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Abstract

The Collatz Conjecture, also known as the 3x+1 problem, posits that
for any positive integer n, the sequence defined by the Collatz function
will eventually reach the number 1. This conjecture has been extensively
tested for a vast range of values, consistently supporting its validity. In
this paper, we explore a probabilistic perspective to provide additional
support for the conjecture. We focus on the probability that the Collatz
sequence T (n), for any starting value n, reaches a power of 2—an essen-
tial step in the sequence’s progression toward 1. Our approach suggests
that as n tends to infinity, the likelihood of the Collatz conjecture be-
ing satisfied becomes very high. This probabilistic argument aligns with
the extensive empirical evidence supporting the conjecture and offers a
novel perspective on its validity. While not a formal proof, our findings
contribute to the broader understanding of the Collatz Conjecture and
reinforce the conjecture’s plausibility through probabilistic reasoning.

1 Introduction to the Collatz Conjecture

The 3n+ 1 problem concerns the following innocent seeming arithmetic proce-
dure applied to integers: If an integer n is odd then ‘multiply by three and add
one”, while if it is even then divide by two”. This operation is described by the
Collatz function

C(n) =

 3n+ 1 if n ≡ 1 (mod 2),

n
2 if n ≡ 0 (mod 2).

The 3n + 1 problem, which is often called the Collatz problem, concerns the
behavior of this function under iteration, starting with a given positive integer
n.

3n + 1 Conjecture. Starting from any positive integer n, iterations of the
function C(n) will eventually reach the number 1. Thereafter iterations will
cycle, taking successive values 1, 4, 2, 1, ....
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A commonly used reformulation of the 3n + 1 problem iterates a different
function, the 3n+ 1 function, given by

T (n) =


3n+1

2 if n ≡ 1 (mod 2),

n
2 if n ≡ 0 (mod 2).

From the viewpoint of iteration the two functions are simply related; iteration
of T (n) simply omits some steps in the iteration of the Collatz function C(n)
(3n + 1) for odd n always results in even outputs. The relation of the 3n + 1
function T (n) to the Collatz function C(n) is that:

T (n) =

 C(C(n)) if n ≡ 1 (mod 2) ,

C(n) if n ≡ 0 (mod 2) .

As it turns out, the function T (n) proves more convenient for analysis of the
problem in a number of significant ways.

1.1 The hailstone numbers

By the trajectory of n under a function T , we mean the forward orbit of n,
that is, the sequence of its forward iterates (n, T (n), T 2(n), T 3(n), . . .). Figure 1
displays the 3n+ 1-function iterates of n = 27 plotted on a standard scale. We
see an irregular series of increases and decreases,thus leading to these numbers
getting the name of ”Hailstone numbers” as hailstones form by repeated upward
and downward movements in a thunderhead. Our heuristic argument will be
regarding these hailstone numbers. (Function of Tα(n))

Figure 1: Trajectory of n = 27 under the 3n+1 function plotted on a standard
scale. Observe the variablility in the numbers.

A connection to probability theory and stochastic processes arises
when one attempts to model the behavior of the 3x + 1 iteration on
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large sets of integers. This leads to heuristic probabilistic models for
the iteration, which allow predictions of its behavior. Some authors
have argued that the iteration can be viewed as a kind of pseudo-
random number generator, viewing the input as being given by a
probability distribution, and then asking how this probability distri-
bution evolves under iteration.One can model this by a stochastic
model corresponding to random tree growth, e.g. a branching ran-
dom walk.

2 Empirical Analysis, Heuristic Arguments, and
Proofs Supporting the Collatz Conjecture

The Collatz Conjecture, also known as the 3n+ 1 problem, has been a subject
of extensive empirical investigation and heuristic exploration. This section elab-
orates on the empirical evidence, heuristic arguments, and partial proofs that
collectively support the conjecture.

2.1 Empirical Analysis

Empirical analysis plays a crucial role in understanding the validity of the Col-
latz Conjecture. To date, the conjecture has been verified for an extensive range
of integers. Specifically, computational checks have been performed up to 268

(approximately 2.95×1020), demonstrating that every tested integer eventually
reaches the number 1. These verifications involve iterating the Collatz function
for an enormous number of starting values and observing the behavior of the
resulting sequences.

The results of these empirical tests provide strong evidence in favor of the
conjecture.

