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Abstract

In this article we provide some analytical solutions of seismic equations with the
different sources for a media, consisting of Uniform Half-Space (Air or Water or...)
& solid Uniform Half-Space (Earth), containing a localized Anomaly. Such solutions
allow building the very fast computer-based programs to decipher near-surface
caves, karsts, tunnels, engineering applications, etc. This way particularly allows
to go along a curved line, discovering already built tunnels without noise detection.

We consider sources and model, which are practical for onshore and offshore (in

deep water) seismic explorations. One may apply some forms of seismic solutions
for a deep exploration of the slightly inclined multi-layer underground structures to

find oil-gas-minerals-water-bearing lenses (see for example [9]). Here we apply the
found solutions for shallow sounding to describe an effect from Anomaly.

Also we showed a math similarity of uniform fluid (within Navier-Stokes equation)
with seismic isotropic linear media (excluding the boundary layers). The details of
boundary conditions are discussed, as well as the first orders of decomposition
theory for the Fourier-Bessel representations of the seismic displacements. It is
noted that within reasonable survey parameters an azimuth component can be
ignored. Besides, it is observed, that we cannot stitch non-viscous fluid with solids
directly, instead of this we must consider a limit transfer of solid-solid interaction.
The radial and vertical displacements inside solid half-space are obtained as well
as effects from localized Anomalies. For the cases of distributed Anomalies
(karsts, tunnels, etc.) a convergence of analytical solutions was shown.
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Basic Assumptions and Boundary Conditions

We assume: source F > {%} (Hammer, Accelerated Weight-Drop, Explosive, etc.)

is applied near center of the coordinates (X =y=0,0=7> <1<2> = 0+), see Fig.2.

Environment contains Upper-Half-Space (UHS, 2 <0) and Lower Medium (LM, Z>0).

The UHS is a viscous fluid (air or water); (F3F,/3F,\7F, e, ﬁF) are general properties.
UHS is uniform at Z<-6Z, with properties (P.,V, ¢, ﬁ)F =(P,p,V, ¢, 1), =Const (not
depending on R,t); 6Z, >0 is a thin boundary layer’s thickness, P, - pressure; 0,
- density, ¢q-volume viscosity, 7o - share viscosity. Sound velocity \7F (Z) can be
expressed by \7F2 = (6|5F / aﬁp) in adiabatic process; it is mainly responsible for
the propagation of the pressure-waves in fluid, similar to \7p2 :(i+2ﬁ)/,5 in solids.
In fluids, using Navier-Stokes and continuity equations [3], we can obtain the eq.
(1.F), describing a behavior of the displacement (strain)’'s component |, (R’,t) by

projecting them on unit coordinate vector i

, .
5. O _ O [\7F2-div(,5F-l)+(§F—Eﬁpj-diUﬂJ+

T oat? or, 3 ot
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Note 1: a known term OP- / ar, (if non-zero) can be included into F2*" .
Note 2: Fig.1 shows natural assumptions: Ar " =py Ar " =var(z), pr® =0,

V% = const =V,, Vot o Var(Z), VI =0 Indeed: at the pure solid

~Solid 7Solid __ ~Solid

boundary Z=+0" we obviously have p,_ . =0, 2~ . =" . =0(especially for a

~ ~ Fluid ~Solid
very rigid LM, like granite); and p -continuity requires pz:ul07 = Pz:lm :
Note 3: we also use 02, /62, <1 allowing V2% =V, almost everywhere in UHS,

it can be justified by Vi’ = (0P /85 )ad. and 62, ~ 67 (no 6Z, on Fig.1): but Vi* =0.



Note 4: at typical surveys we can assume low f,,, where UHS acts as Non-Viscous
Fluid (NVF). Indeed, one can show: (£, 7)
for onshore surveys, if f,, <20KHz: andin offshore survey (UHS = deep water) the
error <0.5% will be reached, if f,, <SMHZz . In the NVF a normal strain I, #0 and

# 0 bring error <0.5% to the solution

air

its stress J,, # 0; however tangential strains |, =|, =0 and their stresses 7,,=6,, =0
[2-p.30](but we rarely can use it in stitching with solids due toinconsistency of

their equations, see below; instead of this we make a limit transfer z, - 0 from initial
full-size system). If for such UHS = Air=NVF we also ignore effects, caused by a

very low air-density p,, we actually disregard small air-waves, arising from normal

strain. Thus a full o, -ignorance and low f,, make such UHS = Air (p, =0, {;=1,=0)
the same as UHS =Vacuum (in which all the strains with their stresses are zero).

LM contains: Solid Half-Space (SHS), uniform at Z>dZ" (non-uniform by Z in a thin
boundary layer 6Z") and narrow Anomaly, localized in LM around its central point
(xA,yA, ZA) :we assume that Anomaly does not touch or cross the boundary Z =0,
The SHS’s uniform seismic properties (not depending on R,t) are: (p,4, 1), where
(/I,u) - Lame coefficients; we suppose that Anomaly (see Fig.1) is not ¢ -Function:
(0. 2 1) <0, 50 for (Ap, A, M), =(p, 4 1), = (. 2 1) we apply: (Ap, AL, A <oo.

outside 0
Anom. "

Also we assume that Anomaly is bounded: (p, 2, ) =(p, 2, 1), 50 (Ap, A4, Au)

Also we apply (ﬁ,i,ﬁ)anyz =Var(Z) as general seismic properties; but for the uniform

ts of UHS and SHS y: (4, 2) = (Po: Aor 1) FOr 2<—52. .
parts o an we apply: y s (,o, A i )for22+5z+ (1.0)
Note: there is a thin layer between Anomaly and solid surrounding. Expecting the

Anomaly’s impact on the solution to be small, we ignore the effects from such thin
layer, considering just an influence from the Anomaly’s volume AC, .

For solid isotropic linear media (in general case (,5,/{,[1)=Var)we use a well-known
system of differential equations for the displacements |, (ﬁ,t) by projecting themon
a unit coordinate vector i, [4],[1] and using (2.4):
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Note: if Anomaly is solid, we can use (1.S) everywhere in LM, but if it is fluid - we

should apply (1.F)to Anomaly with (|5,,5, v, ¢, ﬁ)A =(|5,,5, V. ¢, ﬁ)F and I, =17""
FluidiSolid__p, 4,4 pAp Fluid;Solid
| \7’ Fig.1 SOLIJFCG M(Z) i -
pAJiAuuA Zn?in i Zn?ax T Fig.2
1A Z Jo\U 1, Z

7z

We apply Fourier spectrum I (R) by representation (@ =27 f,,)
I(t.R)=[ dw-e™ .1°(R)=["dw-e' .I"(R)+CC. 2)

where r”(ﬁ,t):jidt-e+i”" 'r(ﬁ’t)/(Z”). Note: here, as usual: | * = (rm ) .

Note: transfer to the spectrum for F** =(FX, F, FZ)—> fo =(fx“’, f,’, fz“’) is similar to (2).

. . )
N L
ot

qe

I
Note: applying (2) to (1), we can replace: | =17, a0 e

The fluid properties (\7F) can be transformed to the seismic set (ZF e ) when
Pr =Const | assigning: A (Z)::bF 'VF2 _i‘a)'(é/F —2:7; /3)1 s (Z):_i + 0T (3)
Note: for the fluid Anomaly we can use (3), expressing (44, 12,) via (...,Va,...).
Note: for NVF, when (Q;F,ﬁp)—>0, 3) gives: A =P V2 +i-0, fi. =—i-0 (3.a)
Note: the sign of 2™ in (3) is defined by ratio between £ >0 and 75 > 0.

Note: for uniform fluid part the eq.(3) gives (pressure & share)’s waves velocities:

A +20) Fo+4-77.13 i —i-wF

go Vet %) oy (et di 1) v fe o
Pr Pr Pk Pk

Note: signs of (Z, i )'R"; in (3) must satisfy Radiation Conditions (RC) for V,5, using

(3.b)

e """ factor in (2): (V,fs)Im <0 and as usual (V,fs)Re >0; it is obvious due tol¥ >0, 7% >0,
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~-5zp<z<-0_

7-07,<2<-0_
Note: assuming Pr =var(z), V¥

= Var(z) (see Note 2), and due
to identity dh)(le r) = D¢ -diur+f-grad/5F ,aterm~ f-gradﬁp appears in (1.F) for
fluids, but not in (1.S) for solids, giving structural difference between (1.F) & (1.S),
which should be taken into account, analyzing the UHS 1 -ranges (see below).

