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Abstract

Dirichlet eta function (proxy function for Riemann zeta function as generating function for all nontrivial

zeros) and Sieve of Eratosthenes (generating algorithm for all prime numbers) are essentially infinite series.

We apply infinitesimals to their outputs and analyze L-functions of elliptic curves for Birch and Swinnerton-

Dyer conjecture. Riemann hypothesis asserts the complete set of all nontrivial zeros from Riemann zeta

function is located on its critical line. It is proven to be true when usefully regarded as an Incompletely

Predictable Problem. We ignore even prime number 2. The complete set with derived subsets of Odd Primes

contain arbitrarily large number of elements and satisfy Prime number theorem for Arithmetic Progressions,

Generic Squeeze theorem and Theorem of Divergent-to-Convergent series conversion for Prime numbers.

Having these theorems satisfied by all Odd Primes, Polignac’s and Twin prime conjectures are separately

proven to be true when usefully regarded as Incompletely Predictable Problems.
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1. Generic Introduction to Generic Numbers, Generic Terms and Generic Equations

Generic Summary of this research paper: Polignac’s and Twin prime conjectures are proposals on the

property [known as Cardinality] of a particular Generic Number [known as Prime numbers]. Here, Twin

prime conjecture (on even Prime gap = 2) is a subset of Polignac’s conjecture (on all even Prime gaps 2, 4,

6, 8, 10...). Generic L-functions, that must obey three Axioms [stated in Remark 1.2], are an important type

of Generic Equations [with infinitely-many Generic Terms] having major properties of Algebraic rank,

Analytic rank, trivial zeros and nontrivial zeros. Generalized Riemann hypothesis and "subset" Riemann

hypothesis are conjectures on, respectively, all (Generic) L-functions and two specific "prototypical" L-

functions (known as Riemann zeta function and its proxy [via Analytic continuation] Dirichlet eta function,

which are often [incorrectly] interchanged with each other). Together, they conjectured entire sets of

unique nontrivial zeros of any L-function must always be located on the so-called σ =
1
2

-Critical Line.

An important caveat: Riemann zeta function DO NOT have any nontrivial zeros and DO NOT have

its first trivial zero given by s = 0 versus Dirichlet eta function DO have all nontrivial zeros [albeit its

first nontrivial zero is NOT given by t = 0] and DO have its first trivial zero given by s = 0. Birch

and Swinnerton-Dyer (BSD) conjecture concern two nominated properties of a particular type of "more

complex" L-functions present in all Elliptic curves [classified as degree 2; based on degree of these L-

functions being the number J + 2K of Gamma factors occurring in their functional equations]. More

specifically, it (mainly) proposes these particular L-functions that are "individualized" for each and every

Elliptic curves have Algebraic rank = Analytic rank [≡Mordell-Weil rank]. Mordell-Weil theorem states

that the set of rational points on an abelian variety over a number field forms a finitely generated abelian

group, hence isomorphic to a group of the form T ⊕ Zr, where T is a finite torsion group. The integer

r ≥ 0 is the Mordell-Weil rank of abelian variety [whereby Elliptic functions with their Elliptic curves are

abelian variety]. Mordell-Weil rank of ever higher r values; viz, representing ever higher Analytic rank

values for Elliptic curves, can technically be extremely difficult to compute.

L-functions for elliptic curves, as function of complex variable s = σ ± it, can have Analytic rank

of zero or non-zero integer values. Analytic rank = 0 =⇒ associated L-functions NEVER have first

nontrivial zero given by real variable t = 0. Analytic rank ≥ 1 [viz, 1, 2, 3, 4, 5... up to an arbitrarily large

number value] =⇒ associated L-functions ALWAYS have first nontrivial zero given by real variable
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t = 0. We immediately recognize some overlapping aspects of the above major conjectures detailed as

follows: The two L-functions from Riemann hypothesis also possess Analytic rank [= 0 in both cases].

The L-functions of every Elliptic curves also have unique nontrivial zeros (spectrum) that are all located on

[Analytically normalized] σ =
1
2

-Critical Line. L-functions of various Elliptic curves can have Analytic

rank of 0, 1, 2, 3, 4, 5... whereby we expect greater "frequency" and "complexity" and/or altered "internal

symmetry" in nontrivial zeros (spectrums) associated with increasing values of Analytic rank.