2.2 Heuristic Arguments

Heuristic arguments offer insights into why the Collatz Conjecture might be
true, even though they do not constitute formal proofs. These arguments often
involve probabilistic models and statistical observations to provide a plausible
rationale for the conjecture’s validity.

When considering only the odd numbers in the sequence generated by the
Collatz process, it is observed that each odd number is, on average, 3

4 of the
previous one. More precisely, the geometric mean of the ratios of outcomes is
3
4 . This observation yields a heuristic argument suggesting that every Hailstone
sequence should decrease in the long run. However, this argument does not
address the possibility of other cycles within the sequence but specifically targets
the issue of divergence.

It is important to note that this argument does not constitute a formal
proof. The heuristic is based on the assumption that Hailstone sequences are
constructed from uncorrelated probabilistic events. Thus, while this heuristic
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provides insight into the behavior of the sequences, it is not a definitive proof
of the Collatz Conjecture.

3 Our Basic argument

(The reader must note that, σ∞(n) here denotes the total number of terms re-
quired to reach T (n) = 1, or the total stopping time for n, while counting n as
the 0-th iterate.)

Our argument states that, for any σ∞(n) to be:

σ∞(n) < ∞

The condition:
Tα(n) = 2m α ∈ N, m ∈ Z+

Must be satisfied. This can be understood by the fact that if Tα(n) = 2m, then
after applying the rules of the Collatz conjecture, T (n) surely goes down to the
1 - 2 - 4 loop. Also 1,2 and 4 themselves are of the form 2m. If we rewrite this
condition, we get:

log2 T
α(n) ∈ Z+

And, we can also write this condition as:

log10 T
α(n) = a(log10 2), a ∈ N

The first condition will be the main condition for probabilistic analysis. While
the reason the condition log10 T

α(n) = a(log10 2) is mentioned, will be explained
in the further sections.

4 Probabilistic Heuristic analysis to get a final
result

The Collatz Conjecture can essentially be restated in the terms of the first
condition,

log2 T
α(n) ∈ Z+

If and only if this condition is satisfied for any αth iteration for any seed number
n, then only the Collatz conjecture would hold for that n.

The main concept which will be analyzed in this approach is the probabil-
ity of any term (Hailstone number) satisfying log2 T

α(n) ∈ Z+ out of all the
Tα(n). (1 ≤ α ≤ σ∞(n)). Even one term satisfying the condition would make
the Collatz conjecture true for that n. So, using this information, we can define
ourselves an event:

Ai=α = {Tα(n) | Tα(n) = 2m for some m ∈ Z+}
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If we do an simple analysis, we can understand the fact that, for any i which sat-
isfies the condition Tα(n) = 2m, the next i also satisfies the condition, the next
also, and so on till the last event/number. (i = σ∞(n)). This implies that the
events Ai are not mutually exclusive nor independent. Hence, directly adding
probabilities of each Tα(n) satisfying the condition would definitely overesti-
mate our results. Hence, we apply the Inclusion Exclusion principle regarding
probability. However, the reader must note that, these arguments (or more
specifically, any generalised arguments regarding this approach) are not a proof
because it assumes that Hailstone sequences are assembled from uncorrelated
probabilistic events. These arguments are wise heuristics.

4.0.1 Applying Inclusion Exclusion principle regarding probability

The Inclusion-Exclusion Principle is a fundamental concept in probability the-
ory and combinatorics used to find the probability of at least one event occur-
ring among a given set of events. For n events A1, A2, . . . , An, the Inclusion-
Exclusion Principle generalizes to:

P

(
n⋃

i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P (Ai1 ∩Ai2 ∩ · · · ∩Aik)

where:

• The first sum
∑n

k=1 iterates over the number of events included in the
intersection.

• The second sum
∑

1≤i1<i2<···<ik≤n runs over all possible intersections of
k events.

• P (Ai1 ∩Ai2 ∩ · · · ∩Aik) is the probability of the intersection of k events.

