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Abstract

This paper investigates the non-trivial zeros of the Riemann zeta
function using polar coordinates. By transforming the complex plane
into a polar coordinate system, we provide a geometric perspective on
the distribution of non-trivial zeros. We focus on the key formula:

ζ

(√
1

4
+ t2 ei arctan(2t)

)
= 0

This formula reveals the distribution pattern of non-trivial zeros and
supports the hypothesis that σ must be 1

2 and is a constant.

1 Introduction

The Riemann Hypothesis, proposed by Bernhard Riemann in 1859, asserts
that all non-trivial zeros of the Riemann zeta function ζ(s) have a real part
equal to 1

2
[1]. Formally, for any complex number s = σ + it where ζ(s) = 0,

the hypothesis states that σ = 1
2
.

Understanding the distribution of these non-trivial zeros is crucial as it
has significant implications for number theory, particularly in the distribution
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of prime numbers [2]. Despite extensive numerical evidence supporting the
hypothesis, a rigorous proof remains elusive. This paper aims to prove that
σ is a constant and must be 1

2
using geometric analysis in a polar coordinate

framework.

2 Key Formula and Transformation to Polar

Coordinates

2.1 Transformation to Polar Coordinates

The Riemann zeta function ζ(s) for a complex number s = σ+ it with σ > 1
is defined as:

ζ(s) =
∞∑
n=1

1

nσ+it
=

∞∑
n=1

1

ns

This series converges absolutely for σ > 1 and can be analytically continued
to other values of s except s = 1.

The functional equation for the zeta function is:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)[3]

This equation reveals the symmetry of the zeta function about the critical
line σ = 1

2
.

To transform s = σ + it to polar coordinates, we set:

s = reiθ where r =
√
σ2 + t2 θ = arctan

(
t

σ

)

2.2 Zeta Function in Polar Coordinates

Expressing the zeta function in polar form:

ζ
(
reiθ
)
=

∞∑
n=1

1

nreiθ

Using Euler’s formula eix = cos(x) + i sin(x), we rewrite nreiθ as:

nreiθ = er(cos(θ)+i sin(θ)) logn = er cos(θ) logn · eir sin(θ) logn
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For σ = 1
2
for all non-trivial zeros (assuming the hypothesis):

r =

√
1

4
+ t2

θ = arctan(2t)

Thus, we have:
nreiθ = n

1
2 · eit logn

and the zeta function for all non-trivial zeros (σ = 1
2
) becomes:

ζ

(√
1

4
+ t2 ei arctan(2t)

)
=

∞∑
n=1

1

n
1
2

e−it logn = 0

This transformation simplifies the expression of the zeta function and
provides a unified formula for all non-trivial zeros under the assumption that
σ = 1

2
.

3 Proof by Contradiction

To prove that σ = 1
2
is a constant, we use proof by contradiction.

1. **Assumption**: Assume σ is a variable rather than a constant. This
implies that σ can take different values, such as σ = 1

3
, σ = 1

4
, etc.

2. **Contradiction**: If σ is a variable, the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
=

0 will not hold consistently because different values of σ will lead to different
polar coordinate representations, as follows:

• **Different σ Values**: When σ takes different values, the polar coor-
dinates r and θ will change. For example, for σ = 1

3
, we have:

r =

√(
1

3

)2

+ t2, θ = arctan(3t)

• **Inconsistent Formula**: Different polar coordinate representations
mean that in the computation of the ζ function, the exponential term
nreiθ will be different. Therefore, it is impossible to ensure that all

non-trivial zeros satisfy the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
= 0.
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3. **Reductio ad Absurdum**: Since the assumption that σ is a variable
leads to a contradiction, we conclude that σ must be a constant. Further-
more, it must be equal to 1

2
. Therefore, we have proven that σ = 1

2
is a

constant, and all non-trivial zeros satisfy ζ
(
1
2
+ it

)
= 0, which supports the

Riemann Hypothesis.

4 Geometric Analysis and Proof

4.1 Geometric Setup

Consider the complex number s = σ+ it represented in polar coordinates as
P (r, θ), where:

r =
√
σ2 + t2

θ = arctan

(
t

σ

)
Define:

• Origin O: The origin of the polar coordinate system (0, 0).

• Point P: Represents the non-trivial zero s = reiθ or s = σ + it.

• Point L: The projection of P onto the real axis, having coordinates
(σ, 0).

