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Discussion of a possible approach for the
quantization of the gravitational field

Yandong Yang

Abstract—In this paper, the author begins by reviewing
the fundamental contradictions between general relativity
(GR) and quantum mechanics (QM) from the perspec-
tive of background manifolds, while highlighting a core
principle that must be satisfied by both theories. The
Schrdinger’s cat thought experiment, Young’s double-slit
interference experiment, and the Einstein-Rosen-Podolsky
(ERP) paradox are discussed in the context of this princi-
ple. The author proposes a unification of GR and QM
within a mathematical framework by introducing the
concepts of virtual potential fields and virtual mass. Based
on this discussion, a model of black holes is presented,
along with a potential explanation for the black hole
information paradox, which may also offer insights into
the mystery of antimatter. The paper further explores
the possible applications of virtual particles in quantum
field theory, including the treatment of divergent terms
in the quantization of real scalar fields and the physical
significance of the Pauli-Villars renormalization method,
along with an estimate of the Lamb shift. Finally, the
author suggests a promising approach for the quantization
of the gravitational field.

Index Terms—virtual particles, black hole information
paradox, antimatter,quantum gravity.

I. INTRODUCTION

The biggest conflict between general relativ-
ity(GR) and quantum mechanics(QM) may be that
the two describe the four basic forces of nature in a
different manner. The theory of quantum mechanics
holds that forces are generated by the exchange of
particles, i.e. exchange of photons produces electro-
magnetic force, exchange of weak standard bosons
produces weak interaction force, exchange of gluons
generates strong interaction force, with gravity has
yet to be ”quantized” [1]; While the theory of
general relativity holds that gravity is caused by the
bending of time and space, but the other three forces
can not be ”geometricized”.
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According to general relativity, which states that
the metric, gab,and quantities derivable from it are
the only spacetime quantities that are allowed to
appear in the equations of physics. And that given
a point P on a manifold M and a vector V tangent to
M at point P , we determine the only geodesic line
on the manifold. For example, any meridian starting
from the north pole of a sphere is part of a geodesic
line. However, according to the uncertainty principle
of quantum mechanics, if a free particle is precisely
located at the north pole at the initial moment, we
can not determine which direction it moves.

Although the principle of uncertainty does not vi-
olate the physical laws of the macroscopic motion of
particles (the motion of free particles along geodesic
lines),it is not easy to introduce the uncertainty
principle of quantum mechanics into the curved
space-time [2]. Still, we can find a basic principle
that both theories have to follow.

II. A GENERAL PRICIPLE

As we know, the essence of the principle of
general covariance is to eliminate any human factors
unrelated to the intrinsic geometry of space and time
when expressing physical laws. It is a natural as-
sumption that the uncertainty principle of quantum
mechanics should also adhere to this principle.

It appears that if a physical process must be
described by introducing a ’measurable set’ that is
independent of the intrinsic geometry of the back-
ground space, the quantum effects of the process
will vanish (or no longer be apparent). I will refer
to this as Principle No. 1 in the following discussion.
Let’s begin by examining a few examples:

Example 1: In the Schrodinger’s Cat experiment
[3] [4],the entire physical process should be viewed
as the interaction between two systems: one being
the radium system, whose decay can be described
without the need to introduce any measurable set
(such as length, volume, etc.), and is therefore
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purely quantum mechanical; the other is the macro-
scopic system consisting of the box, the cat, and
the bottle containing cyanide. For the two systems
to interact with each other, it is necessary to break
the bottle or open a small hole in the side wall of
it to release cyanide into the air, thus a measurable
set (the diameter of the hole) must be introduced.
According to principle No.1, the physical process
will no longer have obvious quantum mechanical
effects, the results are conclusive, and there is no
superposition states of live and dead cats. If there
is no intermediate (the cyanide-filled bottle), but
rather direct interaction between the decay system
and the cat, then there are also two cases: one is
that the radiation produced by decay hits the cat
for enough time to kill it, then a measurable set
of ”time interval” is introduced and the conclusion
is definitive. The other case is that the radiation
produced by decay acts immediately with the cat,
without observable time interval, then the cat is no
different from a microscopic particle, the states of
cat and radium atoms are indeed entangled [5].