4.0.2 Our specific application for the concept

If we recall section 3, then we can say the following points:
- If Ai1 is true (Probability is 1), then Ai2 , . . . , Aik=σ∞(n) are also true. -

Thus, the intersection of events where i1 ≤ i2 ≤ · · · ≤ ik simplifies to:

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)

This is because if Ai1 is true, all subsequent events in the intersection are
also true. Applying the Formula

The Inclusion-Exclusion Principle simplifies to:

P

σ∞(n)⋃
i=1

Ai

 =

σ∞(n)∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤s

P (Ai1)
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This is effectively summing the probabilities of the earliest events in each
combination of intersections, adjusting for our specific case. Thus,we can ef-
fectively say that for any n satisfying the Collatz’s Conjecture, the following
condition is true:

P

σ∞(n)⋃
i=α=1

Ai

 = 1

4.0.3 Developing a more generalised result/interpretation

Before starting this subsection, the reader must note the use of another wise
heuristic in this section, which is that P (Ai) > 0 for all i. This heuristic
is obviously supported by the large number of n which satisfy the Collatz’s
conjecture. (Each n which satisfies the Collatz’s conjecture, must have at least
one Ai event being satisfied, thus making P (Ai) > 0 for that n.) This is also
the reason why the author expressed the original conditions as log10 T

α(n) =
a(log10 2), a ∈ N, because they believe that this observation could help to
convert this heuristic into a formal statement.

Behavior as σ∞(n) → ∞
If P (Ai) > 0 for all i, then:

lim
σ∞(n)→∞

P

σ∞(n)⋃
i=1

Ai

 = 1

This is because the probability of missing out on all events tends to zero as
σ∞(n) increases. In other words, the probability of at least one of the events
occurring becomes almost certain as the number of events goes to infinity.
The reader must note the fact that σ∞(n) → ∞ also is an equivalent statement
to n → ∞, as both σ∞(n) and n → ∞
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Figure 2: Iteration time versus n for numbers from 1 to 9999. The graph shows
the total stopping time for each number in this range. Observe how σ∞(n)
increases with n

This also means:

lim
σ∞(n)→∞

P

σ∞(n)⋂
i=1

Ac
i

 = 0

This is because the probability of not having any of these events occur be-
comes very small as the number of events grows infinitely.
These results/heuristics suggest a fact that the Collatz conjecture holds true
even as n → ∞.
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5 An argument in favour of the conjecture based
on a probabilistic contradiction

This section works upon building a framework for a potential ”proof” of the
conjecture by contradiction. First consider that:

If P (Ai) > 0 for all i, then:

lim
σ∞(n)→∞

P

σ∞(n)⋃
i=1

Ai

 = 1

So, for starting the proof, let’s consider a hypothetical seed, nd, for which:

Tα(nd) ̸= 1.

This means that, for this nd seed, the function never converges to one. Thus,

σ∞(nd) = ∞

If the existence for such nd is true, then, this asserts that:

P

( ∞⋃
i=1

Ai

)
= 0

as 0 as the probability asserts the impossibility of any Tα(n) being equal to
2m,m ∈ N. However, if you look at the first condition/limit of this section, we
have:

P

( ∞⋃
i=1

Ai

)
= 1 ̸= 0

The contradiction in values of the probability has arisen due to the fact that
the assumption of any seed nd, nd ∈ N is done. Thus, our analysis suggest that,
at least by probability,that the collatz conjecture holds true for all n where
1 < n < ∞ and n ∈ N

6 Towards a more justified and rigorous argu-
ment

This section will just discuss the main arguments from the previous section, but
in more detail, depth and justifications.
If we remember the concepts/discussions of Section 5, we know that for any nd,
nd ∈ N which makes Tα(nd) diverge to ∞, must have,

P

( ∞⋃
i=1

Ai

)
= 0
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strictly as, the probability being 0 asserts the impossibility of any Tα(nd) being
equal to 2m,m ∈ N. So, in order to move forward, we need to show that:

P (Ai) = 0

to prove the existence of any nd. Vice-versa, we will have to prove that:

P (Ai) > 0

to disprove the existence of any nd. An important thing to note is that, there
isn’t any lower bounds for P (Ai), (P (Ai)) > γ > 0) , as if P (Ai) > 0, then
these non zero values would definitely add up in P (

⋃∞
i=1 Ai), as σ∞(n) for nd

is ∞, thus making the probability converge to 1 as σ∞(n) → ∞ if P (Ai) > 0.

6.0.1 Working on proving definite values for P (Ai)

Look at Tα(n),

T (n) =


3n+1

2 if n ≡ 1 (mod 2),

n
2 if n ≡ 0 (mod 2).