This setup forms the right-angled triangle OLP .

4.2 Applying the Pythagorean Theorem

In the right-angled triangle OLP :

OP 2 = OL2 + PL2

where:

• OP = r is the hypotenuse.

• OL = σ is the adjacent side.

• PL = t is the opposite side.
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From the Pythagorean theorem, we get:

r2 = σ2 + t2

In polar coordinates:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
4.3 Case Analysis: σ as a Constant vs. Variable

4.3.1 σ as a Constant

Assume σ = 1
2
:

r =

√
1

4
+ t2

θ = arctan(2t)

In this case, the point P representing the non-trivial zero of the zeta
function moves vertically along the line σ = 1

2
as t varies. The distribution

of non-trivial zeros is thus constrained to this vertical line in the complex
plane, supporting the Riemann Hypothesis. The value of t is determined by
the condition:

ζ

(√
1

4
+ t2 ei arctan(2t)

)
= 0

This means t must be such that ζ
(
1
2
+ it

)
= 0.

4.3.2 σ as a Variable

Assume σ = f(t):

r =
√

f(t)2 + t2

θ = arctan

(
t

f(t)

)
If σ is a variable that changes with t, the distribution of zeros would no

longer be along a straight vertical line. This would imply that the zeros of
the zeta function are not confined to a single vertical line, which contradicts
the observed empirical evidence that the non-trivial zeros have their real part
σ = 1

2
for the first 10 billion zeros [4].
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4.4 Proof by Contradiction

Assume σ is not a constant but a variable. This implies σ can take different
values, such as σ = 1

3
, σ = 1

4
etc. Nevertheless, the distribution of the

non-trivial zeros P can only be categorized into the following cases:

1. Vertical Movement: If σ = 1
2
, meaning that σ is a constant, then all

non-trivial zeros P are vertically distributed along the line σ = 1
2
.

2. Transverse Movement: If σ is a variable, then P will form a trans-
verse distribution (left and right movement) in the complex plane. For
this scenario, L would move along the real axis.

3. Mixed Movement: If σ is a variable and has multiple occurrences
of σ = 1

2
, P will form both vertical and transverse distributions in the

complex plane. For this scenario, L would also move along the real
axis.

Since σ can either be a constant or a variable in:

r2 = σ2 + t2

we can analyze the above types of movements to determine the nature of σ.

4.5 Analysis of Movement

The verification of the first ten trillion non-trivial zeros, all satisfying σ = 1
2

[4], indicates that there are no special or exceptional points where σ ̸= 1
2

among the first ten trillion non-trivial zeros. This is consistent with the
Pythagorean theorem:

r2 = σ2 + t2

If we hypothesize that σ is a variable, we can analyze the following scenarios:

1. Vertical Distribution: If σ = 1
2
, all non-trivial zeros must be verti-

cally distributed along the line σ = 1
2
.

2. Transverse Distribution: If σ is a variable, all non-trivial zeros
would be transversely distributed, which would be inconsistent with
the distribution pattern of the first ten trillion zeros.

6



3. Mixed Distribution: If there are both σ = 1
2
and σ ̸= 1

2
non-trivial

zeros, we would observe both vertical and transverse distributions.
However, this has not been observed in the first ten trillion zeros.

Since all of the non-trivial zeros align with the Pythagorean theorem,
the distribution of all non-trivial zeros must also align with the Pythagorean
theorem. As the first ten trillion non-trivial zeros do not indicate σ is a vari-
able, both Transverse Distribution and Mixed Distribution are not supported.
This applies to all of the non-trivial zeros because the Pythagorean theorem
is valid. It would be impossible that the first ten trillion non-trivial zeros are
in the Vertical Distribution and further non-trivial zeros suddenly change.
Because the distribution of all non-trivial zeros follows the Pythagorean the-
orem.

In other words, whether we have multiple σ = 1
2
or no other possibility

for σ’s value than 1
2
, this means that σ is a constant. Alternatively, we could

have only one σ = 1
2
and many σ values other than 1

2
, or we could have

many repeating σ values equal to 1
2
and many repeating σ values as other

values. This correlates with the Vertical, Transverse, and Mixed Movements
respectively.

