0] :=∫
[DB]kerd†aD

ˆ̄λDλ̂ e
1
2

∫
Tr(daB)2+

∫
Tr[B,σ

(g)
0 ]2−

∫
Tr
(

i
2
ˆ̄λγµD

(a)
µ λ̂− 1

2
ˆ̄λ[σ

(g)
0 ,λ̂]− 1

4
ˆ̄λλ̂
)
.

(169)

One loop determinants

The remaining task is now to compute the one loop determinants

from integrating out {B, ˆ̄λ, λ̂}. Recalling the procedure from sec-
tion 12.3.1, the first step is to ”canonicalize” the kinetic terms by

redefining the fluctuating fields {B, ˆ̄λ, λ̂} → {B̃, ˜̄λ, λ̃} via

Φ = g−1Φ̃g , Φ ∈ {B, ˆ̄λ, λ̂} . (170)

As a result the one loop integration becomes ostensibly simpler

ZGauss[σ0] =

∫
[DB̃]kerd†[D˜̄λDλ̃]e

1
2

∫
Tr(dB̃)

2
+
∫
Tr[B̃,σ0]

2−
∫
Tr
(

i
2
˜̄λγµ∇µλ̃− 1

2
˜̄λ[σ0,λ̃]− 1

4
˜̄λλ̃
)
,

(171)

25 It is tacit in (166) that the zero modes of c̄, c under ∆0
a are not to be integrated over.
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however, as we saw earlier, this is at the cost of twisting the fields
along the curve γ:

Φ̃f = exp(−2πm̃)Φ̃i exp(2πm̃) . (172)

In terms of a root space decomposition Φ̃ = Φ̃(i)Ti + Φ̃(α)Tα, then
(172) reads

Φ̃
(i)
f = Φ̃

(i)
i , Φ̃

(α)
i = exp(−2πα · m̃)Φ̃

(α)
i , (173)

where Ti is a basis of the Cartan subalgebra containing σ0 and m,
and Tα are a basis of the α root space; {Φ̃(i), Φ̃(α)} are honest fields
and not elements of g. The one loop determinants of the N = 2
vector multiplet with twisted boundary conditions, (173), turns out
to be

ZGauss[σ0] =
∏
α>0

sin (iα · (σ0 − 2πm̃))

π2
. (174)

Again, we have written ZGauss rather generally, but for the purposes
of this paper, we can let m̃ = ihL3 with h ∈ Z in which case it
reduces to the usual expression for the Ray-Singer torsion in terms
of σ0 = −iσL3, i.e. ZGauss = sin2(πσ)/π2. The phase of ZGauss again
is responsible for the renormalization k → r = k + 2 as explained
in [45]. Gathering these results and fixing the normalization, we
find again the familiar integral, (150),

ZSCS
k = eirSCS[a]

∫
R
dσ sin2(π(σ + h)) ei

π
2 rσ

2

, (175)

where again the integration contour over σ should be deformed
depending on the phase of r.

12.4 Chern-Simons theory and dS3 gravity: all loop path
integral

Having assembled these exact results, we now address the gravity
path integral about the S3 saddle which, given the discussion in
section 12.2, we path integral quantize as the product of Chern-
Simons theories

Zgrav[S
3] = ZkL[S

3]ZkR[S
3] . (176)
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Utilizing the exact partition function in the form of (150) and (175),
the gravity path integral can be written as

Zgrav[S
3] = eirLSCS[aL]+irRSCS[aR]

×
∫

dσLdσR e
iπ2 rLσ

2
L+iπ2 rRσ

2
R sin2 (π(σL + hL)) sin

2 (π(σR + hR)) .

(177)

The background holonomies, hL,R, being ±1, decouple from this
integral which is Gaussian and can be performed exactly:

Zgrav[S
3] = e2πs

(
i e

−i π
rL

−i π
rR

) 2
√
rLrR

sin

(
π

rL

)
sin

(
π

rR

)
. (178)

Let us briefly dissect the phase in the parenthesis: the overall i
stems from integration contour deformations. Given the identifi-
cations (104) and (105), the σL integral (177) is already damped,
however the σR integral is anti-damped. Deforming the σR integra-
tion contour to a damped region accounts for this i; this is wholly
analogous to ”Polchinski’s phase” [49] arising from deforming the
integration contour of the conformal mode in the gravitational path-
integral. The exponents are a combined framing phase.

At this point, this result, (178), is not surprising. Up to a total
phase, our expression for Zgrav has been arrived at before through
analytic continuation of the celebrated SU(2) Chern-Simons parti-
tion function [36,37] . Here we have simply justified those analytic
continuations, and incorporated the background contributions of
aL/R, through Abelianisation and supersymmetric localization.

It is instructive to cast (178) in gravitational terms. We recall
from section 12.2 that

rL/R = δ̂ ± i s , s =
ℓ

4GN
. (179)

First, let’s inspect the case when δ̂ = 0, i.e., in the absence of the
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gravitational Chern-Simons term (111). The path integral reads

log
(
Zgrav[S

3]δ̂=0

)
= log

(
8GN

iℓ
exp

(
π

2

ℓ

GN

)
sinh2

(
4π
GN

ℓ

))
=
π

2

ℓ

GN
+ 3 log

(
4GN

ℓ

)
+ log

(
2π2i

)
+

16π2

3

G2
N

ℓ2
+ · · · .