However, for uniform fluid part the term ~ |#-grad,5F is absent in (1.F) (for example:

UHS portion with 2: = p, =const, see Fig.1); here we can match the structure of (1.F)
(converted to the spectrums |,") with the structure of eq.(1.S) (forl,” also), applying

(2)to (1.F,S); thus using (3), we get:
/10=pO-V02—i-a)-(§0—2-770/3), Hy =—1-@-1, (3.0)
Note: (i,ﬁ)F in (3) depend on @ (unlike @ -independent (i,ﬂ) in LM), but (i, ﬁ)F

~ Init
are not Fourier spectrums from (/1, [1) i , Similar to (2); such view will be incorrect

In

due to independence of (Z,ﬂ):on t: (/T,[t)F in (3) are just artificial coefficients
(particularly allowing (in uniform Z -range) to match structure (1.F) with (1.S)
(converted to 1.")).

The Boundary Conditions (BC) near the surface Z=0 (where fis applied, and the
properties can jump) could be obtained, integrating (1.F,S) around Z=0. We assign:

57+ +oz* _ +0" +oz"
{A}_Zz_ = .[_52_ dz- A(Z) = {A}_;Z_ + {A}_g_ + {A} +50+ is a boundary integral, and

[A]iz = A(z,)~A(z,) is a discontinuity jump. Here 6Z_ = maX(5Zp,5ZV ) =01,

1

(taking into account Note 3).

+oz"

Calculating {LM} " . at 07" =0, we should integrate (1.S) (converted to spectrum

(2) for ). Here the LHS of (1.S) gives zero due to absence of 0/0Z . The first term
or* - M
0+due to |l{8(z-dml )/8&}

+

.
+01 n +01

of RHS {grad(i-diuf”)} . comesto, 'deiv f”} -0

+0°
ol
07"

. 1o al)?) alw 1 _>(U . _'a)
(. =x0rY). Indeed, assigning div, I ¥ = x +—2 we have; divl” =div 17+

oy




0 O (~ .. — y+oz'

+01
O [~ .. -
—(A-div 17 =0 — —iA-div”
Also {aﬁ( vl )}W due to absence of 07 . The last of or, { }

~ +ozt
terms is 5{/1'(3'? /52} o [ 0Y, which is zero due to (4.a) (we will use (4.b) later)

{3-8I“’/az}+5::0(4_a) {é-azlf/azz} C=[8ar /az] (@b)atdz 0.

Note: we assignd as any of (,0, i )((4) can be proven, integrating { }*5; by parts).

+6z%

. 0 - o . (a2 ol
Next terms in (1.S), contributing to BC, are ln-{ > —(ﬂ[ n +—mD} .
+0"

meoxy.z O or, o

n

For (rm =l = ﬁ) these terms are zero (NO 0/017). For (rm =0, = Z) such terms also

oly ol?
are zero due to (4.a). If (rm =1, I :'l), we come to ' { (az or, ]] for 1%, .
0*
+61°

+67°
For I, =I, =1, we come toI 2 -fi-0l; /52} . Combining all this, for {1 S} .o+ We get:

Al +07" +67°
- aly oly - 8|” 8I” o1’ - 407
Lo | =+ +1, | 1 Jodivl @42 4 —= =-{f?
X {u[ 0z OX ﬂ 0* y{u 0z 8y j] [ Iu 82]+0+ { }+0+'

-0_ o
Calculating {UHS}_& ,we should integrate (1.F)(converted to spectrum (2) for | “).

Here, applying 0P¢ (Z <0)/5ﬁ =0, we have diU(f’F r) = D¢ -divr+lz :0p: 107, Also we

use (3) for A = 4, (in spite of 0/ 82#0) and I” - continuity I <1 _, (this

-07_<z<0_

becomes exact equality, if0Z. —0), so at 2. 0 the first term of RHS in (1.F) gives:
-0 0
~ 5/3 ~ 7 . z 2~ .7 *alw *alw ~ 5/3 )

rad| 12.V.* 25 + V2—Ia)-( -= ) divl @ b &1 =+, — {VZ—F} +
{g [ z F az (IOF F é/F 3T7F N X 8X y ay i} F 82 .

-0
2, 0P | - 0.
2 YPF
zO|:VF 01 L +{grad(/1 ( )dlvl )} . Here the integrations of the last term




. ool al

and Z [ e E[ar” +a—rmD with F,f‘;yzm(l F) are the same as for the related
mxyz m m n

0P |

0
a~z:-5z_
82} —OduetoV % =0 and Pe

0z

terms in (1.S)(see above). Also {\7 2 =0,

~y -0
The integration {VF 0 /52}_52 at 6Z_~0 is questionable, because the derivative

~ y -0
0P 107 near =0 comes to infinity. In spite of this {VFZ -0 ¢ /52}_52 — ~Po 'Voz.
Indeed, 02, €07, (see Note 3), so in the most part of UHS we have V" =V, =const,
allowing trivial integration { }:22, . Simple example:

Ve (2<-02,)=Vy, VEZ(-02, <2<-0_)=-2V)/62,; pe(2<-62,)=

Lo,

e (-5zp <7 <-O_):-z- P02, ; here (Vi -0/ /az}_';_ =-py Vi -(1-15+52, 161,

Now, integrating {eq.l}fiz =1{L. F}-_é(‘)z: +{ }+3 + {1-5}?22: ,using 4., =0 and finite

ol 10r, (see Fig.1,2 with assumed 62" —0), we get:

LT +67" 161t
R ® @ R alw ® R N _ ®
i | i ol +% | - —y+% +i, - /I-diul“’JrZ;}-mZ -
0z OX oz oy 0z |
-87_ -5z 0z
-~ y+07"
gl

Note: if Zr;?#rrf;x does not embrace Z =0: RHS here and in following BC are zeroes.

—po Ny (i -01¢ T ox+i,-017 1 dy) =

=0inBCand in(1.F).

Note: we do not use typical for UHS = NVF values|’, 10

Note: generally the tangential and normal stresses are:

SO I R aly aly i a2 O
=M 5 Tax 01 oy N H%7

=P 2 (a7 1oz).

Note: if UHS = NVF & p. =const: (3.a) gives /”IF =,5F\7F2, i-=0,s0 5;;




Now with 1° - continuity around Z =0, we have final BC (5) (at 6Z* —0):

+oz"

""T& =[] =[] =o (5.0)
Y, alf I alf’ e +01z
& | + (1= tty— Py V) =l :_{fx }7& (5.)
T ol L eor
_ﬂ-a—;_gz +(,u—,u0—p0 -VOZ). . :_{ ; }752 5.9
(ieaay 2] ool e
_(/1+2u)- - L (A=) ( oy jzo {E 5.
Note: (5.0) means smooth I’ no infinite derivatives, but ol £01°101 .
7~0 720 120

Using the cylindrical coordinates, (5) comes to (6):

S P 5 P (3 SR 6o
_~ alg”” NI .

_'u 0Z . (,Ll—,uo — Po Vo ) R Z—{ fo }_52 (6.R)
Y a|“’_+5z+ alza) 7= » +o627"

_ .6;:52 + (41— 1ty = P Vo7 ) R.a(—oo =—{f; }7& (6.0)
[ ale ole 12 1 ale -

_(/1+2u) 57 LZ (A=) ( TR 8(0) =—{f"} (6.2)

Note: for vacuum-solid boundary, taking into account (3.a) & Note 4, we can make a

limit transfer p, -0, 4,= 1, >0 due to {,=n,=0and get: 1| =0or(l=17=1") =0 (6.0
2=0 4 2=0

(6.R*)
(6.0 %)

{11 (6.2

- 7 )57 o1 a|w y+or

_O-RZ:I—; =_{ fR }—52 or ,u-[ oz 5Rj :_{ fr }—Zz_
ot

M~ w +6z°" o +6z7 ol? 1 5|Z€0 S+

_G¢Z]—5z :_{ f<0 }—52_ or ,u-( a; +E' 5(pJ . =—{f¢, }—Zz

o T 0)+97 o 12 1 a Al ol?

RN LA S [aR "RIR 20 az] . NPT o




Below we denote §=(4;°,.9°) as any of(,4,1) to satisfy (1.0)(in (4) we assigned
as any of (/3,1, [1)) and Ad, as any of the Anomaly properties’ deviations (Ap,, A4, Au, )
(A9, can be as big as 9). Also we denote ¢ as any of the cylindrical coordinates
(R, (R-9), Z), and A¢, as Anomaly’s sizes.We suppose small A¢, , assuming that

the Anomaly’s influence on the strains I should come to zero, if AZ, -0 (see above
the Anomaly’s type: it is not a d -Function, which can affect |, even when A, —0).