Example 2: In Young’s double-slit interference
experiment [6], let the photon pass through the slits
one by one without making any measurements of
its path, the physical background can be considered
as pure quantum mechanical. Once we make mea-
surements (in any way) and try to determine which
slit the photon passes [7], the interference pattern
disappears. The reason is that to determine which
slit the photon passes through, a measurable set of
”resolution” must be introduced to distinguish the
two slits, then the quantum effect disappears.

Example 3: For the interpretation of ERP paradox
[8] [9], the description of two entangled particles
does not require the introduction of any measurable
set, so it is a pure quantum mechanical effect.
According to Einstein, the spins of two particles are
determined at the time of separation (but we do not
know which particle takes which spin direction be-
fore the measurement). From a macroscopic point of
view, in order to measure the spin of two particles,
we have to wait for them to separate for a distance
(a measurable set), while a quantum mechanical
description of the process require no concept of
measurable sets, which is self-evident in the wave
functions of entangled states:

|0〉C →
1√
2

[| ↑ 〉A| ↓ 〉B ± | ↑ 〉B| ↓ 〉A] (1)

so we have to consider them as a whole. If we
consider this problem in the framwork of field the-
ory, we may have to acknowledge the existence of
superluminal particles which are used to exchange
information between the entangled particles.

III. INTRODUCTION OF VIRTUAL POTENTIAL
FIELDS AND VIRTUAL PARTICLES

Acorrding to the discussion above, if we want
to explore the root causes of the contradictions
between general relativity and quantum mechanics,
we should first focus on those constants independent
of human factors, to see what the effect is when
those constants were changed. As we all know, the
speed of light is an invariant constant regardless
of the state of its observer. But no one has ever
answered the questions: Why is it right for be-
ing so? What happens if one exceeds the speed
of light? Take Einstein’s mass velocity relation
mR = m0/

√
1− v2/c2 ≡ γm0 for example, the

mass becomes imaginary mR = ±im0/
√
v2/c2 − 1

when the particle velocity exceeds the speed of light
(mathematically of course!). According to the law of
gravitation F = GMm

r2
, a particle with an imaginary

mass will feel a virtual potential field.
Does the virtual potential field introduced in this

way have any physical significance? For simplicity,
a one-dimensional constant virtual potential field is
introduced:

V (x) =

{
0, x < 0
−iV, x > 0

, V > 0 (2)

Let a particle with energy E enter the virtual
potential field from x = −∞ along the x direction,
when x < 0 the wave function writes:

ψ1(x) = eik0x +Be−ik0x, x < 0, k0 =

√
2µE

h̄2 (3)

Where Be−ik0x is the reflected wave function
generated by the virtual potential field, and the wave
function in x > 0 region satisfies:

d2ψ(x)

dx2
+ k2ψ(x) = 0, x > 0, k =

√
2µ(E + iV )

h̄2

(4)
The general solution is:

ψ2(x) = Aeikx, , x > 0 (5)
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By continuity condition ψ1(0) = ψ2(0), ψ1
′(0) =

ψ2
′(0), and suppose V � E, then B2 ≈ 1

16

(
V
E

)2 ≈
0. Take approximate value B = 0, A = 1, I get

ψ1(x) = eik0x (6)

ψ2(x) = eikx = eik0xe−( k0V
2E )x (7)

Substituted into the probability flow density for-
mula, I arrive:

j1 =
h̄k0

µ
, , x < 0 (8)

j2 =
h̄k0

µ
e−( k0V

E )x, , x > 0 (9)

When a particle with E > 0 enters the virtual
potential field, the probabilistic flow density of the
particle decreases with the increase of the injection
depth, indicating that the particle is absorbed by the
virtual potential field. However, if I write V (x) =
±iV, x > 0, V > 0 in the initial condition (2),
then

j2 =
h̄k0

µ
e±( k0V

E )x, x > 0 (10)

so the physical process corresponding to the absorp-
tion/generation of matters in the virtual potential
field. This may explain why the velocity of a
particle can not exceeds the speed of light: a particle
with imaginary mass feels a virtual potential field
according to the law of gravitation, thus a tachyon
will be absorbed or give rise to a Big Bang instantly
according to formula (10).