Symmetric power of an L-function: Let L(s) be an L-function given by an Euler product L(s) =∏
p<S

r∏
j=1

Å
1 −
α j

ps

ã−1

×
∏
p∈S

Lp(s), where S is a finite set of primes. The symmetric nth power of L(s) is an

L-function given by an Euler product L(s, symn) =
∏
p<S

∏
degree−n

monomials m

Å
1 −

m(α1, . . . , αr)
ps

ã−1

×
∏
p∈S

Lp(s, symn).

The Euler factors at the primes p ∈ S (the "bad" primes) are computed via a more complicated recipe

which involves a non-trivial amount of information about the underlying object. The degree of an Euler

factor at one of the bad primes will be smaller than the degree of the Euler factors outside the set S .

Remark 1.1. Formal statements on Birch and Swinnerton-Dyer conjecture: The central value of an

L-function, which could be computed using the formula mentioned below, is its value at central point of

Critical Strip. The central point of an L-function is the point on real axis of Critical Line. Equivalently,

it is the fixed point of functional equation. In Analytic normalization, the central point is s =
1
2

. In

Arithmetic normalization, it is s =
w + 1

2
, where w is the weight of L-function. Rodriguez-Villegas and

Zagier[5] have proven a formula, conjectured by Gross and Zagier[1], for central value of L(s, χ2n−1),

namely L(1/2, χ2n−1) = 2
(2π
√

7)nΩ2n−1A(n)
(n − 1)!

where Ω =
Γ(1/7)Γ(2/7)Γ(4/7)

4π2 . Using their notation, they

variously prove that A(n) = B(n)2 where B(1) = 1/2 and B(n) is an integer for n > 1; and that A(n) is

given by a remarkable recursion formula [not stated here in this paper]. Then the accompanying incredible

[derived] result, in one fell swoop, proves the non-vanishing of L(1/2, χ2n−1) for all odd n.

BSD conjecture relates the order of vanishing (or analytic rank) and the leading coefficient of the L-

function associated to an elliptic curve E defined over a number field K at central point s = 1 to certain

arithmetic data, the BSD invariants of E.

The weak form of the BSD conjecture states just that the analytic rank ran (that is, the order of vanishing

of vanishing of L(E, s) at s = 1), is equal to the rank r of E/K.

The strong form of the BSD conjecture states also that the leading coefficient of the L-function is given

by the formula
1
r!

L(r)(E, 1) = |dK |
1/2 ·

#X(E/K) ·Ω(E/K) · Reg(E/K) ·
∏
p cp

#E(K)2
tor

.

The quantities appearing in this formula are as follows: dK is the discriminant of K; r is the rank of E(K);

X(E/K) is the Tate-Shafarevich group of E/K; Reg(E/K) is the regulator of E/K; Ω(E/K) is the global

period of E/K; cp is the Tamagawa number of E at each prime p of K; E(K)tor is the torsion order of E(K).
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Implicit in the strong form of BSD conjecture is that the Tate-Sharafevich group X(E/K) is finite. There

is a similar conjecture for abelian varieties over number fields.

We assign the defining polynomial [see Remark 1.3 below] to be univariate Polynomial [x] for Riemann

zeta function when based on linear equation "P" x = 0. We [arbitrarily] assign the defining polynomial to

be univariate Polynomial [±x] for its proxy function Dirichlet eta function when based on linear equation

"D" ±x = 0. An elliptic curve "E" over a field K is a smooth projective curve of genus 1 together with a

distinguished point O [viz, the unique point at infinity serving as the identity element]; whereby E over

rational numbers Q has a Weierstrass equation of the form E: y2 = x3 + ax + b with a, b ∈ Z such that its

discriminant ∆ := −16(4a3 + 27b2) , 0 [viz, being square-free in x with the curve being non-singular].

This bivariate equation E can also be written as y2 − x3 − ax − b = 0. Elliptic curves are abelian variety;

viz, they have a algebraically defined group law with respect to being an abelian group. The algebraic

condition discriminant ∆ , 0 geometrically imply the graph of E has no cusps, self-intersections, or

isolated points. In addition, the real graph of a non-singular curve has two components if its discriminant

is positive, and one component if it is negative. One can [analogously] assign the defining polynomial for

an elliptic curve to be a bivariate Polynomial [y2 − x3 − ax − b]. This is a "mixed" Polynomial P(x, y) =

Monomial P(x) of degree 3 +Monomial P(y) of degree 2.