If we look at any iteration of Tα(n) where α > 1

Tα(n) =


3Tα−1(n)+1

2 if Tα−1(n) ≡ 1 (mod 2),

Tα−1(n)
2 if Tα−1(n) ≡ 0 (mod 2).

if we look at Ai, we are essentially looking for the probability that

Tα(n) = 2m(m ∈ N)

is satisfied. So, let’s look again at Tα(n) related with Ai. Before that, let’s
establish some notions that we must be aware of.

Tα(n) ∈ N

and
2m ∈ N

If P (Ai) could be 0, then:

3(Tα−1(n)) + 1

2
̸= 2m

and
Tα−1(n)

2
̸= 2m

as,Tα(n) ∈ N and m ∈ N, we can use N as a ’variable’ to represent the natural
numbers. Therefore:

3(N) + 1

2
̸= 2N
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and:
N
2

̸= 2N

So, for validating the ’claim’ that P (Ai) = 0, we need to show that the conditions
(at least one of them) is true. If we look at:

N
2

̸= 2N

N ̸= 2N+1

As this condition is blatantly wrong, we can look at the other condition,

3(N) + 1

2
̸= 2N

3(N) + 1 ̸= 2N+1

(N) ̸= 2N − 1

3

In order to disprove this false statement, we need to show that, there exist N,
which satisfy:

2N − 1 ≡ 0 (mod 3)

The simplest way to do this is by presenting a counterexample. Look at N = 2,
which gives 4 - 1 = 3, satisfying the condition. This asserts that, the last re-
maining condition for asserting P (Ai) = 0 is wrong. However, some may argue
that, for some N, the condition 2N − 1 ̸≡ 0 (mod 3) is satisfied. However, we
must remember that, in the case of potential existence of nd, σ∞(n) = ∞, thus
the number of Tα(n) = ∞, thus asserting that there exist N, which obviously
are not the whole of the majority of the natural numbers, satisfying the condi-
tion is not enough. The whole of the natural numbers must satisfy the condition
in order to confidently assert the notion that P (Ai) = 0.

Hence, as the minimum conditions for confidently asserting that P (Ai) = 0
are wrong, we can now confidently assert that P (Ai) > 0. Applying this in:

P

( ∞⋃
i=1

Ai

)

we get the limit as:

lim
σ∞(n)→∞

P

( ∞⋃
i=1

Ai

)
= 1 ̸= 0

These results align with the general notion within the math community that
the Collatz conjecture is ”satisfied” for majority of the numbers. However, be-
fore concluding this section, we would like to provide a brief summary for the
heuristics used in this text.
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7 Heuristics

1. Heuristic 1 The first heuristic used in the text is that, P (Ai) > 0 is
satisfied for all N. A more analytic approach can help us to modifiy this
statement to make it more correct for different n. However, as we are
majorly dealing with n → ∞, we can say that this heuristic is acceptable.

2. Heuristic 2 The second heuristic is that we assume a entirely random
system of the hailstone numbers.Again, this can also be improved through
more detailed analysis. However, as mentioned before, as we are dealing
primarily with n → ∞, we presume that this heuristic is also acceptable.

Hence, through probabilistic analysis and carefully considered heuris-
tics, we arrive at the conclusion that the likelihood of the Collatz conjec-
ture remaining satisfied as n → ∞ is extremely high.

8 Conclusion

This paper presents a probabilistic heuristic to support the Collatz Conjecture
by analyzing the likelihood of the sequence T (n) reaching a power of 2. We have
demonstrated that:

lim
σ∞(n)→∞

P

σ∞(n)⋃
i=1

Ai

 = 1

where Ai denotes the event that Tα(n) equals a power of 2. This result
implies that, as n and σ∞(n) increase indefinitely, the probability of the Collatz
Conjecture being satisfied converges to 1.

Our findings reinforce the conjecture’s plausibility, aligning with extensive
empirical evidence and providing a probabilistic framework for understanding
its validity. While this heuristic approach does not offer a formal proof, it
strengthens the case for the Collatz Conjecture and highlights the need for fur-
ther research. Future work could aim to refine these probabilistic arguments or
seek more rigorous proofs to advance our understanding of the Collatz Conjec-
ture.

9 References

1. Jeffrey C. Lagarias, The 3x+1 Problem: An Overview, arXiv:2111.02635v1,
2021. Available at: https://arxiv.org/abs/2111.02635v1

2. Wikipedia Contributors, Collatz Conjecture, Wikipedia, 2024. Avail-
able at: https://en.wikipedia.org/wiki/Collatz_conjecture#Supporting_
arguments

11