Particularly we have: I3*”° >0, 015" /69— 0, because for No-Anomaly case we
have cylindrical symmetry, so 1,7° =0; olIg4™° /09 =0.

Note: we assumed (see above) that the Anomaly does not touch or cross the edge
2=0, so we can replace 9(2 ~ 0*) =9 (but not in general equations).

Note: below it is shown that the Anomaly’s effect on I can be represented as triple

megrais e T a0 220 T oe B nimng B, i, (here 49(2071) <0
at ghnom

were taken into account, while integrating by parts) orj d§ a-Ad=A¢, -a,-AY,, SO

this effect finally is proportional to Anomaly’s small Volume AQ, =R, -AR, -Ag,-AZ,, SO

influence of A, on I will always go with small factor AQ2, . Thus, in decompositions
of the integral kernels like 9= .9+ A9,, we can consider A3, as small in spite of
their really big values (we assume A9, ~ 4). Note: the derivatives 09, /0¢ can be

thickness

big also, due to finite A%, and small thicknesses Af —0. However self-

thickness

cancelling happens for 89,/0¢, if AS . —0, because here 09, /0¢ at opposite
edges of narrow Anomaly come with opposite signs.

Below we use cylindrical source fSource _( fes £, fz“’) particularly allowing analytical
solution of axis-symmetrical seismic task for LM=SHS: f,;’=0 (';) =0lg, 10p= O)
Also, when zni?n“iiix embraces Z=0, we should leave f*in RHS of BC, but remove

f“ from (1). However, for general dynamic equations we allow f,”#0. Thus we
re-write general (1.S) (converted for F“) in the cylindrical coordinates at f,” =0

(the same for (1.F)at Z<JZ.), and keep (,5,1,/?) under derivatives.
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Basic Equations

(o1 12 1 a2 ap i [, o
i A- %+Ii+£._¢+alz _|_2i ﬁ |§+_¢ +
OR cR R R Jdp oz OR| R oQ
@ ol” ® ol”
OR op R° O op OR (7R)
(%+alz D+,5’a)2'|§+ fe' =0
~ 0] 0] alw 0] 0]
1 o[ fa e A a1 of, (o L),
R opl"|6R R R 09 oz )] RE R op °
ol” ol” ol”
+gi [lR 2 |— 0 [l L 22. 0 [l |£’+_¢ +
R OR oR | OR OR R° O op
(7.9)
ol” ®
+ﬁ - —"’Jri-alZ +p-0° 12+ 12 =0
oz|“ |2z "R ag oo
- @ @ 8'0’ @ @ 0]
0z oR R R oO¢p oz R OR o0z OR
ol? @ & (7.2)
+£i ﬁ _¢+£.6IZ +2£ [l% +[~)'C()2'Izw+fzwzo
R op oz R Op oz oz

Let f”(R, Z) represent a seismic solution of the simplest axis-symmetrical task:

f,”=0; LM = SHS, NO Anomaly (A&, =0). Here £, =0, 047, /109p=0 andin (7)
we can neglect changes of general properties 3, caused by Anomaly-related A, .

This allows to take out § from under the derivatives (replacing 9> 9), thus for the
zero-order decomposition terms | w(R,(ﬂ, Z) - EW(R, Z) , the eq.(7.R,z) in SHS give:
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&4 00 Lol 42N o, .
i | R i) Tl 2=

R RR R
0°4° 0’4 1 oL?) - o(oly L2
A+2 L = A )= =R+ R 0 p h =1
[A+2a) 2 ”(m2 R 8Rj( ”)azEa R) P + (8.2)

Here we can use [5] for general case (NO ¢-symmetry), ignoring w-notations:

OA,
grad a = @ 1loa @ div AR A* 1 AZ
6R' Ragp’ oz R R&(p oz
0’a 1 oa 1 ¢*a o‘a 2 BA
Aa = +—=-—+ + = — P
oR* R ©OR R2 op° 01 ( ) =A(A) - R2 R? O
. 2 OA, A
(aR), =a(A)-m5 oz 22, (aR), =A(A) ©)

Applying the related parts of Laplacians (9) and omitting terms f‘; =0, 8&?2 [0p=0,
we can re-write (8) for 2“’, taking into account its @-symmetry:

(A+4)-grad, g div £ +,[z-(A_é“’)§ @’ plY =17 (10)

Let Uy, < £, represent the Anomaly’s small influence on I3, (due to small AZ,), so
1”(R,,2)=£°(R,2)+1”(R,0,2) 1)
Note: even when LM contains narrow Anomaly (where A, ~0): W) and ouy’, /d¢
are small. Indeed, Uffo — 0 because UMA = |A§A:O =0 due to £2 =0. Also

8UA§A_’O/8¢—>O becauseauRza)/8¢ OduetoaIsz/8§0 (% /6(020

R, 2,0

In (7) the products similar to &1 = (/3+AﬂA)'(fw +ﬁ“’) can be decomposed,

ignoring the second-order by A&, ~0 terms: fi-1° =(ﬁ' fw)+(AﬂA L7 +ﬁ'ﬁw)+---

Taking into account the zero-order decomposition terms for £° (8) or (10), the

first-order terms from (7,11) give:
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oy 1wy 2 A o 1 oy 1 ad) u?
g > > > +(/I+y) -+ +
0z R 8qp R o R R 8(0 R® 0p OR-0z

o\ (oug 1 dup up e —pgr

N CE P ECh ! oy 1y 1 oy 2 oug
H- ? + 2 =) ¢2 +o7 (/; +o7 = |+
oz OR R R R R O R op

/i 2 @ @ Ia) @
+( /u)- 6[auR+uR+i-a‘”+auzJ+a)2-/3l

a):_’\_ga)
R R R op oz 0 TP

_ 4

+ +—-
6z>°  O6R*> R OR R? 0¢?

.(azug’ ofu? 1 ou® 1 azu§)j+

R 1) 1) @ ala’
+(ﬂ+[¢)-a ou, +8uR+uR+1_ 2 \+w®-p-
6z ©6R R R og

where the components 0 ~(R.p.2) (R ?,2) are:

2)
5 oty Ly oL o0
007 =—| A4, —£2
P GRL (aR jj R&R[ "’A( R D

8
g _OA, 1 aeg+ew oL Z.aAﬂA.ew
0 R OR R &z

0 ol: €2 ob? 0 oL?
0-0° =—| A4, - Ry B4 —2 [ [+2-—| Au, - —= |+
£ az( A(GR R azD 62[ Ha azJ

1 0 oby oL?
+—=-—| A, -R- R4 2 | |+ -Ap, - £°
R@R['UA (az aRDw on s




Note: both &;°, components (13.R,z) do not contain dAd, [0 Also, using (10),

we re-write the first decomposition terms (12) for 1” in similar form:
A A s o A /) 2 A 10} A 10}
(/1+y)-grad§:R,¢,zdmu +u-(A‘u )5 +o"-p-U; =—p-0; (14)

Now we apply Fourier-Bessel representations for the @-symmetrical £5, (15.R,z)
E;)(R,z)zjjdae-ae-Jl(ae-R)-A“R’(ae,z),

A“R’(ae,z)=j:dr-r-J1(ae-r)-ﬂ‘;(r,z) éf(R,z):j:dae-ae-Jo(ae-R)-Af(ae,z),
Ag"(ae,z)=j:dr-r-Jo(ae-r)-£‘z"(r,z)

For ¢-asymmetrical components Ug’, and W7 =17 we apply (16.a,b)
uy,, (Rez)=> e -_[ooodae-ae-Jmk,Lk,nk (@-R)-Ug,,(=k, 2)
k=—o0
2 dl// . "
U, (=kz)= jz-e"""‘” -L dr-r-J, . . (er)uy, (ryz)

0
with Bessel orders & = (mk,Lk,nk) for 6 :(R,(D, Z) components accordingly.
Note: if any of ¢, in (16) does not depend on (k) and U?does not depend on ((0)

we can use a well-known relation:
27

d - i-k-(p— N i-k-x
I 2‘//_. ™) =1 que to Z e =27T‘5(X), which brings (16) to analog
0 470 k= K=o
of (15): ug’(R,z):j:dae-ae-Ja(ae-R)-_[Ooodr-r-Ja(ae-r)-ug’(r,z)_

w

Similar representations we can write for Ys—_(r,,,z) (13):

eRa,)qo,z (R’ P Z) - Z e ,.-: dae'ae"Jmk,Lk,nk (69' R) ) CDRQ,)(AZ (%’ K, Z) (17.a)

k=—w0
2r

d —ik- @© ®
(&,k,Z): J.%e k-y .J‘O dr.r.Jmk’Lk,nk (&.r).eR,gp,Z(r’l//’z) (17b)
0

(DCO

R,p,z

13



Now we can obtain (18.R,9,z) below from (12.R,9,z) and (16,17). We apply X=&R;