(180)
The first line should be viewed as an exact expression in GN for the
fixed background manifold S3. The second line is the loop expansion
asGN → 0, where rather curiously the two-loop correction vanishes.
In [37] the real part of logZgrav was shown to match the graviton one
loop determinant on an S3 background at one-loop order (that is,
O(G0

N) and O(logGN)). See [36] for analogous results and matching
on Lens spaces.

Next, when δ̂ ̸= 0, the structure of the results is slightly different.
Casting (178) in terms of the gravitational variables, we find that
the perturbative expansion is

logZgrav[S
3] = log

(
e2πs

(
i e−2πi δ̂

δ̂2+s2

) 2√
δ̂2 + s2

∣∣∣∣sin( π

δ̂ + is

)∣∣∣∣2
)

=2πs+ log

(
2π2i

s3

)
+
π2

3

1

s2
− 2πi

δ̂

s2
− 3

2

δ̂2

s2
+ · · · .

(181)
Here we kept s as the coupling for clarity, instead of replacing GN .
Again, the first line is an exact result, and in the second line we
are doing an expansion in GN (or equivalently large s). It is impor-
tant to mention that in this expansion δ̂ is kept fixed in the limit
GN → 0. The additional purely imaginary term in the perturbative
expansion (as compared to (180)) comes from the framing phase,
and it only starts to contribute to Zgrav at O(G2

N). Furthermore,
this framing term vanishes if the coefficient of IGCS renormalizes to
δ̂ = 0.
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13 Looping matter in

In this section we address our central question: how to couple mat-
ter to gravity in the Chern-Simons formulation, and how to quantify
this coupling beyond leading order in the gravity path integral. We
will provide a concise and precise answer to these questions.

To that end, we will first cover the unitary representation the-
ory of so(1, 3), the isometry algebra of Lorentzian dS3. We will
pay particular attention to representations corresponding to mas-
sive scalar particles. Afterwards we will turn our attention towards
the Euclidean rotation, su(2)L⊕ su(2)R, and see how to define non-
standard representations of su(2) mimicking the single-particle rep-
resentations of so(1, 3). This is presented in section 13.1.

The end result of these analyses is to then propose a gauge invari-
ant observable built from non-standard representations, an object
we will call the Wilson spool (a nomenclature that will become duly
clear below). This is an object that incorporates quantum gravity
effects to a free massive scalar field minimally coupled to dS3 grav-
ity. This object can be intuitively motivated from the world line
quantum mechanics of a single particle moving on S3, however we
will construct the spool bottom-up through a formula for one loop
determinants as a product over quasi-normal modes. Lastly, en-
joying the fruit of our labors from retooling Abelianisation and lo-
calization, we show how the spool can be evaluated order-by-order
in GN perturbation theory to give controlled and finite quantum
gravity corrections to scalar one-loop determinants.

13.1 Single-particle representation theory

Unitary representations of the SO(1, 3) de Sitter isometry group de-
scribe single-particle states propagating on dS3 spacetime [50–53]
(see [54] for multi-particle states). For the purposes of a Chern-
Simons description of Euclidean dS3 it will be useful to cast quan-
tities in terms of the Euclidean isometry algebra so(4) ≃ su(2)L ⊕
su(2)R and make use of its split structure. Recently, it was shown
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how to mimic the essential features of light scalars (m2ℓ2 < 1) with
novel representations of the so(4) algebra [55].

It is important to note that although so(1, 3) and so(4) share a
common complexification, the representations constructed in [55]
do not analytically continue to standard representations of so(1, 3).
Instead they furnish a representation of quasi-normal modes of
Lorentzian dS3, as opposed to single-particle states.

As noted by several authors [37, 38, 55–57], quasi-normal modes
provide a rather useful basis for computing a number of physi-
cal quantities. Particularly, in the context of Chern-Simons grav-
ity, classical Wilson lines carrying these representations have been
shown to describe Green’s functions and other gravitational probes
in dS3 [55]. Already in [56] it was emphasized that the quasi-normal
mode spectrum of four dimensional de Sitter is unitarily realized in
a non-standard way. We will connect to (and extend) these ideas
further below.

In this subsection we will briefly review both the unitary repre-
sentation theory of SO(1, 3) as well as the non-standard representa-
tions of SO(4), emphasizing important differences in how they are
realized. In doing so, we will also extend the construction of non-
standard representations constructed in [55] to incorporate heavy
scalar fields (m2ℓ2 > 1) in a unified way.

14 Coupling quantum matter to dS3 quantum

gravity

Having constructed the spinning Wilson spool on S3 in section 11,
in this section we will promote it to an off-shell object with the aim
of incorporating quantum effects from gravity around S3. More
concretely, we posit the following: let AL and AR be su(2)L and
su(2)R connections respectively, yielding a non-degenerate dreibein
ea = −i (Aa

L − Aa
R) with an associated metric geometry (M3, gM3

)
that is topologically equivalent to the round S3. Then the parti-
tion function of massive spin-s fields minimally coupled to gM3

is
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determined by the spinning Wilson spool given by (93) with aL/R
replaced with AL/R:

logZ∆,s[gM3
] =

1

4
WjL,jR[AL, AR] . (182)

For scalar fields it was argued in [40] that the manipulations
leading to the Wilson spool remain valid for off-shell geometries.
This argumentation relied on the expression of the Laplacian −∇2

gM3

as a Casimir of local su(2)L/R action (see appendix D of [40]). While
this remains true when acting on spin-s fields (via the transverse-
traceless condition), various manipulations leading to (93) make the
leap to (182) less rigorous than for scalar fields. This includes both
manipulations relying on the integer nature of the holonomies, hL/R,
as well as the explicit form of Zzero. Barring a detailed analysis
of normalizable zero modes for the ghost and Stückelberg fields
appearing in Z∆,s on generic three-geometries, at this point we take
(182) as a proposal. This proposal is upheld on the grounds that it
utilizes and generalizes naturally the gauge-invariant observables in
Chern-Simons theory (namely its Wilson loops); these observables
appear in a form that reduces to twice26 the scalar path integral
when s → 0 and, as we will see in the following section, continues
to work for negative cosmological constant.

