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Abstract

Elementary notions of quantum statistical mechanics provide a link between the Riemann

Zeta function and the transcendent Lerch function.

1 The Fermi-Dirac integral

Let us consider a perfect gas of N non-relativistic fermions contained in a container D of volume
V , and in thermodynamic equilibrium at temperature T . The gas is subjected to a potential energy
force field:

U (x) = +∞, x ∈ R
3\D

while for x ∈ D\∂D it is a regular function. The single fermion Hamiltonian follows:

H (x,p) =
|p|2

2m
+ U (x) (1)

From quantum statistical mechanics:

N =

∫ +∞

ε0

g (ε) dε

e
ε−µ(T )
kBT

+1
(2)

where ε0 is the minimum energy of a single fermion: ε0 = minU (x);the potential energy is defined
up to an inessential additive constant for which we can redefine the energy scale: minU (x) = 0

N =

∫ +∞

0

g (ε) dε

e
ε−µ(T )
kBT

+1
(3)

g (ε) is the density of states i.e. the number of single fermion states between ε and ε + dε. If G (ε)
is the number of energy states ≤ ε

g (ε) =
d

dε
G (ε)

Classically

Gcl (ε) =

∫

Λ(ε)

d3xd3p, (d3x = dxdydz, d3p = dpxdpydpz)

where

Λ (ε) =

{

(x,p) ∈ R
6 |

|p|2

2m
+ U (x) ≤ ε

}

According to quantum mechanics

G (ε) =
gs
h3

Gcl (ε)

where h is Planck’s constant, while gs = 2s+ 1 is the statistical weight due to the spin s of a single
fermion. So

G (ε) =
gs
h3

∫

Λ(ε)

d3xd3p (4)
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The integral can be calculated only in the simplest cases. For example, for free fermions:

G (ε) =
gs
h3

V

∫

p2≤2mε

d3p (5)

and it is immediate to move to spherical coordinates in the pulse space. The interesting aspect is
that the volume of the container appears. In the general case, we expect a dependence on ε of the
power law type:

G (ε) ∝ εl+1

so

g (ε) =
d

dε
G (ε) = AV εl

wgere A > 0 is a constant while V is the volume. In the integral (3) we pass to dimensionless
variables:

t =
ε

kBT
, x =

µ (T )

kBT

I follows

N = nc (T )V

∫ +∞

0

tldt

et−x + 1
(6)

where
nc (T ) = A (kBT )

l+1 (7)

So if n = N/V is the concentration of fermions:

n

nc

= Fl (x) (8)

where

Fl (x) =

∫ +∞

0

tldt

et−x + 1

is the Fermi-Dirac integral of order l. This integral converges for l > −1. The (7) is the quantum
concentration of fermions. If n > nc the gas is not rarefied: the fermion wave functions tend to
overlap giving rise to a deviation from classical behavior. Vice versa for n < nc. It follows that the
deviation from classical behavior is measured by Fl (x)

Fl (x) =

∫ +∞

0

tldt

et−x + 1
= ex

∫ +∞

0

tldt

et + ex

But
∫ +∞

0

tldt

et + ex
= Γ (l + 1)Φ (−ex, l + 1, 1) (9)

where Γ is the gamma function, and Φ is the transcendent Lerch function, a function of the complex
variable w and which depends on two parameters s ∈ C, b ∈ N\ {0}. A representation in |w| < 1 is

Φ (w, s, b) =
+∞
∑

k=0

wk

(k + b)s
(10)

So
Fl (x) = exΓ (l + 1)Φ (−ex, l + 1, 1) (11)
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If the chemical potential is zero:

Fl (0) = Γ (l + 1)Φ (−1, l + 1, 1) (12)

λ := l + 1 > 0 (l > −1)
Fλ−1 (0) = Γ (λ) Φ (−1, λ, 1) (13)

On the other hand:

Fλ−1 (0) =

∫ +∞

0

tλ−1dt

et + 1

But
∫ +∞

0

tλ−1dt

et + 1
=

(

1− 21−λ
)

Γ (λ) ζ (λ) , ∀λ > 0

where ζ (λ) is the Riemann zeta function. It follows

Fλ−1 (0) =
(

1− 21−λ
)

Γ (λ) ζ (λ)

which compared with the (13):

Γ (λ) Φ (−1, λ, 1) =
(

1− 21−λ
)

Γ (λ) ζ (λ)

Γ has no zeros:
Φ (−1, λ, 1) =

(

1− 21−λ
)

ζ (λ) , ∀λ > 0

which extends immediately to the complex field: s = λ+ iω

Φ (−1, s, 1) =
(

1− 21−s
)

ζ (s) , ∀Re s > 0

As is known, the non-trivial zeros of ζ (s) fall into

Scrit = {s ∈ C | 0 < Re s < 1, −∞ < Im s < +∞}

1− 21−s 6= 0, ∀s ∈ Scrit =⇒
Φ (−1, s, 1) = 0 ⇐⇒ ζ (s) = 0 (14)
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