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Abstract. A criterion given by Jean-Louis Nicolas is used to offer
a proof for the Riemann Hypothesis in a straightforward way.
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There is a vivid interest in the Riemann Hypothesis proposed by
Bernhard Riemann in 1859. While there are no reasons to doubt the
validity of the Riemann Hypothesis [1], many colleagues consider it
the most important unsolved problem in pure mathematics [2]. The
Riemann Hypothesis is of great interest in number theory because it
implies results about the distribution of prime numbers. In this short
note, we offer a proof of the Riemann hypothesis via the Nicolas crite-
rion.

Nicolas has shown [3] that if

(1) G(k) =
Nk

φ(Nk)
− eγ ln lnNk > 0 ,

the Riemann Hypothesis is true. The primordial of order k is given by

(2) Nk =
k∏

i=1

pi,

γ ≈ 0.577216 is the Euler–Mascheroni constant, and φ(N) is Euler’s to-
tient function, i.e., the number of integers less than N that are coprime
to N . One obtains the first values G(k) = 2.653, 1.961, 1.5697, 1.3889,
1.1666, 1.0581, 0.9515, 0.8992, 0.84786, 0.77869, 0.73769, 0.688005,
0.64584, 0.619600, 0.597181, 0.57105, 0.54303, 0.52415, 0.503608,
0.48607, 0.47480, 0.462128, 0.45146, 0.43991, 0.425520, 0.413071,
0.40430, 0.396933, 0.39259, 0.38927, 0.37961, 0.37122, 0.36280, 0.35661,
0.34826, 0.34191, 0.33554, 0.329190, 0.323671, 0.318162, 0.31268,
0.30861, 0.30324, 0.29915, 0.29567, 0.29332, 0.28931, 0.28389, 0.27905,
0.27519, 0.27183, 0.26852, 0.26606, 0.26285, 0.259695, 0.25660, 0.25357,
0.25125, 0.24896, 0.24702, 0.245709, 0.243829, 0.24092, 0.23833,
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0.23631, 0.23457, 0.23195, 0.22939, 0.22649, 0.22407, 0.22192, 0.21983,
0.21761, 0.21545, 0.21335, 0.21149, 0.20968, 0.20776, 0.20605, 0.20424,
0.20219, 0.20049, 0.19856, 0.19697, 0.19542, 0.19405, 0.19272, 0.19132,
0.19008. Here G(1) > G(2) > . . . > G(89). This is evidence that the
G(k) is a gradually decreasing function. This means that it does not
have local extrema. The Section “Math” below shows no local extrema
for G(k) for all ranges of k.

In Ref. [3], Nicolas has found that if the criterion fails, G(k) has
both infinitely many positive and negative values. However, as we
have shown that G(k) does not have local extrema, such a possibility
is excluded. This means that the Riemann Hypothesis is true because
Nicolas’s criterion does not fail.

Math

Euler’s product formula for the totient formula reads

(3) φ(N) = N
∏
p|N

(
1− 1

p

)
,

where p|N are the primes p that divide the integer N .
If N is the primordial of order k, one has

(4) φ(Nk) = Nk

k∏
i=1

(
1− 1

pi

)
.

In the following, we use the notation

(5) G0(k) =
Nk

φ(Nk)
=

k∏
i=1

pi
pi − 1

.

We use finite difference methods [4] for the first term in Eq. (1) to
calculate

∆G0(k) = G0(k)−G0(k − 1)

=
k∏

i=1

pi
pi − 1

−
k−1∏
i=1

pi
pi − 1

=
G0(k)

pk
(6)

and ∆Nk = Nk(pk − 1)/pk. Applied to the second term, one has

(7) ∆eγ ln lnNk =
eγ∆ lnNk

lnNk

=
eγ∆Nk

Nk lnNk

=
eγ(pk − 1)

pk lnNk

.

Because of

(8) ∆G(k) =
G0(k)

pk
− eγ(pk − 1)

pk lnNk

,
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a local extremum exists if

(9) G0(k) =
k∏

i=1

pi
pi − 1

→ eγ (pk − 1)

pk
→ eγ ≈ 1.781 < 2,

where we used ln Nk/pk = 1 for pk → ∞ [5]. However,

(10)
k∏

i=1

pi
pi − 1

≫ 2.
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