With this proposal in hand, the Wilson spool gives us a concrete
route for calculating finite GN effects27 to logZ∆,s. That is we can
consider〈

logZ∆,s

〉
grav

:=

∫
[DgM3

]S3 e
−IEH[gM3

] logZ∆,s[gM3
]

≡
∫
[DALDAR]S3 eiS[AL,AR]

(
1

4
WjL,jR[AL, AR]

)
,

(183)

26 This stems simply from the fact that a STT field contains roughly two scalars corresponding to the
polarizations with s and −s and has nothing to do with the ambiguities of a compact space and possible zero
modes. This counting is obviously not continuous as s → 0.

27 To be clear on scope: here we mean to all orders in GN perturbation theory about the S3 saddle. We
do not consider topology change or other non-perturbative effects here.
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where the second line follows from the rewriting of the gravita-
tional variables and action (in a first-order formalism) as two Chern-
Simons path integrals. Additionally, in the first line, [DgM3

]S3 indi-
cates that we integrate over metric geometries topologically equiva-
lent to S3, and in the second line, [DALDAR]S3 indicates we perform
the Chern-Simons path integral on the base S3 topology.

The power of the second line of (183) lies in the breadth of tech-
niques for evaluating Wilson loop observables for SU(2) Chern-
Simons theories on the three sphere [44–47,62]. In [40] it was shown
how to adapt two such techniques, Abelianisation [44,47] and local-
ization through a N = 2 supersymmetric extension [45,46], for the
evaluation of Wilson loop expectation values in light of the features
unique to Chern-Simons gravity: non-trivial background connec-
tions, complex levels, and non-standard representations appearing
in Wilson loop operators. While prima facie these are two very
different techniques, they both lead to the expression of a Wilson
loop expectation value as a deformation of its on-shell (i.e. flat)
background value integrated over a single modulus:∫

[DA]eik SCS[A]TrRPe
∮
γ
A = eirSCS[a]

∫
R
dσ sin2(πσ)eir

π
2σ

2

χR (σ + h) ,

(184)
where r = k + 2 is the renormalized level, a is the on-shell back-
ground connection, h is its holonomy about the contour γ, and
χR(z) = TrR e

i2πz L3 is the su(2) representation character. Equation
(184) holds for complex levels and non-standard su(2) representa-
tions, including those found in section 10. Applying this to (183),
we can write 〈

logZ∆,s

〉
grav

=
i

8
eirLSCS[aL]+irRSCS[aR]∫

dσLdσR e
irL

π
2σ

2
L+irR

π
2σ

2
R sin2(πσL) sin

2(πσR)×∑
R∆,s

∫
C

dα

α

cos
(
α
2

)
sin
(
α
2

) (1 + 2s2 sin2
(α
2

))
×

χRL

( α
2π

(1 + σL)
)
χRR

( α
2π

(1− σR)
)
, (185)
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where we used the off-shell version of the spool in (93). Upon
writing

rL = δ̂ + is , rR = δ̂ − is , s =
ℓdS
4GN

, δ̂ ∈ Z , (186)

we posit that (185) is exact (that is, holding to all orders) in GN

perturbation theory about the S3 saddle.
While this claim has power in principle, in practice (185) is com-

plicated as an integral. By rescaling σL/R → r
−1/2
L/R σL/R, we can pro-

ceed systematically in ℓ−1
dSGN perturbation theory which amounts to

a Taylor expansion in σL/R of non-Gaussian pieces of the integrand
in (185). At any order in this expansion the Gaussian integrals
over σL/R can be performed. This leaves the contour integral over
α which can be deformed to pick up its poles (which remain at
2πZ̸=0 at each order of perturbation theory) in a similar spirit as
our computation in section 11.3. This procedure completely mir-
rors that outlined for the scalar Wilson spool in [40] and can be
efficiently implemented on a computer algebra system.

To illustrate this concretely, we evaluate
〈
logZ∆,s

〉
grav

normal-
ized by the gravitational path integral to the first non-zero order of
ℓ−1
dSGN perturbation theory. The gravitational path integral on S3

has a close form given by

Zgrav =e
irLSCS[aL]+irRSCS[aR]

∫
dσLdσR e

irL
π
2σ

2
L+irR

π
2σ

2
R sin2(πσL) sin

2(πσR)

=e2πs
(
ie−i2π δ̂

δ̂2+s2

) 2√
δ̂2 + s2

∣∣∣∣sin( π

δ̂ + is

)∣∣∣∣2 , (187)

as outlined in [40] (see also [36,37,63]). By implementing the rescal-

ing σL/R → r
−1/2
L/R σL/R in (185), to leading order in the coupling we

find〈
logZ∆,s

〉
grav

Zgrav
= logZ∆,s[S

3] +

(
GN

ℓdS

)2

[logZ∆,s](2) + . . . , (188)

where the dots correspond to subleading corrections in ℓ−1
dSGN , and
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the first non-trivial correction is

