
ON DEGREES OF CARRY AND SCHOLZ’S CONJECTURE

T. AGAMA

Abstract. Exploiting the notion of carries, we obtain improved upper bounds

for the length of the shortest addition chains ι(2n−1) producing 2n−1. Most
notably, we show that if 2n − 1 has carries of degree at most

κ(2n − 1) =
1

2
(ι(n)− b

logn

log 2
c+

b log n
log 2

c∑
j=1

{
n

2j
})

then the inequality

ι(2n − 1) ≤ n+ 1 +

b log n
log 2

c∑
j=1

(
{
n

2j
} − ξ(n, j)

)
+ ι(n)

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest

addition chain producing ·, {·} denotes the fractional part of · and where

ξ(n, 1) := {n
2
} with ξ(n, 2) = { 1

2
bn
2
c} and so on

1. Introduction

An addition chain producing n ≥ 3, roughly speaking, is a sequence of numbers
of the form 1, 2, s3, s4, . . . , sk−1, sk = n where each term is the sum of two earlier
terms- not necessarily distinct - in the sequence, obtained by adding each sum
generated to an earlier term in the sequence. The length of the chain is determined
by the number of entries in the sequence excluding the mandatory first term 1,
since it is the only term which cannot be expressed as the sum of two previous
terms in the sequence. There are numerous addition chains that result in a fixed
number n; In other words, it is always possible to construct as many addition chains
producing a fixed number positive integer n as n grows in magnitude. The shortest
among these possible chains producing n is regarded as the optimal or the shortest
addition chain producing n. There is currently no efficient method for getting the
shortest addition yielding a given number, thus reducing an addition chain might
be a difficult task, thereby making addition chain theory a fascinating subject to
study. By letting ι(n) denotes the length of the shortest addition chain producing n,
then Arnold Scholz conjectured and alfred Braurer proved the following inequalities

Theorem 1.1 (Braurer). The inequality

m+ 1 ≤ ι(n) ≤ 2m

for 2m + 1 ≤ n ≤ 2m+1 holds for m ≥ 1.
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Conjecture 1.1 (Scholz). The inequality

ι(2n − 1) ≤ n− 1 + ι(n)

holds for all n ≥ 2.

It has been shown computationally by Neill Clift, that the conjecture holds for all
n ≤ 5784688 and in fact it is an equality for all exponents n ≤ 64 [2]. Alfred
Brauer proved the Scholz conjecture for the star addition chain, a special type of
addition chain where each term in the sequence obtained by summing uses the
immediately subsequent number in the chain. By denoting with ι∗(n) as the length
of the shortest star addition chain producing n, it is shown that (See [1])

Theorem 1.2. The inequality

ι∗(2n − 1) ≤ n− 1 + ι∗(n)

holds for all n ≥ 2.

In relation to Conjecture 1.1, Arnold Scholz postulated that Conjecture 1.1 can be
improved in general. In particular, Alfred Braurer [1] proved the inequality

ι(n) <
log n

log 2
(1 +

1

log log n
+

2 log 2

(log n)1−log 2
)

for 2m ≤ n < 2m+1 for all sufficiently large n.
Quite a particular special cases of the conjecture has also be studied by many
authors in the past. For instance, it is shown in [4] that the Scholz conjecture holds
for all numbers of the form 2n − 1 with n = 2q and n = 2s(2q + 1) for s, q ≥ 0. If
we let ν(n) denotes the number of 1′s in the binary expansion of n for m = 2n − 1,
then it is shown in [3] that the Scholz conjecture holds in the case ν(n) = 5.

2. Sub-addition chains

In this section we introduce the notion of sub-addition chains.

Definition 2.1. Let n ≥ 3, then by the addition chain of length k − 1 producing
n we mean the sequence

1, 2, . . . , sk−1, sk

where each term sj (j ≥ 3) in the sequence is the sum of two earlier terms, with
the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n

with ai+1 = ai + ri and ai+1 = si for 2 ≤ i ≤ k. We call the partition ai + ri
the i th generator of the chain for 2 ≤ i ≤ k. We call ai the determiners and
ri the regulator of the i th generator of the chain. We call the sequence (ri) the
regulators of the addition chain and (ai) the determiners of the chain for 2 ≤ i ≤ k.
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Definition 2.2. Let the sequence 1, 2, . . . , sk−1, sk = n be an addition chain pro-
ducing n with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then we call the sub-sequence (sjm) for 1 ≤ j ≤ k and 1 ≤ m ≤ t ≤ k a sub-
addition chain of the addition chain producing n. We say it is complete sub-
addition chain of the addition chain producing n if it contains exactly the first t
terms of the addition chain. Otherwise we say it is an incomplete sub-addition
chain.