Based on the first ten trillion zeros and the Pythagorean theorem:

r2 = σ2 + t2,

we can confirm that the following statements are false as no other zeros with
values different than 1

2
can be found:

1. We have only one σ = 1
2
and many σ values other than 1

2
. [false]

2. We have many σ values as 1
2
and many σ values as other values. [false]

Therefore, σ must be a constant and it is 1
2
. This can be applied to not

only the first ten trillion zeros but all of the non-trivial zeros through the
Pythagorean theorem, thus supporting the Riemann Hypothesis.

5 Conclusion

By representing the non-trivial zeros of the Riemann zeta function in polar
coordinates and leveraging geometric analysis, we provide an alternative per-
spective on their distribution, supporting the hypothesis that σ = 1

2
. The
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geometric relationship r2 = 1
4
+ t2 combined with the empirical evidence that

σ = 1
2
for the known non-trivial zeros strongly suggests that σ is a constant.

Therefore, we conclude that σ = 1
2
and is a constant for all non-trivial zeros

of the Riemann zeta function in this geometirc perspective.
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positional orientation and avoid the complexities associated with negative
numbers, thus simplifying calculations. More importantly, this conversion re-
frames the Riemann zeta function, its non-trivial zeros, and the Riemann Hy-
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metric functions and the Pythagorean theorem could facilitate a straightfor-
ward, rapid, and possible proof of the Riemann Hypothesis.
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abstract concepts, lack direct physical representations in reality. And that
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However, this viewpoint may be recognized as erroneous in the context of
complex numbers. Complex numbers are neither positive nor negative and
are not ordered in the same way real numbers are. Their components can be
both positive and negative in both polar and rectangular coordinates. Fur-
thermore, zero plays a crucial role in the Riemann Hypothesis, as it focuses
on finding the zeros of the zeta function. So, it is argued that zero cannot
be disregarded in this context.

Despite this, the perspective, which may be recognized as erroneous,
sparked further investigation into the geometric properties and positional
locations of non-trivial zeros. This led to the proposal of using polar coordi-
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A Appendix A: Mathematical Transformations

and Properties

A.1 Transformation to Polar Coordinates

The Riemann zeta function ζ(s) is defined for complex numbers s = σ + it
with σ > 1 as:

ζ(s) =
∞∑
n=1

1

nσ+it
=

∞∑
n=1

1

ns
[3]

This series converges absolutely for σ > 1 and can be analytically continued
to other values of s (except s = 1).

The analytic continuation of the zeta function extends its domain to the
entire complex plane, excluding s = 1. This continuation is essential for
defining ζ(s) beyond the region where the original series converges.

Two key formulas used in analytic continuation are:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)[3]

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx

These integral representations converge for all s in the complex plane except
s = 1, preserving the analytic nature of ζ(s) in polar coordinates as well.
The functional equation of the Riemann zeta function implies a symmetry
about the critical line σ = 1

2
:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)

The Ξ function, defined as:

Ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)
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satisfies the simpler functional equation:

Ξ(s) = Ξ(1− s)

To express s in polar coordinates, we write:

s = σ + it = reiθ

where:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
Given a complex number s = σ+it, we transform it into polar coordinates

as follows:
s = r(cos θ + i sin θ)

where:
r =

√
σ2 + t2

θ = arctan

(
t

σ

)
The magnitude r of the complex number s in the traditional system is:

|s| =
√
σ2 + t2

In the polar coordinate system, the magnitude r is defined as:

r =
√
σ2 + t2

Since the magnitude is preserved, we have:

|s| = r

The phase θ in the traditional system is:

ϕ = arctan

(
t

σ

)
In the polar coordinate system, the phase θ is:

θ = arctan

(
t

σ

)
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Since the phase is preserved, we have:

ϕ = θ

To show that s = σ + it is preserved in polar coordinates, we start with:

s = r(cos θ + i sin θ)

Substitute r and θ:

s =
√
σ2 + t2

(
cos

(
arctan

(
t

σ

))
+ i sin

(
arctan

(
t

σ

)))
Using the trigonometric identities:

cos(arctan(x)) =
1√

1 + x2
, sin(arctan(x)) =

x√
1 + x2

Let x = t
σ
, then:

cos

(
arctan

(
t

σ

))
=

σ√
σ2 + t2

sin

(
arctan

(
t

σ

))
=

t√
σ2 + t2

Substituting these back:

s =
√
σ2 + t2

(
σ√

σ2 + t2
+ i

t√
σ2 + t2

)
Simplifying:

s = σ + it

This confirms that the transformation preserves the representation s =
σ + it.