L oy, d\]an
. _ ik-p . 1% 4]
omit common operator | = Z ¢ IO dz & ; take into account R dx ReT
k=-
oug,, ! 0p —i- k'Jm n-Un,.. The result is: (18.R,¢.2)

(i+,&)- i-k- (d‘] JL)-U“#ae-dJ”-aUZ +
X dx X v dx oz

2 w 2
+,&-(Jm o Us kZae 3, Uz—2i k-2, U“j

0z° NG NG

A d?J 1dJ J
+(A+24) 2% my——m_ U+’ -p-3 -Us=—p-3 -
( 'u) [dx2 X dx xzj P £7om R

—_
&5
+

>

dx X :

2 2 w
)'(i.k'ae .[d‘]m +J”‘)-Ug’—kz-&;Z-JL-UZH-k-f-J oU; j+
X X X 0z

82Ua) 2
JL—2(p+aez c J2L+1dJL_J|§ Ug -
. 0z dx X dx X ? ” " . "
+1- - ) + p-JL-U(p:—p-JL-CD(p
(0] 1 & [0)
—aez-?-JL-Uq,Jer-k-?-Jm-UR
. 2T To o aUa’
(/1+[z)- Jn-aulz +ae- d‘]m+‘]m -aURJri-k-E-JL- £+
oz dx X 0z X 0z
2 ® 2
iz Jn-al[gz v Y ‘]2”+1 Wy 2. dn U |+ 0’p-d,-Ul=-p- -0
0z dx x dx x?

Applying the decompositions (16,17), we assume that the terms in (18), containing
x=&-R, J,(x), Iy, I, should vanish. Some terms in (18) can be excluded,
using one of Bessel Functions definitions and properties [7-8.472.1,2], [8]:

d*y, , 1dJ, (MZ dJ, M M. dJ d, J;

-1)3 TR R PR I, S, i e
dXZ X dX X ] ()’ dX X M M+1 M-1 X M dX dX X (19)

14



This allows obtaining Bessel orders, using (18):

M =14k, L =1+4K /9, n, =K where 0=2/(A+22)  (20)

and (21.R,0,2)
A 82U§ 2 A A 2 ) A A d‘Jnk aU;o
a-d, py: —(ae -(ﬁ.+2,u)—a) -p)-Jmk-UR+<i+y)-ae- i oy +
A o _ &’ @ ~ JLk > LN dJLk JLk
+,O'Jmk@RzlkT'Uw[Zﬂ'T—(i—Fﬂ)[ dX —7
~ aZUw o o ~ @
Hedy, 822¢ —<832 -’ p)-JL Ur+p-J, @) =
n % dJ J ou? &’
=—(A+a)ik =@ | —2+—c .U+ L -p-2i-k-—=-J_ -Up
( ﬂ) x((dx x] R 82} x2 M R
. o*Ue dJ J oue
A+241)-J L& p-0’-p)-d U+(A+ T T g —R 4
(2i)ed, ST )3, U ﬂ)(dx o |5 20
A @ ou?
53 0% =—(A+a)ik- =3 2
,0 Ny Z ( ,U) X Ly az

Note: for UHS =NVF we can apply (3.a), using £, = 0 - even for onshore survey,

where 0, is small, but not zero, so A, # 0: moreover, for offshore survey, where

A <0 <0
0, =1000 kg/m® . Thus for UHS = NVE we have V,, =0 from (20), so (mLo =1 L :OO)

<0

Actually for high f,,, when UHS-viscosity is taken into account (so UHS # NVF), the

. mZ<0 _1 LZ<0 -0
small terms, deviated from{'"k0 =+ k0 =%/ _ can be moved to the RHS of (21)
(which is also small, even vanishing at k=0). One can use such terms in iterative

process, or just apply the first approximations of these terms.

15



For z >0 we estimate Bessel orders at a typical level of Vi ~V, /3. Given that
0,., =V< /VZ, for the main terms k=(0; L 2) we get: my,° ~(L 1.05; 1.20;...),

L%~ (L 3.2; 6.1;...). According to (16) and RHS of (21.R,z), the effects on 1, from
Anomaly come from J? dee-J, (e&-R)...,and the main contributions bring values
J.(2-R~1). Thus, taking into account J, , (1) ~2.0%107%, J,_, (1) =~ 2.1%10°°

(see[7-p.209]), we can ignore the terms~J_in (21.R,z), which bring to U, an
acceptable relative error ~2% of its value. Such ignorance also allows avoiding R
-dependence (x=&-R) in RHS of (21.R,z).

Note: for m” ~1 above we can replace J,, +J,, /Xx=J,in(21.z).Indeed, from (19)

we have: J;, +J,, Ix=J —(m-1)J, /x,and (M -1)J, /x<J, ..

Also the eq.(21.¢)for U; can be ignored, amplifying the reasons to ignore U; in
the eq.(21.R,z) for Uy, atUHS =NVF case ¢, =7, =0.Indeed: at k=0 the LHS of
(21.¢)(which mostly affects U2 )is small dueto J (x=&-R~1)~0 for the typical
parameters (see above). For k=0 (main terms) the RHS of (21.¢) vanishes in general
case UHS# NVF due to proportionality of all the RHS of (21.R,¢,z) to (k).

The LHS of (21.¢) vanishes also (when UHS=NVF)in spite of J,,_ (1) ~1. The proof:
even for general case UHS = NVF the eq.(21.9) for U7 (2, ) comes to

fla;uig’_“? —(aez,[t—a)zp)[Uk o=—p O (21.9%)
and here the RHS vanishes due to @7 (z, 2) ~J'02”dy/-9;’(r,z//, Z)=01in(17).Indeed,
(13.¢)for 87 (R, Z) contains 8, (R,p,2)~¢c(R,2)-0A3,/0p, and the factors ¢(R,z) do
not depend on ¢ ; this makes the above integral = 0 (there are no terms~AJ,(R ¢,

in 95,’(R,(0, Z),Which provide integral #0). Thus instead of (21.¢p*)we get (21.¢**):

2 k=0 ~ 2_p2. A w2 2.
aaui‘g'“’ ~(2?-K2) UKD = 0 withk? = p ,glvmgU = A -eNFTeT LB e NE T

with 4 unknown factors(AszAi B, = B ) where (+) means: >0, and (-) means: <0,

Note: eq.(21.¢**) for U is a second order uniform ODE (no mix terms U and
no P -waves terms, unllke fourth order ODE-system for U7’ below).

16



— _ 2_ 2 .
Assuming decay at Z=+0 we get: A; =0, and U} o (@,2) = A;-e™* S ith
=B;-e"

kozs = 0)2,00 I 1ty; Bs=0,and UZ;? (& Z) e (reminder: here we assume

>0

general UHS = NVF case:l;| #0).For UHS = NVF(p, #0, ¢, =7, =0) (when from

(3.2): 4 =0,s0 k& =+i-0), assuming as usual Re(z-\/aez —kozs) <0, we have

z<0

2 2 , k=0, 0 )
Re(ZVae _kos) =% Thus UZ,’,;Ozo,’;‘;io (&’ Z)z<0 =0 The continuity of | (6.0)

<

(transferred by (11,16.a)to U*?) requires U275 (&) =TS (), s0B; =0, thus
UZ,’?:B&,’:;’;% (@,2)=0 for all(z), making needless (6.¢) usage for U2/ 3z jump
(this logic does not apply to the system forUF'jj?w, see below).