3. The notion of carries

We devote this section to the study of the notion of carries and its number theoretic
properties. It turns out that this notion plays an important role in controlling
the length of an addition for numbers of the form 2n − 1. Short addition chains
with small carries almost satisfy the Scholz conjecture . We launch the following
languages.

Definition 3.1. Consider the decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) +

(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

for n ≥ 2. Then the non-zero remainder

η(2n − 1) :=
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

is the level one carry of 2n − 1. We say that 2n − 1 is free of level one carries if
η(2n − 1) = 0. By letting

m =
⌊n

2

⌋
then we obtain the decomposition

2m − 1 = (2b
m
2 c − 1)(2b

m
2 c + 1) +

(1− (−1)m)

2
(2m−(1−(−1)

m) 1
2 )

and we denote the carry with

η(2m − 1) =
(1− (−1)m)

2
(2m−(1−(−1)

m) 1
2 )

and we say it is the level two carry of 2n− 1 if η(2m− 1) 6= 0. In general, we denote
the level k carry of 2n − 1 as the remainder

η(2r − 1) =
(1− (−1)r)

2
(2r−(1−(−1)

r) 1
2 )

with

r = b n
2k
c.

We say that 2n−1 is free of level k carries if η(2r−1) = 0. The number of non-zero

levels of carry of 2n − 1 for all 1 ≤ k ≤ b lognlog 2 c is the degree of carry of 2n − 1.

Proposition 3.1. The number 2n − 1 (n ≥ 2) is free of level one carry if and
only if n ≡ 0 (mod 2).



4 T. AGAMA

Proof. Suppose that 2n − 1 is free of level one carry, then

η(2n − 1) =
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 ) = 0.

This is only possible with (1 − (−1)n) = 0 and when n ≡ 0 (mod 2). Conversely,
suppose that n ≡ 0 (mod 2) then n

2 ∈ N and we can write

2n − 1 = (2
n
2 − 1)(2

n
2 + 1)

and we see that

η(2n − 1) = 0.

�

Integers of the form 2n − 1 with high degrees of carry serve as an obstruction to
achieving the inequality

ι(2n − 1) ≤ n− 1 + ι(n)

using our current method. At best, avoiding them can yield progress on the con-
jecture using the current method but only for a specialized set of integers of the
form 2n−1 with low degrees of carry. It turns out that the nature of the exponents
in large part characterizes integers with high degree (resp. low degree) carries. En-
countering integers of the form 2n − 1 with exponents giving rise to high degree
carries can be controlled in a way to minimize the corresponding length of the ad-
dition chain. At the moment we prove that we can obtain a chain of small length
for numbers 2n − 1 with exponents giving rise to low degree carries.

4. Improved inequality using the method of carries

In this section, we prove an explicit upper bound for the length of the shortest
addition chain producing numbers of the form 2n− 1. We begin with the following
important but fundamental result.

Theorem 4.1. if 2n − 1 has carries of degree at most

κ(2n − 1) =
1

2
(ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
})

then the inequality

ι(2n − 1) ≤ n+ 1 +

b log n
log 2 c∑
j=1

(
{ n

2j
} − ξ(n, j)

)
+ ι(n)

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest addition
chain producing ·, {·} denotes the fractional part of · and where ξ(n, 1) := {n2 } with
ξ(n, 2) = { 12b

n
2 c} and so on

Proof. Suppose that 2n − 1 has at most

1

2
(ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
})
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degrees of carries. Next decompose the number 2n−1 and obtain the decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) + η(2n − 1)

where

η(2n − 1) :=
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

is the level one carry of 2n − 1. It is easy to see that we can recover the general
factorization of 2n− 1 from this identity according to the parity of the exponent n.
In particular, if n ≡ 0 (mod 2), then we have

2n − 1 = (2
n
2 − 1)(2

n
2 + 1)

and

2n − 1 = (2
n−1
2 − 1)(2

n−1
2 + 1) + 2n−1

if n ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2n − 1) ≤ ι
(

(2b
n
2 c − 1)(2b

n
2 c + 1)

)
+ η(2n − 1).