A.2 Verification of Properties

To verify that the zeta function’s properties are consistent in polar coordi-
nates, we provide detailed steps:
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1. Series Representation:

ζ(reiθ) =
∞∑
n=1

1

nreiθ

2. Continuity and Differentiability: The transformation from Carte-
sian to polar coordinates is smooth, and ζ(reiθ) inherits the continuity
and differentiability of ζ(s).

3. Functional Equation in Polar Form: The functional equation ζ(s) =
2sπs−1 sin

(
πs
2

)
Γ(1− s)ζ(1− s) in polar coordinates becomes:

ζ(reiθ) = 2re
iθ

πreiθ−1 sin

(
πreiθ

2

)
Γ(1− reiθ)ζ(1− reiθ)

Given that the gamma function Γ(s) and the sine function sin(s) are
well-defined and analytic in the complex plane, the symmetry and an-
alytic continuation properties hold in the polar form.

4. Symmetry: Using the Ξ function, which satisfies Ξ(s) = Ξ(1− s), we
confirm that the symmetry about the critical line σ = 1

2
is maintained:

Ξ(reiθ) = Ξ(1− reiθ)

B Appendix B: Verification and Analysis of

Non-Trivial Zeros

B.1 Verification of Formula for Non-Trivial Zeros

To verify the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
= 0 for non-trivial zeros of the

Riemann zeta function, we selected 30 known non-trivial zeros with signifi-
cantly different values and computed the zeta function values using the given
formula.

The results are summarized in the following table:
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t (Imaginary part of zero) ℜ(ζ) ℑ(ζ)
14.1347251417347 −1.61× 10−16 4.93× 10−15

21.0220396387716 1.41× 10−14 4.77× 10−14

25.0108575801457 −4.07× 10−15 1.50× 10−14

30.4248761258595 −2.80× 10−15 −1.03× 10−14

32.9350615877392 −5.02× 10−15 1.17× 10−14

37.5861781588256 −3.73× 10−14 −1.26× 10−13

40.9187190121475 7.62× 10−15 3.32× 10−15

43.327073280914 1.11× 10−12 −1.46× 10−12

48.0051508811672 3.72× 10−14 2.82× 10−14

49.7738324776723 −3.64× 10−15 6.71× 10−15

52.9703214777145 −6.67× 10−15 9.52× 10−14

56.4462476970634 1.33× 10−14 4.67× 10−15

59.3470440026026 1.57× 10−13 3.08× 10−13

60.8317785246098 1.17× 10−14 −3.83× 10−15

65.1125440480819 4.63× 10−13 4.89× 10−13

67.0798105294942 −5.28× 10−15 3.99× 10−14

69.5464017111739 6.91× 10−14 −1.62× 10−13

72.0671576744819 1.79× 10−14 −1.92× 10−15

75.7046906990839 −5.06× 10−14 −3.79× 10−14

77.1448400688748 8.12× 10−15 −6.14× 10−15

79.3373750202493 1.27× 10−13 −1.37× 10−13

82.910380854086 −5.32× 10−14 −5.85× 10−14

84.7354929805171 −5.97× 10−15 9.47× 10−14

87.4252746131252 −1.32× 10−14 −5.74× 10−14

88.8091112076345 −2.34× 10−14 5.16× 10−14

92.4918992705583 −3.63× 10−13 −3.92× 10−13

94.6513440405198 −6.37× 10−14 −1.07× 10−13

95.8706342282453 4.79× 10−14 −2.13× 10−14

98.8311942181937 −1.89× 10−14 8.13× 10−14

101.317851005731 −3.04× 10−13 −1.19× 10−12

Table 1: Verification of the formula for known non-trivial zeros of the Rie-
mann zeta function
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B.2 Analysis

The values of ζ
(√

1
4
+ t2 ei arctan(2t)

)
for the selected non-trivial zeros are

extremely close to zero, with both real and imaginary parts being on the
order of 10−13 or smaller. This strongly suggests that the given formula
holds true for these zeros.

These results indicate that the formula ζ
(√

1
4
+ t2 ei arctan(2t)

)
= 0 accu-

rately represents the non-trivial zeros of the Riemann zeta function for the
tested cases, providing further support to the hypothesis that all non-trivial
zeros lie on the critical line σ = 1

2
.
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