[logZ∆,s](2) =
∑
±

3∑
i=0

z
(2)
i [±µ, s]Li−i

(
e∓2πµ

)
, (189)

with

z
(2)
0 [µ, s] =−

(
16π

3
− 8

π
− 8iδ̂

)
µ3 −

(
16π − 144

π
− 24iδ̂ + 16πs2 − 216

π
s2 − 24iδ̂s2

)
µ ,

z
(2)
1 [µ, s] =

(
16π2

3
+ 12− i8πδ̂

)
µ4 +

(
16π2 − 276− i24πδ̂ − 432s2

)
µ2

− (16π2 − 372− i24πδ̂)s4 + (16π2 − 588− i24πδ̂)s2 − 48 ,

z
(2)
2 [µ, s] =− 24π

5
µ5 +

(
104π + 96πs2

)
µ3 +

(
96π − 168πs4 + 792πs2

)
µ ,

z
(2)
3 [µ, s] =−

(
8π2 − 16π2s2

)
µ4 −

(
32π2 + 40π2s4 + 160π2s2

)
µ2

+ 8π2s6 + 24π2s4 − 32π2s2 . (190)

We note that taking s → 0 doubles the corrections to the scalar one-
loop determinant [40] as expected. At leading order in a large µ
expansion (which amounts to a large mass expansion while holding
s fixed)

[logZ∆,s](2) = −48π µ5

5
e−2πµ+

(
24− 16π2

3
+ 32π2s2 − i16πδ̂

)
µ4 e−2πµ+. . . ,

(191)
where we have kept to next-to-leading order in the large mass ex-
pansion where the first contribution from spin appears.

It is natural at this stage to interpret this as a renormalization of
the mass28 of the spin-s field. Writing an expansion for the renor-
malized mass

µR = µ+

(
GN

ℓdS

)2

δ(2)µ + . . . , (192)

we note to O(G2
Nℓ

−2
dS )

logZ∆,s = logZ∆R,s−π
cosh(πµR)

sinh(πµR)
(µ2R+s2)

(
G2

N

ℓ2dS

)
δ(2)µ +. . . , (193)

28 Importantly the spin of the field does not get renormalized.
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where ∆R = 1− iµR. Interpreting the corrections due to quantum
gravity as a mass renormalization then sets as a renormalization
condition 〈

logZ∆,s

〉
grav

Zgrav

!
= logZ∆R,s , (194)

with GN held fixed. This then determines the renormalized mass
as

δ(2)µ =
1

π

tanh(πµR)

µ2R + s2
[logZ∆,s](2)

=− 48

5
µ3R e

−2πµR +

(
24

π
− 16π

3
+ 32πs2 − i16δ̂

)
µ2R e

−2πµR + . . . ,

(195)

where in the second line we have written the leading and next to
leading terms in a large mass expansion. Note that the magnitude of
the leading term is s independent and consistent29with the leading
mass renormalization for scalar fields [40].

We note that this is not the only renormalization condition that
one may choose to set. We could instead to renormalize Newton’s
constant, GN → GN,R, while holding the mass of the spinning field
fixed. To illustrate this, we will set δ̂ = 0 and consider the following
renormalization condition:∫
[Dg]e−IEH[g]Z∆,s[g]

Z∆,s[gS3]

∣∣∣
GN

=Zgrav

(
1 +

〈
logZ∆,s

〉
grav

Zgrav
− logZ∆,s[gS3] + . . .

)∣∣∣
GN

!
= Zgrav

∣∣∣
GN,R

, (197)

or equivalently

Zgrav

∣∣
GN,R

Zgrav

∣∣
GN

= 1 +

(
GN,R

ℓdS

)2

[logZ∆,s](2) + . . . . (198)

29 In [40] the renormalization condition was taken (tacitly) as〈
logZ∆R,scalar

〉
grav

Zgrav

!
= logZ∆,scalar , (196)

which leads to an overall minus sign with respect to (195).
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Note we have normalized by Z∆,s[gS3] in (197) as this leading term
decouples from metric fluctuations. It would be responsible for a
renormalization of the cosmological constant, but does not medi-
ate the gravitational self-interactions relevant for renormalizing the
coupling, GN . Writing

GN = GN,R

(
1 + δ

(2)
GN

(
GN,R

ℓdS

)2

+ . . .

)
, (199)

we find from expanding (187) and comparing to the right-hand side
of (198)

δ
(2)
GN

=− 1

3
[logZ∆,s](2)

=
16π

5
µ5 e−2πµ −

(
8− 16π2

9
+

32π2

3
s2
)
µ4 e−2πµ + . . . , (200)

where again we have written the leading and next-to-leading terms
in a large mass expansion.

It is worth noting that the results of this section, both the renor-
malization of the field mass, (195), and the renormalization of GN ,
(198), are novel. To our knowledge, corresponding computations
have not been carried out in the metric formulation of dS3.

30 To
this end, the results of this section provide concrete and testable
predictions of the Chern-Simons formulation of gravity.

15 Spinning spool on AdS3

To illustrate the general utility of the spinning Wilson spool con-
structed in section 11.2, as well as bolster the Conditions I & II
that lead to it in section 11.1, we can repeat this construction in an
AdS3 background. An expression for the one-loop determinant of
massive spinning fields on a BTZ black hole as a classical Wilson
spool was conjectured in [42] based on an extension of the result

30 In the absence of a cosmological constant, a three loop computation involving gravitons was done in [64].
It seems feasible that one could apply that approach to dS3 and verify (195) and (198).