Applying Lemma ??, we obtain further the inequality

ι(2n − 1) ≤ ι(2bn2 c − 1) + ι(2b
n
2 c + 1) + η(2n − 1)(4.1)

Again let us set bn2 c = k in (4.1), then we obtain the general decomposition

2k − 1 = (2b
k
2 c − 1)(2b

k
2 c + 1) + η(2k − 1)

where

η(2k − 1) =
(1− (−1)k)

2
(2k−(1−(−1)

k) 1
2 )

is the carry of 2k− 1. It is easy to see that we can recover the general factorization
of 2k−1 from this identity according to the parity of the exponent k. In particular,
if k ≡ 0 (mod 2), then we have

2k − 1 = (2
k
2 − 1)(2

k
2 + 1)

and

2k − 1 = (2
k−1
2 − 1)(2

k−1
2 + 1) + 2k−1

if k ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2k − 1) ≤ ι((2b k2 c − 1)(2b
k
2 c + 1)) + η(2k − 1).

Applying Lemma ??, we obtain further the inequality

ι(2k − 1) ≤ ι(2b k2 c − 1) + ι(2b
k
2 c + 1) + η(2k − 1)

= ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)(4.2)

so that by inserting (4.2) into (4.1), we obtain the inequality

ι(2n − 1) ≤ ι(2b 12 bn2 cc − 1) + ι(2b
1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ ι(2b
n
2 c + 1) + η(2n − 1).(4.3)

Next, we iterate the factorization up to frequency s to obtain

ι(2n − 1) ≤ ι(2bn2 c + 1) + η(2n − 1) + ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ · · ·+ ι(2
n
2s−ξ(n,s) − 1) + ι(2

n
2s−ξ(n,s) + 1) + η(2b

n

2s−1 c − 1)(4.4)
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where 0 ≤ ξ(n, s) < 1 for an integer 2 ≤ s := s(n) fixed to be chosen later. For
instance,

ξ(n, 1) = (1− (−1)n)
1

4
< 1

and

ξ(n, 2) = (1− (−1)n)
1

8
+ (1− (−1)k)

1

4
< 1

with

k := bn
2
c

and so on. Indeed the function ξ(n, s) for values of s ≥ 3 can be read from exponents
of the terms arising from the iteration process. It follows from (4.4) the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)(4.5)

where the term
s∑
j=1

∑
κ(2m−1) 6=0
m=b n

2j−1 c

1

counts the number of all non-zero carry of 2n − 1 up to level s and 0 ≤ θ(n, s) :=
s∑
j=1

ξ(n, j) and 2 ≤ s := s(n) fixed, an integer to be chosen later. It is worth noting

that

θ(n, s) :=

s∑
j=1

ξ(n, j) = 0

if n = 2r for some r ∈ N, since ξ(n, j) = 0 for each 1 ≤ j ≤ s for all n which are
powers of 2. It is also important to note that the 2s term is obtained by noting that
there are at most s terms with odd exponents under the iteration process and each
term with odd exponent contributes 2, and the other s term comes from summing
1 with frequency s finding the total length of the short addition chains producing
numbers of the form 2v+1. Now, we set k = n

2s −ξ(n, s) and construct the addition

chain producing 2k as 1, 2, 22, . . . , 2k−1, 2k with corresponding sequence of partition

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2k−1 = 2k−2 + 2k−2, 2k = 2k−1 + 2k−1

with ai = 2i−2 = ri for 2 ≤ i ≤ k + 1, where ai and ri denotes the determiner and
the regulator of the ith generator of the chain. Let us consider only the complete
sub-addition chain

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23, . . . , 2k−1 = 2k−2 + 2k−2.

Next we extend this complete sub-addition chain by adjoining the sequence

2k−1 + 2b
k−1
2 c, 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c, . . . , 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.
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Since ξ(n, s) = 0 if n = 2r and 0 ≤ ξ(n, s) < 1 if n 6= 2r, we note that the adjoined
sequence contributes at most

b log k

log 2
c = b

log( n2s − ξ(n, s))
log 2

c = b log n− s log 2

log 2
c = b log n

log 2
c − s

terms to the original complete sub-addition chain. Since the inequality holds

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21 <

k−1∑
i=1

2i

= 2k − 2

we insert terms into the sum

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21(4.6)

so that we have
k−1∑
i=1

2i = 2k − 2.