Note: both 05 (R, ¢, Z)in (13.R,z) depend on @ proportionally to A%, (R,¢,2) or

OAS, R, 0AY, 101 instead of 0AY, /09, so this logic does not generally applies
_ 2r o
to (17.b),and CD;,_R(?Z (ff’ Z) ~ IO dy -6y, (l’, v, Z) #0

Now, returning to general I,

7 0 case, we focus on U, - eq.(21.R,z). Ignoring

<

RHS (~k-JLk),for both k=0 and k#0 (dueto J,,_ (X~1)<1),we get: (22.R,2)

N -[ﬁ-aggf —<an-(ft+2[t)—a)2-[J)-UE’+,5-CD?JJ+%-(/€+/Q)-&-a;UZ(ZU =0

Ji -((i+2ﬂ)-a;?; — (& '/Al—a)z'/A?)'U?+/3-CDZ’j+(dJmk +Jﬂj-(i+ﬁ)-ae.aéuf -0

dx X
Note: the term ~dU, / 0Z in (22.R) prevents from cutting down the factor Jmee (x).
Similar term ~ 06U, /0Z in (22.z) prevents from cutting down the factor J,., (X).
However for k=0 from (20): m=1, n=0, so we can cut down Bessel-Functions
in (22), thus for U;Ei,(%, Z) we get:
. U,

M- azz —(&2(i+2ﬂ)—w2ﬁ)U;—2_<i+ﬂ)% a;w:_ﬁq);_g (23R)
2 k=0 k=0
(i+2f‘)'8(£§’” —(&@*- -’ -ﬁ)-U§,£+(i+/})-ae-ag;’w ——p- D0 (23.2)

17



This allows analytical solution (see below). For k#0 the situation is more complex,
even assuming M, ~1 for a typical case V3™ ~V, / 3 (see above): the factors

\]mm (X = &R) VS. J& (X) in (22.R) have different & -zeroes, same for the factors
Jiwo (X) vs. (Jr'nk +Jn, /X) in (22.2); the resulting R -dependence can’t be canceled
for k0. Thus (22) (and more generally (21.R,z)) can be solved only approximately,
decompositions (16) do not work for exact solutions, even assuming M., *1 and

excluding small terms ~ JLk¢0 (1) . However, ignoring terms ~ J L., Willbe enoughto
simplify general chain (12.R,z)>(18.R,z)>(21.R,z)>(22.R,z), coming to (24) below.

Indeed, we can return from Ué‘fz to Uy, , applying to (22.R,z) the operator (see above)
_ O ik [ ) . . . .
| = k;oe ¢IO de -2 (to be consistent with (16,17)), and using (19,20,22) with

d®J, 1dJ,

_m,
dx?  x dx

following relation: Jp, (x)= % I

. Thus

2 A 2
U, omuy laug v oy

%2\] ‘[Ua)_) _ - %2\] Ua,_)—lﬁzug’_ﬁzugj_iﬁug’
mORTRTORE ORAR R0 Tt TRZ 99 OR®2 R R
dJ, ou? (dJ J ou; ug
—* ..U —>—2 ol U2 - —2+— pri :

and dx z R ( ax X R R R bring to:

2qq @ 29q @ 2qq @ @ 1)
ﬁ'(a ug 1.0 UR]+(/1+2[1)-[5 UMLGUR_UR}

07" RZ 9¢? RZ R &R R?
R ) aZua) A Y (24R)
+o’ - p URJF(/IJF'U).GR-@ZZ =—p- 0

. @ @ (242)
+a)2',6-u“’+(/1+,[1)- g [GUR +uRj=—[)-9“’

18



Note: comparing (24) with general (12), we see: the terms in (12.R,z), containing
dl;' 1 0¢, are ignored due to neglecting~ J,__ in (21.R,2)>(22.R,2):

~ N 01 0l?) 24 ol? ~ N Of1 ol?
(;tw)-—(—- g"j £ in(12.R)and(2+u)-—(—- ;Jin(12-2)-

oR|(R d¢ | R* 0p

Note: Ug, must depend on @ (to take into account ¢,), this is guaranteed by
(16.a) even without dependency of Bessel orders o, =(my, L, n,) on (k) due to
Uy, (@ k, ) dependency on (k). For example, (22) contains explicit k -dependency
on Og, (39, K, Z), which are functions (17.b) of 65, (R,®,Z) (0 depends explicitly
on @in(13.R,z)via(Ap,, A4y, Ay )), and Uy, in (24) depends on @ via 6° in RHS.
The dependency 1y on ¢ can be achieved by using Bessel Addition Theorem
BAT (see below) after solving (22) for Uy, (&, k, Z) with (16.a), or directly (24) for
Uy, . The BAT implementation requires Bessel order to be equal to exponential
factor K (at €?in (16.a), where Bessel is Jk(x)). The only chance for such scenario
in (22) has (22.z) for Uy, but not (22.R) for U7 (J,, in (22.R) exclude this option).
Now we introduce the new representations, taking into account (11):

Uy (R, 7)=ug (Rz)+Uu; (Rp,z) or Iz(Rez)=L;(Rz)+uz(Rz)+U; (Ro2) (25.R)
u;(Rez)=uj(Rz)+u; (Roz) or I)(Rez)=L;(Rz)+u;(Rz)+u;(Re,2) (25.2)

Note: the main terms ug, (R,Z) do not have ¢ -dependency, they can represent a

special axis-symmetrical Anomaly (impractical thin ring, bounded by (ARA,AZA); or
disk, bounded by AZ,). However, if we need to integrate by Anomaly’s volume dQ2,,
we must allow RA(goA),ZA(RA,goA) .The second terms Uy, (R.¢,Z) relate to a real Anomaly,
~AQ, AR, -R, -Ag, -AZ, .

bounded not only by (AR,,AZ, ), but also by Ag,, so ‘UR“fZ
Note: eq.(24.z) is the main eq. for the main component 115 ; (24.R) is the supporting
eq. for the minor component Uj . Thus in (24.z) we use full (25.z) for 1 (R, ¢, Z), but

only the mainterm llﬁ'(R, Z)(i.e.Ué’ =0)instead of full U (such approach also allows

to use BAT for U}, see below); in (24.R) we use both llFffz instead of full Uy, . Here:
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0

j dror-J,(&r)-up(r,2) 26.R)

0

rodr-r-J (@1)w(r,2) 26.2)

(R, Z Ze'kq) ,[ dee-e&-J, (®-R)-U; (2 k 2) (26.2.3)

k=—x0
27

@ d _l
U, (ae,k,Z)ij—w v _[dr r-Jy(e-r)-uy(ry.z) (26.2.b)

0 &7

u”g(R,z):j:dae.ae-Jl(a@R)~U§;’(ae,z), Us(z12)
u”(R,z):j“’dae.ae.Jo(ae-R)-Uf(ae,z) U°(,2)

z

Replacing Uy, = Wy, in (24.R,z), both RHS should be ¢ -averaged; thus instead of

cd
QR?)Z(R,(D’Z)’ q);,)z ("’e’ k,Z) in(17.a,b), we use: ®£Z(R’Z) IZZ -6

0

= (R9.2), and @y, (2,2),
connected by decompositions

®F§"(R,Z):j:dae-ae-Jl(ae-R)-¢F§’(ae,z), ¢F§’(ae,z):j:dr-r-Jl(ae-r)-@)g’(r,z)(27.R)
®;"(R,Z):J:dae-ae-Jo(ae-R)-¢j’(ae,z), ¢;"(ae,z):j:dr-r-JO(ae-r)-®;"(r,z)(27_z)
Note: such ¢ -averaging brings to @ro (8 2) =By, (2,2) using (17.a,b)), and in
(13.R,2)instead of A9, (R,0,Z) (where A, =any of (Ap,,A4,, Aty )ywe should use
A3, (R.Z)= LZ”dco-ASA(R,co, 2)/(2x) for Og, (R Z) (instead of 6", (R, ¢, 2)). For localized
bounded Anomaly it gives: A9, (R.Z)~A8, (R 0,,2)-Ap, / (27).

_ 2 o
Note: we cannot use such approach for 6," due to (D(,'f;? (39, Z) ~j0 dW'% (f,W, Z) =0
(see explanation between (21.¢*) and (21.¢**)).

Note: obviously, functions 8y, (R,Z)and following Uz (&2) (26) can be chosen quite
arbitrary, if uRa,)z do not depend on ¢ . We choose a specific system (28) below for
Upf,’z , applying the mentioned above ¢ -averaging. It allows an analytical solution,
and brings to (29.7) (if @« (2. Z) is replaced with CDle:,Oa, (2,2)):
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ﬂ.aZU;‘; _(aez ,(24_2‘&)_@2 .ﬁ).Ug_(iJrﬁ)-ae-w—?——ﬁ-"’? (28.R)

0z° 0z
2P To n @
(;{Jrgl[,).a@(z{z _(692.ﬁ_a)z.p).Uf+(l+[z).ae.8;J—zR:O (28.2)

Note: (28) correlates with (23), except: (UFE‘,’Z in LHS of (28) vs. IURK,;(Z, in LHS of (23))
and (®¢, 0)in RHS of (28) vs. Px,, in RHS of (23)).

For Uzw(ae, K, Z) the equations(24.z-> 28.z;17.a) with U§)<R,¢, Z) =0 provide (29) below
at both k=0 and k #0 (for BAT implementation, see below).
Same result (29) could be obtained, applying (25-28,16) directly to (22.z) and using

ug (R¢.2)=0in(25.R)or (U = Uy, UK? =0}, see (16.b)with U > u; (R.Z) and
(26.a); also from (25.2,26.2,27.z,16.b) we have:([U;:a? =Ur+u,7, U =U;;f).