65



for a massive scalar field. In this section we show how to derive the
spinning spool on AdS3 from the principles set out in section 11.1
and demonstrate that the final expression accords with the general
result (28).

We wish to compute

Z∆,s = det
(
−∇2

(s) + ℓ2AdSm̄
2
s

)− 1
2

(201)

with ∇2
(s) being the Laplace-Beltrami operator acting on spin-s STT

tensors. The background geometry entering in (201) will be the
rotating BTZ black hole with AdS3 radius ℓAdS. The effective mass
ℓ2AdSm̄

2
s is related to the standard mass, m2, via [65]

ℓ2AdSm̄
2
s = ℓ2AdSm

2 + s(s− 3) . (202)

We recall that the standard mass is related to the conformal dimen-
sion of a dual primary through [66]

ℓ2AdSm
2 = (∆ + s− 2)(∆− s) . (203)

Z∆,s is completely captured by this one-loop determinant over STT
tensors: in contrast to the previous section, there is no additional
zero mode product as AdS3 is non-compact.

The isometry group of Lorentzian AdS3 is SO(2, 2) with an al-
gebra isomorphic to sl(2,R)L ⊕ sl(2,R)R which we will take to be
generated by {L0, L±} and {L̄0, L̄±}, respectively. As done for dS3,
it is useful to briefly establish our conventions regarding the de-
scription of single-particle states living in AdS3 as representations
of sl(2,R)L ⊕ sl(2,R)R. Lowest-weight representations RLW

j are de-
fined by a lowest-weight state, |j, 0⟩LW, which is annihilated by L−
and labelled by its L0 eigenvalue:

L−|j, 0⟩LW = 0 , L0|j, 0⟩LW = j|j, 0⟩LW . (204)

All other states in RLW

j are generated by the action of L+ acting on
|j, 0⟩LW. This representation has a character

χj,LW(z) = TrRLW
j

(
ei2πzL0

)
=

eiπz(2j−1)

2 sinh(−iπz)
. (205)
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Highest-weight representations RHW

j are defined by a highest-weight
state, |j, 0⟩HW, which is instead annihilated by L+. We will take by
convention its L0 eigenvalue to be −j:

L+|j, 0⟩HW = 0 , L0|j, 0⟩HW = −j|j, 0⟩HW . (206)

All other states of RHW

j are generated by the action of L− on |j, 0⟩HW.
This representation has a character

χj,HW(z) = TrRHW
j

(
ei2πzL0

)
=

e−iπz(2j−1)

2 sinh(iπz)
. (207)

Our conventions have been chosen so that the Casimir of both high-
est and lowest-weight representations is given by

c
sl(2,R)
2 |j, p⟩LW/HW = j(j − 1)|j, p⟩LW/HW , ∀ |j, p⟩LW/HW ∈ RLW/HW

j .

(208)
Returning to the functional determinant (201), we now want to

implement the steps in section 11.1: the ”mass-shell condition”
and Conditions I & II. To start, we write the Laplace-Beltrami
operator in terms of the Casimir of the isometries of AdS3 [66]:

2c
sl(2,R)L
2 + 2c

sl(2,R)R
2 = ∇2

(s) + s(s+ 1) . (209)

In this language, a pole contributing to Z2
∆,s corresponds to a state

|ψ⟩ in a representation of sl(2,R)L ⊕ sl(2,R)R satisfying(
2c

sl(2,R)L
2 + 2c

sl(2,R)R
2

)
|ψ⟩ =

(
∆(∆− 2) + s2

)
|ψ⟩ . (210)

This is the ”mass-shell condition” and it is satisfied for pairs of
highest and lowest-weight representations labeled by

jL =
∆± s

2
, jR =

∆∓ s

2
. (211)

Note that representations labeled by (211) with ∆ replaced by
∆̄ = 2 − ∆ share the same Casimir. However, unlike in dS3, we
are forced to choose either ∆ or ∆̄ due to Dirichlet boundary con-
ditions tacitly imposed on solutions contributing to (201).31 For

31 Dirichlet boundary conditions also exclude sl(2,R) representations that are neither highest nor lowest-
weight from contributing to the one-loop determinant.
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what follows we will assume, without loss of generality, that ∆ cor-
responds to a normalizable massive spin-s solution.32 Fixing jL/R as
in (211) with the upper sign, we can then have pole contributions
from any representation appearing in

R∆,s = RHW

∆,s∪RLW

∆,s =
{
RHW

jL
⊗ RHW

jR
,RHW

jR
⊗ RHW

jL

}
∪
{
RLW

jL
⊗ RLW

jR
,RLW

jR
⊗ RLW

jL

}
.

(212)
For scalars, s = 0, we have the reduced set

R∆,scalar = RHW

∆,scalar∪RLW

∆,scalar =
{
RHW

j ⊗ RHW

j

}
∪
{
RLW

j ⊗ RLW

j

}
. (213)

We now apply the group theoretic conditions of section 11.1 to
the representations contributing to (201). Conditions I & II as
they are stated in section 11.1 can be readily applied to the one-loop
determinant on BTZ, and they respectively imply:

Condition I. Single-valued solutions. In Euclidean signature,
BTZ is a solid torus that has two cycles that characterize its
global properties. Requiring solutions to be single-valued around
the contractible thermal cycle, γth, of the BTZ geometry re-
quires s ∈ Z. Requiring solutions to be single-valued around
the non-contractible spatial cycle, γsp, of the BTZ geometry
requires a weight (λL, λR) ∈ RL ⊗ RR to satisfy

λLhL − λRhR ∈ Z , (214)

where hL,R are holonomies around the non-contractible cycle

hL = −1

τ
, hR = −1

τ̄
, (215)

and τ is the modular parameter defining the geometry.