This can also be used as a simplified black hole
model. The formation of black holes can be consid-
ered as the result of a special space-time coordinate
transformation. I first write down the inertial system
metric:

ds2 = c2dT 2 − dX2 − dY 2 − dZ2 (11)

Now if I want to change the upper metric to the
following form through a coordinate transformation:

ds2 = −c2

[
1 +

ωzµ(t)

c2

]2

dt2 − dx2 − dy2 + ω2dz2

(12)
Suppose the transformation I look for can be

written as:

Zν = Zν(zµ, zν), µ, ν = 0, 3
X = x, Y = y

(13)

substitute (13) into (11)and (12), I arrive:

−c2
[
1 + ωzµ(t)

c2

]2

dt2 + ω2dz2

= −
[
∂Z(z,t)
∂z

dz + ∂Z(z,t)
∂t

dt
]2

+c2
[
∂T (z,t)
∂z

dz + ∂T (z,t)
∂t

dt
]2

(14)

Compare the coefficients at both ends of the
formula, I obtain:

c2

[
∂T (z, t)

∂z

]2

−
[
∂Z(z, t)

∂z

]2

= ω2 (15)

c2

[
∂T (z, t)

∂t

]2

−
[
∂Z(z, t)

∂t

]2

= −c2

[
1 +

ωzµ(t)

c2

]2

(16)

∂Z(z, t)

∂z
· ∂Z(z, t)

∂t
= c2∂T (z, t)

∂z
· ∂T (z, t)

∂t
(17)

Solving equation (15)-(17):

Z(z, t) = c

∫ t

t0′
ch

[∫ t

t0

µ(t)

c
dt

]
dt+ωzsh

∫ t

t0

µ(t)

c
dt

(18)

T (z, t) = c

∫ t

t0′′
sh

[∫ t

t0

µ(t)

c
dt

]
dt+

ωz

c
ch

∫ t

t0

µ(t)

c
dt

(19)
looking back at (12), compared with:

g00 = 1 +
ωzµ(t)

c2
= 1 +

2U

c2
(20)

I get:

U =
1

2
ωzµ(t) (21)

if ω = ±i, then

ds2 = −c2

[
1 +
±izµ(t)

c2

]2

dt2 − dx2 − dy2 − dz2

(22)
this is equivalent to introducing a virtual potential

field:
U = ± i

2
zµ(t) (23)

If the probability flow density represents the infor-
mation of matter, according to formula (9), as matter
falls into the black hole and gets closer and closer
to the center, the outside world (infinity viewer)
will get less and less information about the matter.
So a large amount of information is essentially left
outside the black hole or on its route dropping to the
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center of the black hole, which provides a possible
explanation for the black hole information paradox
[10] [11] [12].

Besides, according to formula (10) and (23),
the black hole not only consumes matter, but also
produces matter, providing a possible explanation
for the antimatter jet of the black hole. If it can
be proved that this coordinate transformation leads
to the transformation of matter/ antimatter, it will
provide a new clue to the mystery of antimatter,
which is also a subject worth further study.

Regarding the ERP paradox, we can hypothesize
that two entangled particles transmit information
via superluminal virtual particles. When one of the
entangled particles is measured, the superluminal
virtual particles are absorbed by the potential field
generated by the measurement instrument. As a
result, these virtual particles can no longer transfer
information between the two entangled particles,
and the states of both particles become determined.