The four basic arithmetic operations are addition, subtraction, multiplication and division. Product (viz,

multiplication) of a sequence, denoted by
∏

, can be finite
N∏

i=1

or infinite
∞∏

i=1

. This extended operation

in multiplication should be differentiated from dot product, matrix multiplication, scalar multiplication,

multiplication of vectors, etc. In our elaborate scheme of defining the "Generic Equation", infinite product

of a sequence such as Euler product is NOT an Equation by itself, although it could mathematically form

a Term, or part of a Term, in an Equation.

Euler product is defined as the expansion of a Dirichlet series into an infinite product indexed by prime

numbers. In general, if a is a bounded multiplicative function, then the Dirichlet series
∑

n

a(n)
ns is equal

to
∏

p

P(p, s) for Re(s) > 1 where the product is taken over prime numbers p, and P(p, s) is the sum

∞∑
k=0

a(pk)
pks = 1 +

a(p)
ps +

a(p2)
p2s +

a(p3)
p3s + · · ·. In fact, if we consider these as formal generating functions,

the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be

multiplicative: this exactly imply a(n) is the product of the a(pk) whenever n factors as the product of the

powers pk of distinct primes p. An important special case is when a(n) is totally multiplicative, so that

P(p, s) is a geometric series. Then P(p, s) =
1

1 − a(p)
ps

as is the case for Riemann zeta function, where a(n)

= 1, and more generally for Dirichlet characters.

A Dirichlet series is a formal series of the form F(s) =
∞∑

n=1

an

ns where an ∈ C, s = σ ± it with σ, t ∈ R,

and i =
√
−1 is the imaginary unit. A Dirichlet L-function is an L-function defined by a Dirichlet series



PRIME NUMBERS, NONTRIVIAL ZEROS, L-FUNCTIONS 5

of the form L(s, χ) =
∞∑

n=1

χ(n)
ns , where χ is a Dirichlet character. Here, a Dirichlet character is a function

χ : Z → C together with a positive integer q called the modulus such that χ is completely multiplicative,

i.e. χ(mn) = χ(m)χ(n) for all integers m and n, and χ is periodic modulo q, i.e. χ(n + q) = χ(n) for all n.

If (n, q) > 1 then χ(n) = 0, whereas if (n, q) = 1, then χ(n) is a root of unity. The character χ is primitive

if its conductor is equal to its modulus.

Remark 1.2. Definition and Axioms of all L-functions. An (analytic) L-function is a Dirichlet series that

has an Euler product and satisfies a certain type of functional equation, and allows analytic continuation.

Then this L-function is also called Dirichlet L-function, associated with its Dirichlet L-series, which can

be meromorphically continued to the complex plane, have an Euler product L(s, χ) =
∏

p

(1 − χ(p)p−s)−1,

and satisfy a functional equation of the form Λ(s, χ) = q
s
2ΓR(s)L(s, χ) = εχΛ(1 − s), where q is the

conductor of χ. Thus the three main defining features of L-functions are Axiom I: Analytic continuation

[viz, technique to extend the domain of a given analytic function]. Axiom II: Euler product [over prime p

as previously defined above]. Axiom III: Functional equation [created using gamma factors, see below].

The complex functions ΓR(s) := π−
s
2Γ(

s
2

) and ΓC(s) := 2(2π)−sΓ(s) that appear in functional equation of

an L-function are known as gamma factors. Here Γ(s) :=
∫ ∞

0 e−tts−1dt is Euler’s gamma function. The

gamma factors satisfy ΓC(s) = ΓR(s)ΓR(s + 1) and can also be viewed as "missing" factors of the Euler

product of an L-function corresponding to (real or complex) archimedean places.

All known analytic L-functions have functional equations that can be written in the form

Λ(s) := N
s
2

J∏
j=1

ΓR(s + µ j)
K∏

k=1

ΓC(s + νk) · L(s) = εΛ(1 − s) where N is an integer, ΓR and ΓC are defined

in terms of the Γ-function, Re(µ j) = 0 or 1 (assuming Selberg’s eigenvalue conjecture), and Re(νk) is a

positive integer or half-integer,
∑
µ j + 2

∑
νk is real, and ε is the sign of the functional equation. With

those restrictions on the spectral parameters, the data in the functional equation is specified uniquely. The

integer d = J + 2K is the degree of the L-function. The integer N is the conductor (or level) of the

L-function. The pair [J,K] is the signature of the L-function.

The functional equation for ζ(s) is ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s) ζ(1 − s).

The functional equation for η(s) is η(−s) = 2
1 − 2−s−1

1 − 2−s π
−s−1s sin

(πs
2

)
Γ(s)η(s + 1).