Condition II. Globally regular solutions. A representation RL⊗
RR ∈ R∆,s is required to lift to a group representation of
SL(2,R)×SL(2,R) . In contrast to section 11.1, in the present
caseCondition II is trivial since every representation of sl(2,R)
lifts to a (not necessarily unitary) representation of the univer-
sal cover of SL(2,R) [?].

32 In the special cases where ∆ and ∆̄ both correspond to normalizable solutions, we simply choose ∆,
again without loss of generality.
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Thus we fix s ∈ Z and the one-loop determinant (201) is then the
product of poles in the complex ∆ plane given by

Z∆,s =
∏
R∆,s

∏
(λL,λR)

∏
N∈Z

(|N | − λLhL + λRhR)
−1/4 (|N |+ λLhL − λRhR)

−1/4 .

(216)
Following (85), we next implement a Schwinger parameterization

of the logarithm of this expression which reads

log(Z∆,s) =
1

4

∫ ∞

×

dα

α

cosh
(
α
2

)
sinh

(
α
2

) ∑
R∆,s

∑
(λL,λR)

(
eα(λLhL−λRhR) + e−α(λLhL−λRhR)

)
,

(217)
where we have performed the sum over N as in (90). We will
regulate the α → 0 divergence of the above expression by combining
the two terms in the bracket into a single contour integral regulated
about the origin by an iε prescription. To ensure convergence of
the representation traces, a separate iε prescription must be given
to the highest and lowest-weight representations appearing in R∆,s:

log(Z∆,s) =
1

4

∑
R∆,s

∫ ∞±iε

−∞±iε

dα

α

cosh
(
α
2

)
sinh

(
α
2

) ∑
(λL,λR)

eα(λLhL−λRhR) . (218)

with the (+/-) sign applying to representations inRLW/HW

∆,s, respectively.
Recognizing the sum over weights as a representation trace and
redefining α → −iα we then can write this suggestively as

log(Z∆,s) =
i

4

∑
RLW

∆,s

∫
C+

dα

α

cos
(
α
2

)
sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe−

α
2π

∮
γsp

aR
)

+
i

4

∑
RHW

∆,s

∫
C−

dα

α

cos
(
α
2

)
sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe−

α
2π

∮
γsp

aR
)
,

(219)

where the contours C± are depicted in Fig. 4 and applied separately
to the lowest and highest-weight representations appearing in R∆,s.
We have written logZ∆,s in this form to draw comparison to the dS3
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Re(α)

Im(α)
C+C−

Figure 4: The integration contours relevant for the Wilson spool in AdS3
gravity. Highest-weight representations are integrated against C− (in blue)
while lowest-weight representations are integrated against C+ (in red). The

black crosses depict the poles of the integration measure, 1
α
cosα/2
sinα/2 . Not

depicted are the poles of the representation traces which lie along the
imaginary α axis.

Wilson spool in section 11.2. In the construction from that section,
all representations are integrated along both C±. This is natural: as
was argued in section 11.1, the poles of the one-loop determinant
lie on states of finite-dimensional su(2) representations which are
simultaneously highest and lowest-weight. In the present case, C±
appear distinctly because highest and lowest-weight representations
are distinct for sl(2,R).

With this comparison noted, we can express logZ∆,s purely in
terms of lowest-weight representations, which are more standard
in the AdS/CFT dictionary, by returning to (218) and recalling
that every weight of a highest-weight representation is the negative
of a weight in a corresponding lowest-weight representation. This
allows to write logZ∆,s in the form conjectured in the supplemental
material of [42]

log(Z∆,s) =
i

4

∑
RLW

∆,s

∫
2C+

dα

α

cos
(
α
2

)
sin
(
α
2

) TrRL

(
Pe

α
2π

∮
γsp

aL
)
TrRR

(
Pe−

α
2π

∮
γsp

aR
)
.

(220)
providing a principled derivation of that result. It was shown there
that utilizing the holonomies of the background connections cor-
responding to a spinning BTZ black hole, the right-hand side of
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(220) evaluates to the correct one-loop determinant of massive spin-
s fields on that background:

logZ∆,s = −
∑
±

∞∑
l,l̄=0

log
(
1− q

∆±s
2 +lq̄

∆∓s
2 +l̄
)
, q = ei

2π
τ , q̄ = e−i 2πτ̄ .

(221)
This agrees with the one-loop determinant of BTZ for spinning
fields as reported in, for example, [65,67].

We finish this section by reconciling the spinning Wilson spool
in AdS3 gravity with our main result (28), namely the lack of the s2

correction to the α integration measure. This lack stems from two
places in our derivation: (i) the absence of normalizable zero-modes
and (ii) the triviality of Condition II which leaves the product
over the weight spaces unrestricted. However it is interesting to

note that, on-shell, TrRL/R
Pe±

α
2π

∮
γsp

aL/R only have poles along the
imaginary α axis [42]. Thus this correction term is completely reg-
ular along the real α axis and integrates to zero. We may then
include it into the definition of the spinning Wilson spool and state
succinctly, for both signs of the cosmological constant,

logZ∆,s =
1

4
WjL,jR[aL, aR] , (222)

with WjL,jR appearing in (28) and the representations RjL,R
, the

integration contour, and the background-connections aL,R chosen
appropriately.