A similar analysis can be applied to the double-
slit interference experiment. First, how does the
photon know whether the path ahead is through a
double slit or a single slit? We can propose that the
photon emits superluminal virtual particles to detect
the path ahead. Upon encountering the double-slit,
the photon sends a virtual photon through one
slit, while it passes through the other slit. The
two particles then interact, producing interference
fringes on the screen. However, if we attempt to ob-
serve which slit the photon passes throughłwhether
through instant or delayed observationłthe virtual
photon is absorbed by the potential field of the
detector. In this case, only a single photon remains,
which by itself cannot produce interference fringes.
This interpretation at least offers a self-consistent
explanation for the delayed choice experiment. It
should be particularly noted that:(1) The concept
of ”virtual photon” is only an equivalent descrip-
tion of the interaction between the particle and
the background space in which it is located, and
actually no ”virtual photon” is emitted (otherwise
it is a real photon). (2) When I say ”observable”
and ”measurable” I mean the measurement process,
in which the influence of the uncertainty principle
of quantum mechanics should be considered. (3)
The introduction of ”superluminal virtual particles”
and ”virtual mass” are mathematical concepts. In
fact, this paper does not support any superluminal
phenomenon, but aims to discuss why the motion

of macroscopic matter cannot exceeds the speed
of light (a very simple reason is that the superlu-
minal phenomenon violates the law of causality).
But for microscopic particles, we can find a clever
explanation that allows superluminal phenomenon
without violating the law of causality, considering
the amplitude of a free particle propagating from x0

to x:
[U(t) =< x|e−iHt|x0 > (24)

for relativistic particles:

U(t) =< x|e−it
√
p2+m2|x0 >∼ e−m

√
x2−t2 (25)

the propagation amplitude outside the light cone is
not zero, but we can argue that beyond the light
cone, the probability of finding a particle is getting
smaller and smaller. That is, it is possible to find
particles in a thin layer outside the light cone, but
according to the above discussion, such particles are
quickly absorbed by vacuum, ensuring that there is
no violation of causality at the macroscopic scale.

IV. VIRTUAL PARTICLES AND FIELD THEORY

The introduction of the virtual potential field
may also provide a completely new renormalization
method for the quantization of the gravitational
field. Let’s start with the quantization of the real
scalar field. When there is only one real scalar field,
I introduce a virtual potential in the Lagrangian:

L =
1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 + iλ∂0ϕ (26)

where λ is a real constant, µ = 0, 1, 2, 3, It’s easy
to see that ϕ(x) obeys K-G equation:

(∂0
2 −∇2 +m2)ϕ(x) = 0 (27)

and conjugate momentum:

π(x) =
∂L
∂ϕ̇

= ϕ̇(x) + iλ (28)

Hamiltonian should be written as:

H (π, ϕ) = πϕ̇− L
= 1

2
{ϕ̇(~x, t)2 + [∇ϕ(~x, t)]2 +m2ϕ(~x, t)2} (29)

integral by parts and throw away the surface item,
I arrive:

H =
1

2

∫
d3x

[
ϕ̇2 + ϕ(−∇2 +m2)ϕ

]
(30)
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The plane-wave expansion of ϕ(~x, t) writes:

ϕ(~x, t) =
∫
d̃k{[a(k) + ib(k)]e−ikx

+ [a+(k) + ib+(k)]eikx} (31)

where, the integral measure is:

d̃k =
d3k

(2π)32ωk
=

d4k

(2π)4 δ(k
2 −m2)θ(k0)2π (32)

and ωk =
√
~k2 +m2. substitute (31) into equa-

tion(29) and after a lenthy calculation I get:

H = 1
2

∫
d̃kωk{[a(k)a+(k) + a+(k)a(k)]

− [b(k)b+(k) + b+(k)b(k)]}+ iO(~x, t)
(33)

abandon the virtual item (considered as unphysical
terms arising from the virtual process) , and consider
[a, a+] = 1, if we introduce {b, b+} = 1, then

H =

∫
d̃kωka

+(k)a(k) (34)

divergent term no longer exists. But this does not
mean that particle b is real, it is just an equiv-
alent method to deal with the zero point energy.