The Riemann zeta function ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s + · · ·, having convergence when ℜ(s) > 1, is

prototypical "non-alternating zeta function (harmonic series)" L-function. Riemann zeta function is the

only L-function of degree 1 and conductor 1, and (conjecturally) it is the only primitive L-function with

a unique pole [located at s = 1]; and is analytically continued to entire complex plane as Dirichlet eta

function η(s) =
∞∑

n=1

(−1)n−1

ns =
1
1s −

1
2s +

1
3s −

1
4s + · · ·. The Dirichlet eta function, having convergence
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whenℜ(s) > 0, is prototypical "alternating zeta function (harmonic series)" L-function. This continuation

is defined by relationship η(s) = γ · ζ(s) =
(
1 − 21−s) ζ(s) where γ = 1− 21−s is the proportionality factor.

Euler product expressions are possible for Riemann zeta function ζ(s) and its L-function Lζ(s), Mobius

function µ(n), Leibniz formula (for
π

4
), Sum-of-Divisors function σ(n), Euler’s totient function Φ(n),

Elliptic curves ζE(s) with their associated L-functions LE(s) and modular forms, etc.

The Euler product expression for Riemann zeta function ζ(s) having convergence whenℜ(s) > 1 is
∞∑

n=1

1
ns =

∏
p prime

1
1 − p−s =

1
1 − 2−s ·

1
1 − 3−s ·

1
1 − 5−s ·

1
1 − 7−s ·

1
1 − 11−s · · ·

1
1 − p−s · · ·

"Alternating" Euler product expression for Dirichlet eta function η(s) having convergence whenℜ(s) > 0

is
∞∑

n=1

(−1)n−1

ns =
∏

p prime

1
1 ± p−s =

1
1 + 2−s ·

1
1 − 3−s ·

1
1 + 5−s ·

1
1 − 7−s ·

1
1 + 11−s · · ·

1
1 ± p−s · · ·

Modular forms and the Modularity theorem. Having special spectacular properties resulting from

surprising array of internal symmetries, modular forms describe several types of complex functions which

have a certain type of functional equation and growth condition. The q-expansion of a modular form f (z)

is its Fourier expansion at the cusp z = i∞, expressed as a power series
∞∑

n=0

anqn in the variable q = e2πiz.

As exampled by Dedekind eta function η(z) = q1/24
∏
n≥1

(1 − qn) with
∏
n≥1

(1 − qn) as basic construction

block of infinite products, this implies that many types of infinite products with this construction block are

modular [but, of course, not similar-looking "micmicker" products of the type
∏

(1−qn2
) or
∏

(1−qn)n].

L-function associated with a modular form can often be expressed as an Euler product over primes. The

fully proven 2001 Modularity theorem states all elliptic curves over the field of rational numbers are

UNIQUELY related to modular forms in a particular way. We use notation T = p−s =
1
Ps to indicate local

polynomials of various degree. E.g., Sum-of-positive divisors function σz(n) has local polynomial Fp(T )

= (1 − T )(1 − pT ) of degree one. The functions Lp(s) are called Euler factors (or local factors), and for

σz(n), this is Fp(T )−1 =
1

Fp(T )
=

1
(1 − T )(1 − pT )

. Local polynomials for elliptic curves are of degree 2.

Euler product of an L-function in details: It is expected that the Euler product of an L-function of

degree d and conductor N can be written as L(s) =
∏

p

Lp(s) where for p ∤ N Lp(s) =
d∏

n=1

Å
1 −
αn(p)

ps

ã−1

with |αn(p)| = 1 and for p | N, Lp(s) =
dp∏

n=1

Å
1 −
βn(p)

ps

ã−1

where dp < d and |βn(p)| ≤ 1. Again, the

functions Lp(s) are called Euler factors (or local factors).