16 Gravity Discussion

In this paper we extended the Wilson spool constructions of [40,42]
to incorporate one-loop determinants of massive spinning fields in
both Euclidean dS3 and AdS3 backgrounds. This construction was
based upon arranging the quasinormal mode spectra of the respec-
tive backgrounds into the representation theory of the isometry al-
gebra. Along the way we codified two important principles for eval-
uating one-loop determinants in a representation-theoretic frame-
work. These conditions lead naturally to a spinning Wilson spool
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expression for the local path integral, logZ∆,s, of a massive spin-
ning field, (28). This expression mimics the scalar Wilson spool: it
is an integral over gauge invariant Wilson loop operators with the
integral providing a mechanism for ”wrapping” the loops around
cycles of the base manifold. The spinning Wilson spool only de-
parts from the scalar expression in its integration measure which
cleanly captures the ”edge contributions” of [37]. We posited an
off-shell expression for the spinning Wilson spool which allows its
insertion into the Chern-Simons path integral. In the context of a
Euclidean dS3 background, exact methods in Chern-Simons theory
provide efficient methods for evaluating quantum gravity correc-
tions to logZ∆,s. We discussed two renormalization conditions in
which these quantum corrections can be interpreted as renormal-
izing either the particle mass or Newton’s constant. This provides
concrete predictions for testing the correspondence between Chern-
Simons theory and three-dimensional quantum gravity.

There are multiple comments in order about our results, as well
as future directions to which the spinning Wilson spool may prove
useful. We briefly discuss these below.

Group theoretic perspective on one-loop determinants

One important result of section 11.1 is the restating of the quasi-
normal mode method in a manner directly utilizing aspects of the
representation theory and isometries of the background. At the core
of that section are Conditions I & II which precisely isolate the
representations and the states of a representation that contribute
poles to massive one-loop determinants. We regard these conditions
to be a significant new asset to the evaluation of one-loop determi-
nants. For one, Conditions I & II will play an important role
in establishing the Wilson spool for matter on Euclidean saddles
beyond S3, which is ongoing work [68]. For instance, our prelim-
inary findings indicate that these two conditions correctly predict
the placement and the degeneracies of the poles of scalar one-loop
determinants on Lens spaces. This gives us strong credence that a
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Wilson spool built fromConditions I & II will accurately describe
the physics of matter on those backgrounds.

More broadly, we have taken care to state the content of these
conditions in a manner not specific to spacetime dimension or sign
of cosmological constant. Even outside the context of 3d quantum
gravity, it is our expectation that Conditions I & II will provide
a powerful asset to organizing quasinormal modes and evaluating
one-loop determinants for any manifold which possesses a transitive
group action, regardless of dimension.

On the role of finite dimensional su(2) representations

In section 10 we took great care to build su(2) representations corre-
sponding to massive spinning particle states; these representations
are infinite dimensional and non-standard. The reader might then
find it surprising that finite dimensional representations played such
important role in section 11.1 (particularly in the implementation
of Condition II). It is worth disentangling the roles of these two
separate series of representations.

We regard the mass-shell condition, (66), as always providing
a link between representation theory and the particle mass. For
physical values of the mass, these representations are generically
non-standard. The implementation of Condition II is a separate
statement about the analytic structure of Z2

STT, namely it encoun-
ters poles on finite dimensional representations of su(2). These
however do not (necessarily) lie on physical values of the mass. In
evaluating WjL,jR our goal is not to land on a pole; our goal is to
evaluate a one-loop determinant for a physical field. As such the
representations appearing in (28) should be appropriate for a phys-
ical value of ∆ and are, again, generically non-standard. Obtaining
the right hand side of (95) is a non-trivial verification of this fact.

We can further illustrate this distinction by investigating what
happens if we insert finite dimensional representations jL/R ∈ 1

2Z
directly into the Wilson spool (say, for the classical S3 background).
For the sake of this illustration we will take a non-spinning case
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jL = jR = j:

Wj|finite dim rep =
i

2

∫
C

dα

α

cos
(
α
2

)
sin
(
α
2

) sin2 ((2j + 1)α2
)

sin2
(
α
2

) , (223)

where we have inserted directly the finite dimensional su(2) char-

acters χj(z) =
sin(π(2j+1)z)

sin(πz) and utilized the holonomies around γhor.,

(72). However it is clear what will happen if we wrap C as in Fig. 2:
the poles at α ∈ 2πZ ̸=0 are now only first order and now without
any exponential damping. We thus find

Wj|finite dim rep =
∞∑
n=1

(2j + 1)2

n
= (2j + 1)2ζ(1) = ∞ , (224)

where ζ is the Riemann zeta function. This illustrates the impor-
tance of utilizing the non-standard representations (corresponding
to physical masses) in W.

Massive versus massless spinning fields

It is worth commenting on the important distinction between de-
scribing massive spinning fields (the focus of this work) versus mass-
less (higher) spin fields in the Chern-Simons formalism. Our com-
ments are very much motivated by viewing Chern-Simons gravity
as an effective field theory. This effective field theory provides a de-
scription of the physics below some mass gap; indeed we can expect
that massive degrees of freedom can be ”integrated” out, leaving
behind an effective response on the remaining low-energy degrees
of freedom. This is precisely what the spinning Wilson spool en-
capsulates: the response of massive degrees of freedom directly in
variables natural to the Chern-Simons path integral.