Finally we get for any k:

~ 0 0U” . AN o Ao
(14_2#) azzz —(%Z'ﬂ—a)z'p)'uz (&, anyk, Z):—p-q)z (%, anyk, Z) (29.2)

Note: in (29.z) the main part of

main @ o . .
|w,R ={ r T U was taken into account automatically.

w, k=0, 0 —
Note: formally (29.z) reminds (21.¢*), but unlike resultant U¢,;0:o,ﬁ§io (&’ Z) =0,

here U,”(2,k 2)#0, even if (Dlz(,:a? (69, Z) =0 and UHS = Air=NVF (p, #0, {,=1,=0)
due to (4, =0, 4 #0), contributing to the coefficient (/i+ 2,&)Z<O at the first term.
Now we apply axis-symmetrical source f° =( fe'\0, fz‘”) ,expressed via 6 (Z—H,),

where H is the source’s mid-depth,5(2— Ho)- Dirac’s Delta-Function:

) oo F [d(=R)Qp) Qh=dy(2R,)-P,R,-h,
(f”j‘ﬁ(z ) !da“e[%(ae-m-@?} Q0 =3,(2-R,)-P, R, /& OO

Here: Pw[N-S/mz}, (Ro,ho)[m] are pressure, (radius, height) of such source.

z
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. oy source
Below we often consider a limiting case H, =0 (when Zn max embraces the center

of coordinates X=Y=2=0) and UHS =NVF(¢; =7, =0) . 1f H, =0 in the dynamic

equations for the dis.plac:ements[é’fZ (8) or (10) the RHS should be reset to zeroes,

20
because here the source will be absent in each UHS & SHS. However, for H 0 =0
the transition area at Z~0 contains the source, so the RHS of BC (6.a,c) contain
such source’s terms. For H, # 0 we should apply an opposite approach: RHS in (8)
or (10) should remain, but the RHS of BC (6.all) should be zeroes (this particularly
allows analytics for deep exploration of a multi-layer underground structure).

Here we come from (8) or (10) forfﬁfz to a system for their Kernels AE’,Z (see (15)).

Applying (15,19,30) to (8) or (10), for H; =0 in (30) we get:

R A S PYE A R e B
(i+2ﬂ)-8;;\;—(ae2 =@ p)-AY (/1+ﬂ)8e%=0 (31.2)

Note for Hy #0: RHS = 0in (31.R) should be replaced with (—@ﬁ)'5(z —H,);
and RHS = 0 in (31.z) should be replaced with (—@(;)'5(2 —H,).

Each of the following allows an analytical solution: system (31) for Ay, ; system (28)

for URa,)z - eg.(29) for U’ ; these 3 solutions with decompositions (15,26,27) solve
the Anomaly problem. However, building analytics for (31,28,29), we should add
the BC around Z =0, applying (6) for each of AFffz , Upfz ,U,” .For such BC we can't

integrate (31,28,29) directly: they were designed taking outd from under derivatives

in (7)at(8,10). For/\RZ (31) from (6), usmgj+ dz- 5( ) 1 at HO:O in (30), we have:
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:Ag]i: = [Aﬂj =0 (32.0)
+oz"
OA? ) .
. - Lz (=t =po V') o] =0 (32.R)
B » 67"
(/i+2/[l).a;\2z:| +(A=2) @ Ay =-QF 2.2
L —07_

BC for UFE"Z (28) & forU,” (29) can be derived from BC (6.0,R,z), replacing §Z 0 —>n§‘~
(see Note after (6)) and using H, =0 in (30). Partlcularly[U ] [U“’] —0(33 0)

+01°"
For jJumps [ﬂ Uy /52} 5 e apply URZ 0 to (6.R)(see Note before (26)), subtracting
(32.a). Here, employing (15,26,27.z) and (19,25,30), we get:

|:A 5Ua’ +012

82R 152 _(,U_,Uo Po-V, ) @ Uw :0

(33.R)

n +07*
For jumps [(/HZ[J)@U;’/GZLZ we apply only U5 =0to (6.2), use U; #0 (see Note

before (26)) and employ 0l,/09=0 due to J,,_ ~0(see Note after (24)). Here, using

Lk¢0

e one aU” )|
(19,20,25,30) and (15,26,27.2), we get: | (4 + “)'JO' 0z oz "
-0Z_

Z+

J(Mzﬂ)'i e J, 6; } (l—%)'Jo'ae'(AQ)*Ug)zzo:_JO'Qf (*)

k=—c0 Z 7
~Apl(27) <1)y:
~ . oU? o
{(/1+2,u)- ~ } +(A-4) @ Up| =0 332
-07_
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+01,

Using(6.0), we have [Uzw] s =0 (34.0); also subtracting (32.z),(33.z) from (*) and

taking into account independence of ™. J, from each other (for various(k)), we

+o6z"

get: | (A+241)-007 102 =0 (34.2)

-07_

Note: in (34.z) the main part of@?ﬁn =/ = Ty was taken into account automatically.

Now, combining the related dynamic equations with such BC: (31+32); (28+33);
(29+34), we can get wanted analytical solutions. One can try to simplify them,
allowing UHS = NVF by low fregs usage (Note 4); here 4, =0 & lg|._ =0 (however,

Ao #0 due to o # 0 in (3.a),and |ZL<O # 0). Nevertheless we will apply UHS # NVF

(so |ch)¢‘ 07 0 and fl‘KO =1, 20), assuming it as necessary generalization; otherwise

<

the main terms 4 ‘(52/\3 /822)Z<0 in(31.R)and 14U /822)Z<0 in (28.R) are zeroes.
Ignoring them brings inconsistency in each of the fourth-order differential systems:
(31)for Ay, and (28)for Uy, at < 0. The UHS = NVF case can be considered as
U, =0 limit transfer from the general case UHS # NVF. Actually a difference between

UHS # NVF vs. UHS=NVF cases mainly appears in two thin 2" skin-layers around

1=0,s0 we ignore it. For viscous UHS the situation becomes more complex, we do
not focus on it here. Below for simplicity we assume R, <R.

Expressing A{’fz via unknown set ép,s(ae,z), Bp]s($1z) ,and using (19), from (31) we get:
o _ LA Atz R sz A A Aat®lZ R A A&z
Ag(®,2)=+8,-e™%" +b,-e %" —a;-Gs- ™" +b;-Gs-e™*” 35

Af (&’ Z) = _ép 'QP 'e+ae‘qp'z + l:A)P 'qP 'e_ae'qu T és 'e+ae'qs.z T 6s 'e_ae.qs.z (35.2)

z>0 z2<0

where qP,s :(qp,sl qop,os), qRe >O, CAhm < 0, so we apply (remembering (3.c)):

2 _a)zpl&z 2_1_0)210

w’p, | &° X @° P,
#) & p

2 :1 :1_
Cop (/10 +2,uo) , Yos 2211 (35.0)

0

24



~\ 2>0

Also there are 8 (not 4) ép,s,Bp,s -factors in (35): a,b e a, b .la,b) =(a,b), ..
P.S 0P,0S P.S

lg]==0 =0 by (ap,s =Dy g5 = 0) .4 other factors (aop,os,bp,s)
should satisfy four BC (32) with non-uniform RHS (32.R,z). Here we omit bulky

P,S

4 of them provide decay Ag;

calculations and assume: Anomaly is located in LM (see Fig.1,so Z, > 0); UHS =
NVF(,Uo -0, 50 gz >1-0'py /(@2 '/10), Ops —>1-1 'OO). Thus, using

Qz Q% =&-h, (30); for the required below (f{fz(R,DO) , bp,s (60,69) we get:

P-R,-J; (&R Jo, —

b, = a)z-,;'(l 0)'[‘%'h0'(ﬂ'q0|3'qs_;oj"'qop'(l_ﬂ)j (35.P)
P -R,-J, (e -

b, = ZOZ.p.(ARO)'(Ge'hO'(%'qp*‘(l_ﬂ)'qopj"‘ﬁ'qop'qP] (35.9)

24 2 Vo 4P > .
p= j;‘ p =ﬂ[1—p2—ﬂj, @= =B B Ol ~(1-A)(1- ) -G (35.1)
Note: A= Iim(. /qos)qos_m H :(0{-|—/3—1)-(0£+/_3—1)—(1—,8)-(1—,[;’)-qOP “Ops +
+(a+ﬂ)'(a+ﬁ)'qp'qs_a'(qop'qs+qp'qos)+ﬁ'B'q0P°qos'qP'qs (35.2)
Note: B is the main determinant, describing UHS # NVF (4, #0, S0 gy is finite)

Note: here the terms ~ h, actually ~ f; (30); these terms disappear if frx =0, which
means usage of Hammers, Weight-Drops, etc. for sources (but not Explosives).