Incidentally, when we evaluate the one-loop con-
tribution to the electron vertex function in QED:

Fig. 1: vertex correction

in order to keep the Feynman integrals finite,
we may introduce a fictitious heavy photon through
Pauli-Villars regularization:

1

(k − p)2 + iε
→ 1

(k − p)2 + iε
− 1

(k − p)2 − Λ2 + iε
(35)

but the physical significance of this practice is not
clear, in order to explain the origin of the divergence
term, we have to consider the following diagrams:
when R→∞, diagram (a) can be divided into sub-
diagrams (b)+(c)((emitted by infinite past electron

Fig. 2: corrections containing virtual particles

and then absorbed by infinite future electron)), and
diagram (c) will be cancelled by diagram (d), so we
just need to subtract diagram (b), and consider it as
the contribution of a superluminal virtual particle ,
we should write:

1

(p− iΛ)2 →
1

p2 − Λ2 − i2pΛ
→ 1

(p− k)2 − Λ2 + iε
(36)

for k → 0, this justified the Pauli-Villars regu-
larization and explains the physical origin of the
divergent term. To see this more clearly, consider
the second-order Feynman diagram of the electronic
self-energy:

Fig. 3: electron self-energyn

the corresponding S matrix element can be writ-
ten directly with Feynman rules, and the result is:〈
f |S(2)

e.m.|i
〉

= (2π)4δ4(p′ − p)ū(α′)(p′)Σ(p)u(α)(p)
(37)
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where

Σ(p) = (−ie)2

∫
d4k

(2π)4γ
µ i

/p− /k −m+ iε
γν
−igµν
k2 + iε

(38)
the Hamiltonian of positronium can be written as:

H = H0 +Hi (39)

Where

H0 =

∫
d3x(He.m. +HDirac) (40)

He.m. =: −1

2
ȦµȦµ +∇Aµ · ∇Aµ : (41)

HDirac =: ψ̄(−i~γ · ∇+m)ψ : (42)

Hi(x) = e : ψ̄(x) /Aψ(x)− δmψ̄(x)ψ(x) : (43)

where m is the physical mass of the particle, m0

is the bare mass, Aµ is the electromagnetic vector,
δm = m − m0. The first-order transition matrix
element produced by the additional term −δm :
ψ̄(x)ψ(x) : is:〈

f |bα′(p′)S
(1)
δmb

+
α (p)|i

〉
= iδm(2π)4δ4(p′ − p)ū(α′)(p′)u(α)(p)

(44)

compare equation (37) and (44), in order to cancel
the infinity in Σ(p), we should assumeΣ(p) ∼ iδm.

As an example of the application of virtual parti-
cles, here I present an estimate of Lamb movement.
Suppose the interaction between the electron and the
proton is an elastic collision, and the electron mass
is me, the proton mass is mp, initial velocity of the
electron is ve, initial kinetic energy of the electron
is Ee, velocity of the electron after collision is v′e,
kinetic energy of the electron after collision is E ′e
, initial velocity of the proton is 0, velocity of the
proton after collision velocity is vp, kinetic energy
of the proton after collision is Ep. According to the
conservation law of energy and momentum:

v′e =
1− k

2
vp (45)

E ′e =
(1− k)2

4k
Ep (46)

where
k =

mp

me

(47)

The energy loss of electrons after interaction, that is,
the energy transfer efficiency (reflecting the energy

change caused by electron emission or absorption
of virtual photons) is:

η =
Ep
Ee

=
4k

(1− k)2+4
(48)

Now I equivalent the one-circle graph to the con-
tribution of the virtual photon which is absorbed
at one wavelength, the double-circle diagram to the
contribution of the virtual photon absorbed at two
wavelengths and so on, the contribution of the total
energy of each circle is related to the coupling co-
efficient of the field, which for the electromagnetic
field is α = h̄

mecr0
≈ 1

137
.

The effect on the electron kinetic energy is shown
as follow:

1− (αη+α2η2+α3η3+...) = 1− αη

1− αη
≈ 1− αη

(49)
The total 2S orbital energy is corrected to:

E2S = − e2

4πεr
+µc2+

1

2µ
(

2h

2πr
)2(1− αη)

= −1

8
α2µc2(1 + αη)

(50)

Same argument:

E2P = −1

8
α2µc2(1 + αη′) (51)

∆E =E2S − E2P =
1

8
α2µc2α(η′ − η) (52)

Since 2P and 2S orbital electron clouds are signifi-
cantly different, we can actually propose a formula
for the energy transfer efficiency and then adopt
a numerical integration method to calculate ∆E
exactly. For example, we can assume that the energy
transfer efficiency is proportional to cloud density,
inversely proportional to r, and after a reasonable
choice of the integral limit, we can get results sim-
ilar to the lamb movement. However, in this paper
I take a roughly estimation, and consider that the
difference between the energy transfer efficiency of
2P orbital and 2S orbital is a higher order correction
of α, and is related to the square of the orbital
quantum number, i.e.