We contrast this with massless degrees of freedom which cannot
be integrated out. Instead their presence must alter the low-energy
effective field theory. This is an indication that the one-loop deter-
minants of massless higher-spin fields do not have a Wilson spool
description. Instead, we already know they are described by modi-
fying the effective field theory to a theory of higher-spin gravity. For
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example, one simple way of describing massless higher-spin fields up
to spin-N is by replacing SL(2,R) → SL(N,R) in asymptotically
AdS3 spacetimes [58–60] and SU(2) → SU(N) in asymptotically
Euclidean dS3 spacetimes [37,61].

These above comments lead naturally to a line of inquiry: ”How
does one couple massive matter to a theory of higher-spin grav-
ity?” The relations between Wilson lines and particle worldlines
in higher-spin gravity have been explored. However we believe the
Wilson spool (generalized to, e.g., SU(N) or SL(N,R)) will be an
invaluable tool for a more complete answer to this important open
question.

Generalized symmetries in 3D gravity

Let us offer a final, speculative, remark on the insights that the
Wilson spool can possibly lend to our understanding of gravity as
an effective field theory. A modern perspective on organizing low-
energy physics is the extension of the Landau paradigm of broken
symmetries to higher-form and non-invertible (what we will collec-
tively call, generalized) symmetries [69,70]. Attempts to categorize
gravity as a low-energy phase through this lens include [71–73]. An
important conjecture along these lines is the wide-held belief that
all global symmetries are either gauged or explicitly broken in a
UV theory of quantum gravity [74] and these statements extend to
generalized symmetries.

Chern-Simons theory provides a natural area for exploring these
discussions applied to three-dimensional gravity: the Wilson line
operators of Chern-Simons theory both generate and are mutually
charged under a generalized symmetry. It naturally follows that
the Wilson spool is also charged under this generalized symmetry
and its non-zero expectation value is a direct sign of the explicit
breaking of this symmetry through the inclusion of matter. While
the spectrum of operators in Chern-Simons theory might be too
large, we note the special role non-standard representation theory
plays in this statement: as noted above, the Wilson spool associated
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to a finite-dimensional su(2) representation diverges even classically,
(224). It would be very interesting to make more precise the relation
between the Wilson spool and the generalized symmetries of Chern-
Simons theory as well as what these relations lend to the question,
”What is 3D gravity?”

17 Conclusion

Lattice methods have been developed for CS theory canonical quan-
tization [75, 76]. These make possible developing numerical calcu-
lations for composite states.

The supersymmetric Chern-Simons actions, (5) and (154) pro-
vide a new unified view of matter and quantum gravity, i.e. space-
time. While naturally important in itself, it may have further ram-
ifications.
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Austin and Mathys, Grégoire, Gravity as a gapless phase
and biform symmetries, JHEP 02, 151 (2023). DOI:
10.1007/JHEP02(2023)151. arXiv:2205.12272

[73] Benini, Francesco and Copetti, Christian and Di Pietro,
Lorenzo, Factorization and global symmetries in hologra-

83

https://arxiv.org/pdf/2307.03830.pdf
https://arxiv.org/pdf/1112.4619.pdf
https://arxiv.org/pdf/1701.08360.pdf
https://arxiv.org/pdf/1707.06245.pdf
https://arxiv.org/pdf/1412.5148.pdf
https://arxiv.org/pdf/2204.03045.pdf
https://arxiv.org/pdf/2111.12089.pdf
https://arxiv.org/pdf/2205.12272.pdf


phy, SciPost Phys. 14, 2, 019 (2023). DOI: 10.21468/SciPost-
Phys.14.2.019. arXiv:2203.09537

[74] Harlow, Daniel and Ooguri, Hirosi, Symmetries in quantum
field theory and quantum gravity, Commun. Math. Phys.
383, 3, 1669-1804 (2021). DOI: 10.1007/s00220-021-04040-y.
arXiv:1810.05338

[75] Theodore Jacobson and Tin Sulejmanpasic, Canonical quanti-
zation of lattice Chern-Simons theory. arXiv:2401.09597

[76] Bingnan Zhang, Abelian Chern-Simons gauge theory on the
lattice, Phys. Rev. D 105, 014507 (2022). arXiv:2109.13411

84

https://arxiv.org/pdf/2203.09537.pdf
https://arxiv.org/pdf/1810.05338.pdf
https://arxiv.org/pdf/2401.09597.pdf
https://arxiv.org/pdf/2109.13411.pdf

	Introduction
	Composite Particles
	Extending the Wess-Zumino action
	Baryon asymmetry of the Universe
	Chernon-Chernon interaction
	Inflation and Supergravity
	Sakharov conditions
	Baryon asymmetry
	Chern-Simons gravity
	Non-standard spinning representations of su(2)
	Spinning spool on S3
	A group theory perspective on S3 quasinormal modes
	Constructing the spool
	Testing the Wilson spool

	dS3 gravity and Chern-Simons theory
	A primer on dS3 spacetime
	Chern-Simons theory and dS3 gravity: tree-level
	SU(2) Chern-Simons theory: the partition function
	Abelianisation
	N=2 supersymmetric localization

	Chern-Simons theory and dS3 gravity: all loop path integral

	Looping matter in
	Single-particle representation theory

	Coupling quantum matter to dS3 quantum gravity
	Spinning spool on AdS3
	Gravity Discussion
	Conclusion