Now, taking into account (15.R,z): KRQ,)Z = J:o dee-a-J,, (59’ R)’ARQ,)Z (59, Z) and from
(35.R,2): Ag(®,2>0)=h, e *% +h-qs-e %" Ay (@,2>0)=h,-0,-e *#* +h-e ™
we come to £¢,(R,2>0).

£7(R,2>0) =j:dae-ae-J1(ae- R)-(bp &% 1. -e‘ae'qs'z) (36.R)
£7(R,2>0)= J':dae-ae- Jo (e R)-(bp ‘O € %7 +hy -e‘ae'qS'z) (36.2)

where bp,s are defined in (35.P,S).
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Analytical Solutions

Here for the most important case Z = 0" the limit transfer of (36.R,z) gives: (36.0.R,z)

£ (R) PRy T g & hoaa(qopqs _(1_qpq5),00 /,0)+

=—22|de—J,(&R)J, (&R _
2=0 602,00 A 1( )1( 0) "‘qOP'(l_'B'(l_qP'qS))

. wzp 0daeAJ (aeR)Jl(aeRO)qOP(hoae(l—ﬂ(l—qpqs))+qp)

Now we build an analytical solution for g, (26.R,z)via U ¢, (28+33) with (13,17).
Here for symmetry we replace (0) in RHS of (28.z) with (-,5-¢§”) and apply ®; =0

after this solution. First, we use representation (35.R,z) for URQ,)Z, similar to /\Ffz , but

with a new set( P.S bp,s), allowing a method of undetermined coefficients usage.

A

One can verify that (35.R,z) (for U, instead of Ag ;) with ( PS bp,s) = CONnst satisfy

uniform version of (28.R,z)(when ®;’, =0in RHS). For ®;, #0 we get: (37)

. . ae/2 ®/2 ¢
a, =ap — 2

= (D /G, + DY), Ay =a -

e T ( @y + @Y/ 6

B = /o + ae/zjolz'e“W‘Z(cl: /6, -®), b, =4 - E2]

L (@ - /)

with unknown (&, 4)., =(.8)p4s, (@.5).. =(a. ), instead of (4.b:5), See notations
after (35.0). The decay Uy, (2.2),_, =0in(35.R,2) gives (aps =hgp0s =0) , which

means: for <0 the unknowns are & (s; for Z>0 the unknowns are S, .

Z‘:oo

Note: here and below we use (35.0) for cA](Z) , ignoring the Anomaly. Indeed, if we
apply Q(Z') instead of CI(Z) , we actually take into account the ignored second
degree of Anomaly decomposition terms (small due to (27.R,z): ®y’, ~ ©F,).

In (37)(and (38) below) for generality we assume, that Anomalies can occupy UHS

also, so ®y;|  # 0 (without touching the boundary 2=0,so ®g| _

0+
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Thus, omitting bulky calculations, for U&Lﬂyzvia ¢F?fz (88, Z') we have:

x/2

U Cay T g L e s s (38)
z<0
IdZ' ( oo (dl“’/qop 4’?) e s (Ow fos — ¢?))+
+f dz'-(e7™ %) (@ /gy, + DY) —e =) (@ 0o + DY)
z<0

z>0

z>0

T dz’ -(e_ae'qP'(Z'_z) (q,aR) /CIp +¢§U)_

FJ o (e (@0, - @7) -

o= (2-2) (q,g (s + P )) +

g ®0%(2-7) (@aR) Qs —Of))

+&-q

U?

=—C- * -e op¢ T Qs €
z<0 oF qOP N

z<0

J. dz’-(e_aeq

z<0

+e&-(ps
(z-2) (Q“R’ — ¢§0 “Oop ) o

N ])A dz,(_e—ae-qop'(zr_z) (@g + ¢§U “Cop ) +

., &2
+

>

(4

e—ae~qos(Z—Z’) . (¢CF§ —¢;0 /qOS )) +

o~ ®Tos(2-2) (Qg + @7 /qos))

[
z

= ﬁp “Qp - g =% 4 ﬁS e

z>0

z>0

z>0

+_([ dZ'(e_

(z-2') (Q‘" d’?'QP)

Jrjio dz'. (_e_ae-qp-(z'—z) ) (Qg + d’? “Op ) +

_ e (7)) (d:;;’ - Py /qs))

®/2

-
(4

o =%(2-2) (Q‘F‘{’ + @7/ QS)) +
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Now we return to the initial case, assuming that Anomaly occupies LM only (not
UHS),so @, |

=0. Also, for simplicity we use UHS =NVF, making limit transfer

1, — 0 for a final results (same as for Bp (35.P,S),Whereq02p >1-0° "Po /(332 '10),
qozs —1-i "), Thus, using (38), we have four BC (33.0,R,z) with four unknowns

(Olop,aos,ﬂp,ﬂs). Solving such system & omitting bulky calculations, we get:

=6E/ATd e <¢w+¢w qP)(ﬂ Qop s — ,00/10)

Ue(e) =—|d7
R( )Z:O* w2 ) o2 (Ow qs+¢“’)((l—[3)qop+qpp0/p) (39.R)
. ®e/AT e (¢a)+¢a) qP)qOP(l p)+
Us () . ==F[dz o7 (o Y (39.2)
w5 (d) Qs + B ) Oop *Qp - 5

Here (Gop» p» Os» A,,B,B)(ae) are given in (35.0,1). Now we apply ®; =0 in the
result (39), see remark below (36.0.R,z). Here, using (26.R,z), we have:

tde-e? t +e_ae.qp‘2,'(/E)'qop'qs_polp)-l_
u; (R L= — — .J(&®e-R)-|ldZ" ' B .
s lw“ : )£ +e % (1) G + Gy p) ) 4OF)
%) d%&z © +e—o’9~Qp~z' 'qu (1_ﬂ)-|—j
u)(R) .= -J,(@-R)-|dz"- , @0 (@,7'
S T A L TR

Note: the explicit dependency . (ae, Z) on ff{),z (r, L=1)> 0) is clear from (27.R):
2r

d
D (= 2) _[dr r-J(e-r)- JZZ 0y (rw,2) (40.0)

0

and from (13.R), where 65 explicitly depends on eéﬂ,z (computed in (36.R,z)).
Note: in (38-40) we use (35.0) for d(ae, Z), not C](ae, Z') (see Note after (37)).
Now from (40), using (13.R) with ﬁRw(r,l//, Z’) ,and applying (36.R,z), we get:
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de-&” J ae'R)LAbﬁﬁ'QOP'qs_%)"‘p‘s'%((l_ﬁ)qop+qp%j]

Z 0* -([a) A 2r
tda-e® I,
Z o :_!). A 27 p)(AP “Oop - (1 :B)"'As Qop *Gp - 0s - ﬂ),where (41.R.2)
A =Idr-r-J1(ae-r)-jd vART-S e fdn//-p-HR“’(r,w, z') (41.0)
0 6] 0

Note: localized Anomaly’s thicknesses are small: AS, ~0 (AfA =anyof (AR,, R,Ag,, AZA)).
;(AQ, =AR, ‘R, A, -AZ,), and

Anom.?

Oout5|de inside

Here we remind: A9, =0 or any of (Ap,, Ad,, Aty )
7 (Ra, @4 ) =R, . Besides, replacing 8¢’ in (41.0) with 65’ (13.R), we can use integration
by parts, applying Adme =0.1t allows to express A5 (41.0)via Ad, (not via unknown
derivatives 0A 3, /8(r, VA )ln (13.R)). Also: the dependency 65’ in (13.R)on ¥ comes
only from terms Ad, (v), there are no even A9, / Oy -terms. Thus (41.1)

g ¥ st oL: L2 oL? oL
——=—J,(®&-R,)-&-| Ad,- R+ R+ —2 | +2-Ap, -—2| |+
A T ra, o(@Ry) ( A (aR R oz jA HAToR j

, o o Au (087 oLy oty
+J1(%-RA)(CO -ApA-fR|A+2 R, | 2R "R A+%'qp’SAﬂA 6R 27

Note: if we need to integrate A:,S by dQ, , we must allow RA(goA), ZA(RA,%). Slmple
example: Anomaly is an infinite tunnel (Fig.3), perpendicular to a virtual X-line, (so
R, =R, /cosg,,where R, is the min Anomaly’s distance from Source Center), but

d
Aos ~AR,R AZ I gDA—APS
AQ, 2 C0S 0 AQ,

+7/2

Z, = Const soj” s dQ j oleﬁ2 NCA d(ij "z

The last integral converges due to J " ~£% 27 ~ RY?%in(41.1)&(36.R,z) (where
instead of R we should useR,).