η′ − η = n2αη (53)

Substitute the relevant data, I get:

∆E ≈ 0.0382cm−1 (54)
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consistent in order of magnitude with the observed
spectral data.

The last consideration is the quantum theory of
gravity, I first write out the Einstein-Hilbert action:

S =
1

16πG

∫
d4x
√
−gR (55)

and when I write gµν = ηµν+hµν , where ηµν denotes
the flat Minkowski metric and hµν the deviation
from the flat metric, then the expasion of the action
in powers of hµν should take the schematic form:

S ′ =
1

16πG

∫
d4x(∂h∂h+ h∂h∂h+ h2∂h∂h+ ...)

(56)
after dropping total divergences. In order to cancel
the various divergent terms, I have to introduce
various virtual fields:

gµν = ηµν + hµν + iκµν + i∂µεν + i∂νεµ + ... (57)

where ε denotes an infinitesimal coordinate trans-
formation, in fact,

gµν = ηµν + hµν + iκµν (58)

is enough, consider the self energy correction to the
graviton propagator as shown in Fig.4 and Fig.5:

Fig. 4: 1-loop correction

Fig. 5: 2-loop correction

we should write the 1-loop propagator corrections
schematically as:

1

Mp
2

1

p2
[

∫
d4k

kkkk

k2k2
]

1

p2
(59)

so the overall tree+1-loop propagator is:

1

p2
(1 +

1

Mp
2 [

∫
d4k

kkkk

k2k2
]

1

p2
) (60)

so the correction to 1/G is quadratically divergent
∼ k2. In order to eliminate the divergent term, I
introduce an overall counter term shown in Fig.6:

Fig. 6: counter term for loop correction

which is equavalent to offer an overall virtual
momentum, so we get: ∼ (k + ik)2 ∼ i2k2, and
abandon the virtual items, the 1-loop divergent term
disappear. Or we can consider it another way, take
the tranformation:

∂h∂h→ ∂(hµν + iκµν)∂(hµν + iκµν) (61)

and dictate the commutation relations:

hµν
2 − κµν2 = 0 (62)

hµνκµν + κµνhµν = 0 (63)

we can get the same conclution. For 2-loop correc-
tions, 4-vertices contribute k8

Mp4
, 5 internal propa-

gators contribute 1
k10

, two loop integrals contribute
d4kd4l ∼ k8, plus an outside propagtor k2, the
overall contribution of 2-loop correction is k4

Mp4
.

One can easily check that by introducing proper
anti/commutation relations for hµνand κµν , and just
abandon the virtual items, we can get S ′=0. That’s
mean when we eliminate the effects of the vacuum
background energy, the total energy of the system is
only related to some formal integral of the curvature
of the spacetime. From this point of view, it’s no
surprise to identify gravitation as the bend of space-
time. The method above also applies to the presence
of a matter field, we can quantize the field by impos-
ing appropriate anti/commutation rules according to
the specific form of the expression, and abandon the
virtual items and surface items when evaluating the
integration.

V. CONCLUSIONS

In this paper I propose for the first time that
imposing a spacetime coordinate transformation in
the inertial system metric may introduce a virtual
potential field, which corresponds to the absorption
or generation of matters, thus providing a plausible
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explanation for the black hole antimatter jet and the
imbalance of matter and antimatter in the universe.
And I suggest a common approach for the renor-
malization of various quantum fields. The essence
of this approach is that by introducing appropri-
ate virtual potential field (and specify the required
anti/commutation relation for the virtual particles),
we can manage to eliminate some divergent terms
and unecessary constants in the expression of the
Hamiltonian. And I obtain some preliminary results
on the quantization of the gravitational field.
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