Let us now analyze the cost of filling in the missing terms of the underlying sum.

We note that we have to insert 2k−2 + 2k−3 + · · · + 2b
k−1
2 c+1 into (4.6) and this

comes at the cost of adjoining

k − 2− bk − 1

2
c

terms to the term in (4.6). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.(4.7)

Again we have to insert 2b
k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1 into (4.7) and this comes at the

cost of adjoining

bk − 1

2
c − bk − 1

22
c − 1

terms to the term in (4.7). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + (2b

k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1) + 2b

k−1

22
c+

· · ·+ 21.(4.8)

By iterating the process, it follows that we have to insert into the immediately
previous term by inserting into (4.8) and this comes at the cost of adjoining

bk − 1

2j
c − bk − 1

2j+1
c − 1

terms to the term in (4.8) for j ≤ b lognlog 2 c − s, since we are filling in at most b log klog 2 c
blocks with k = n

2s − ξ(n, s). It follows that the contribution of these new terms is
at most

k − 1−
⌊
k − 1

2b
log k
log 2 c

⌋
− b log k

log 2
c(4.9)

obtained by adding the numbers in the chain

k − 1− bk − 1

2
c − 1
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bk − 1

2
c − bk − 1

22
c − 1

...
...
...
...
...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
...
...

b k − 1

2b
log k
log 2 c

c − b k − 1

2b
log k
log 2 c+1

c − 1.

By undertaking a quick book-keeping, it follows that the total number of terms in
the constructed addition chain producing 2k − 1 with k = n

2s − ξ(n, s) is

δ(2k − 1) ≤ k + k − 1−
⌊

k − 1

2b
log k
log 2 c+1

⌋
− b log k

log 2
c+ b log n

log 2
c − s

≤ n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
− b log n

log 2
c+ s+ b log n

log 2
c − s

=
n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
.(4.10)

By plugging the inequality (4.10) into the inequalities in (4.5) and noting that
ι(·) ≤ δ(·), we obtain the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) +

n

2s−1
− 1 + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋(4.11)

= n− 1 +
n

2s
+ s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋

where we note that
s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1

counts the number of non-zero carries up to the s level for the number 2n − 1. By
taking 2 ≤ s := s(n) such that s = b lognlog 2 c which is the maximum frequency of the

iteration, then ⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
= 0

and we obtained that

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1 ≤ 1

2
(ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
})
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and the inequality

ι(2n − 1) ≤ n− 1− θ(n, b log n

log 2
c) + b log n

log 2
c+ 2 + ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
}

for θ(n, b lognlog 2 c) :=
b log n

log 2 c∑
j=1

ξ(n, j) > 0 with n ≥ 4 and 0 ≤ ξ(n, j) < 1, where {·}

denotes the fractional part of a real number. The claimed inequality follows as a
consequence. �

It turns out that proving integers of the form 2n − 1 has carries of degree at most

κ(2n − 1) =
1

2
(ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
})

would yield the inequality

ι(2n − 1) ≤ n+ 1 +

b log n
log 2 c∑
j=1

(
{ n

2j
} − ξ(n, j)

)
+ ι(n)

for all n ∈ N as shown in the preceding proof, which is slightly short of the original
conjecture. Indeed, we expect the degree of carries of all integers to be of the above
form since for integers of the form n = 2k, it matches exactly with degree given by

the formula. In particular for 22
k − 1 is always free of carries and we see that

κ(22
k

− 1) =
1

2
(ι(2k)− b log 2k

log 2
c+

b log n
log 2 c∑
j=1

{2k

2j
}) = 0.

We make the following conjecture

Conjecture 4.1. (The carry-addition chain conjecture) Let n ≥ 2 and let κ(·)
denotes the degree of carry of ·. Then we have

κ(2n − 1) =

⌈
1

2
(ι(n)− b log n

log 2
c+

b log n
log 2 c∑
j=1

{ n
2j
})
⌉

where d·e denotes the ceiling of ·.

1.

1

.
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