R Part of
A
the tunnel

(0,0) T on

R X
Anomaly F | g . 3

= Tunnel
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Now we build an analytical solution for U; (26.z.a) viaU  (29.z) with (17.b,13.z) and

2|5, (42.0)&under UHS =NVF condition (4 —0):

ou; GU“’
(A+2u)- p= —ﬂ,o _ (42.2)
We will need a decay: Uy 2 iy =0 (42.1) and also re-write (29.z) in a form:
oV, U k,Z)=-II k -
PYE L -Q’ (=, anyk, Z) =-TI(, anyk, Z) (43.0), where (assuming Z, > 0):

y Q =-0" Vg (Vs >0) atz<0| 0 atz<0
- 1(z)= 2 (43.1)
Q;=(a" V-0 )IV; atz>0]" @7 (e, anyk, z)/V; atz>0) ">

Using method of undetermined coefficients, we can represent Uy (43.0):
2-U§’(ae,k)2¢0=eé'z(2d [[dz-e9711(2 )/Q)+eoz(z/3+j dz' 6% 11(z )/Q)(44)
where (@.4), = (. 5), (4. 8),, = (. B8).

Note:here and below we use Q( )(notQ(Z')) under integrals, see Note after (37).
Taking into account (43.1), we have ( >0, Q<0 Q>0 QM <O):
Uzw 0 %o S + 5 S (44.z-)
w Qe Lt Q.7 o ' 2
Ue| =e (a—J'OdZ e %0y (,k,2')/(2Q, V5 ))+
+e %7 (/3+on dz' e . 7 (& k, z’)/(zQae .v;))

w _ +Q,-Z
z <0_a0'e ’ (452 ')

(44.z+)

Now, using decay (42.1), we have: f,=0,

Also, introducing yzjowdz'-e‘Q*'z' DY (ae, K, Z'),we get: a-2Q, Vi =7, s0

ol =pe =t e -Iozdz’-e”ae'z' D7 (2,k, 2")/(2Q, V7 )+

+ e+Qae.z .J‘ZOO dzl . e_Qae.z’ . CD;O (&, k, Z,) /(ZQae .VPZ) (45Z+)

Note: indeed %" 'L dz'-e %"y (Z') ~®7(Z~0)/Q, ~0 (Anomaly is localized)
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0] —
z Zzoi _0

Ur|  =ay=Up|  =p+r/(2Q,-VF) (46.2-)
ou?” ou;’
Ay . Z =a, Q, A = (ﬁ+2,u) =(l+2 ) (7/2 B-Q, ) (46.2+)
Z -67" 0z +oz*

Now (46) gives:

=q. = Y . (i-l_z’u) ﬂ: 7//2 (ﬁ“-l_z/u)'Qae_/,lO'QO
=0t VP2 (l+2/u).Qae.|./10.Q0, Qae‘sz (’Hzﬂ)'QaeJ”lo‘Qo (47)

0]
z

& _ P VP%
According to (3.a,b), for UHS = NVF: Ve =V, and 4, = 0, Ve, s0 20 p\?

Thus, using 7 Via @} and (26.z.a),(17.b), we have:

27
U?(R,gp)‘zzo+ :jodeE-EE-j:dl’-r-J‘:d 7' o Q7 'IZ—Z'p‘H;)(r1W’Z,)'

0

> e™ g, (-R)-J, (1) (9 Ves Qo+ pVe Q) )
k=—o0

The achieved (48) allows BAT usage (see [6-8.530.2] and Fig.3):
> I (@ 1) i (2-R)- € :Jo(ae-
k=—0

F—R

N 12
r-R| =

)

r*+R?-2r-R-cos(y - ¢) (49)

v Y

Fig.4. Geometry notations for “Bessel Addition Theorem?”.
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Thus (48) can be re-written as:
t de-®-CJ/(27)

uy(R,p)| .=
2 ( )L:O_ SRVENSWPRVENGY , where (50)

2z
o :Iowdr.r.Jowd 7'.e %", J. dt//-JO(%-‘F(r,w)—ﬁ‘)-p-@f’(r,w, Z,)(SO.O)
0

Here we refer to Note after (41.0), replacing (HR(”, Ap,s,(41-0,13-R)) with(ezw,cg,(50-0,13-2)) ,
Now, using (13.z) with sz(f,l//, Z’) and (36.R,z), we get:

g =7 OAr ol? oL
C?. =J,(®&-Ar, ) —2-Au, -&- L+ —R 1 +J (e-Ar,)-
= "AQ, 1 (2-45) R, (aR oz l o (®-A1,)
oLe L° oL (50.1)
1 @® Ap, L] +Q. | ALy | =R+ 2B (AL +2-Ap, ) —2
[ Pa %z, Q. ( A (aR R jA ( A ILIA) oz A]j

oAr, R, —R-cos(¢p,—¢)
R a0

Note: we allow RA((DA), ZA(RA,(DA) , If we integrate by dQA (see text after (41.1) and
Fig.3). Here we use the same example: Anomaly is tunnel, perpendicular to the

Ar=|R, ~R =R: +R? ~2R, -R-cos(p, ),

virtual X - line with Z, = Const . Now the convergence of C, is provided in view of:

(50.1) contains diminishing J %, (8- Ary ) ~£%.27 ~ R'? due to AVA\RA% ~R, and

Ce dQ, ~AR, ‘R, .AZAJ'M/zd(pA—'CBE_
AQ, 12 s, - AQ,

(36.R,z)(whereR is replaced withR,), so ”j

Summarizing, the total solution for l;, (R,(O)Zzoi in (25) can be found as superposition

of “NO Anomaly case”(36.0.R,z) for /4 R ( R)‘Z:0+ & “Axis-Symmetrical Anomaly” (41)

for Wy, (R)LO+ & Z-response (50) from “Real Anomaly” for U (R, )

relates to axis-symmetrical source (f,”=0), located at origin X, ¥,Z=0 & usual media:
uniform UHS = NVF and LM, which consists of uniform SHS with localized Anomaly.

"y Each of them

7=
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Conclusion

In this article we built some seismic solutions for the mentioned above Media and

Layer
o (spectral

Sources. In order to validate such solutions, one can compare A{;, (R)

numerical result for a thin Layer in uniform LM, which is much easier to achieve) vs.
artificial Layer, combined from many small parallelepipeds (Anomalies) at the same

mid-depth as Z . with thickness Az, = Az . (ignoring the small effects from the

absence of numerical infinities: (X, y)max #0, AZ#0 & imperfectness of the models).

If Anomaly is deep, its recognition usually is concealed by multi-layer structure,
requiring impractically high measurement accuracy, but the @ -effects of shallow
Anomaly looks radically different from a potential shallow layer.

Here we emphasize that the obtained solutions represent just Direct Tasks (seismic
responses from given Media and Sources), while the practical applications usually
require Inverse Task: identification of Anomaly’s factors: content (Air or Water or...),
its form (karst or cave or tunnel or...)and its center(R,,,,Z,), its volume Q, :”deA

(if such center or €2, do exist). Such Tasks require numerical integration by dQ, ,

making pattern for each content & form, which can be coded with Splines’ factors
(convergence of the obtained solutions was showed above, see texts after (41.1)
& (50.2)). Here is a similar example: given content (Ap, A4, Au), inside tunnel, so
within proper pattern(Fig.3) we need to identify only 3 parameters:(R,,¢,Z,)="
Moreover, if @ is given (we should use at least two geophones and the axis of
such tunnel is supposed to be perpendicular to X, which is the axis of symmetry
between the two), so we have just 2 factors (R,,Z,) to identify.

Based on common sense & EM-computer-modeling, we expect IUlFffZ(R,(o)Z:Oi (11-14)

to have a bell-like spectral shape around big central frequency @ (Anomaly is

assumed to be shallow). This gives an opportunity of using many @ -equations for
each pattern, enough to identify the mentioned above parameters in the Inverse

Task (in case of (RL,ZA)=? we need just two points of such curve). Required for

such scenario the Uniform solid Half-Space content (o, 4, 1) and Source Signature

(SS) can be calculated in advance, using neighboring measurements (free from
Anomalies). These tasks deserve a separate article.
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