An eta quotient is any function f of the form f (z) =
∏

1≤i≤s

ηri(miz), where mi ∈ N and ri ∈ Z and η(z) is the

Dedekind eta function. An eta product is an eta quotient in which all the ri are non-negative. We define

the Dedekind eta function η(z) by the formula η(z) = q1/24
∏
n≥1

(1 − qn), where q = e2πiz. The Dedekind eta

function is a crucial example of a half-integral weight modular form, having weight 1/2 and level 1. It is

related to the Discriminant modular form via the formula ∆(z) = η24(z).
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All elliptic curves have UNIQUE local zeta functions, local L-functions and functional equations that can

be equivalently expressed using Euler products, and fully satisfy Axioms I, II and III (Remark 1.2). Each

elliptic curve overQ has an integral Weierstrass model (or equation) of the form y2+a1xy+a3y = x3+a2x2+

a4x+a6,where a1, a2, a3, a4, a6 are integers. Reducing these coefficients modulo p defines an elliptic curve

over finite field Fp (except for a finite number of primes p, where the reduced curve has a singularity and

thus fails to be elliptic, in which case E is said to be of bad reduction at p). Each such equation, as unique

minimal Weierstrass equation which satisfies the additional constraints a1, a3 ∈ {0, 1}, a2 ∈ {−1, 0, 1}, has a

discriminant ∆ as nonzero integer divisible exactly by these "bad primes" p. Here, a minimal Weierstrass

equation is one for which |∆| is minimal among all Weierstrass models for the same curve. The zeta

function of an elliptic curve over a finite field Fp is given by Z(E(Fp),T ) = exp

(
∞∑

n=1

#
[
E(Fpn)

] T n

n

)
.

This can also be given via a rational function in T as Z(E(Fp),T ) =
1 − apT + pT 2

(1 − T )(1 − pT )
, where the ’trace of

Frobenius’ term ap is defined to be the difference between the ’expected’ number p + 1 and the number

of points on the elliptic curve E over Fp, viz. ap = p + 1 − #E(Fp) or equivalently, #E(Fp) = p + 1 − ap.

The L-function of E over Q is then defined by collecting this information together, for all primes p and

is defined by L(E(Q), s) =
∏
p∤N

(
1 − ap p−s + p1−2s)−1

·
∏
p|N

(
1 − ap p−s)−1 where N is the conductor of E,

i.e. the product of primes with bad reduction. This product converges for ℜ(s) >
3
2

[which can be

analytically normalized to converge for ℜ(s) > 1 by using ΓC(s +
1
2

) instead of ΓC(s) in deriving the

functional equation]. Hasse’s conjecture then affirms that the L-function admits an analytic continuation

to the whole complex plane and satisfies a functional equation relating, for any s, L(E, s) to L(E, 2 − s).

This L-function, of a modular form whose analytic continuation is known, has valid values of L(E, s) at

any complex number s e.g. at s = 1 (where the conductor product can be discarded as it is finite), the

L-function becomes L(E(Q), 1) =
∏
p∤N

(
1 − ap p−1 + p−1)−1

=
∏
p∤N

p
p − ap + 1

=
∏
p∤N

p
#E(Fp)

.

The Analytic rank of an L-function L(s) is its order of vanishing at its central point. When the Analytic

rank r is positive, the value is typically an upper bound that is believed to be tight (in the sense that there

are known to be r zeroes located very near to the central point). Examples of modular forms include

classical modular forms, Maass waveforms, Hilbert modular forms, Bianchi modular forms, and Siegel

modular forms. The Analytic rank of a cuspidal modular form f is actually the Analytic rank of the L-

function L( f , s) =
∑
n≥1

ann−s where an are complex coefficients that appear in the q-expansion of modular

form: f (z) =
∑
n≥1

anqn, where q = e2πiz. The complex coefficients an depend on a choice of embedding of

the coefficient field of f into complex numbers. It is also conjectured the Analytic rank does not depend

on this choice, and this conjecture has been verified for all classical modular forms. For modular forms,

the Analytic ranks are provably correct whenever the listed Analytic rank is 0, or the listed Analytic rank

is 1 and the modular form is self dual (in the self dual case the sign of functional equation determines the

parity of the Analytic rank).
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1.1. Linking Generalized Riemann hypothesis to Birch and Swinnerton-Dyer conjecture. Treatise on

Polignac’s and Twin prime conjectures that asserts the infinity nature of Odd Primes derived from

each and every even Prime gaps 2, 4, 6, 8, 10... is supplied later on. Materials available in L-functions

and modular forms database (LMFDB) are relevant to the Langlands program, Generalized Riemann hy-

pothesis (GRH) [and its special case Riemann hypothesis (RH)], and Birch and Swinnerton-Dyer (BSD)

conjecture. Appendix A contains additional supplementary materials, practical computations and over-

all SUMMARY on Predictability properties of Dirichlet L-series and Dirichlet L-functions relevant to

open problems in Number theory. There are Completely Predictable infinitely-many trivial zeros and In-

completely Predictable infinitely-many nontrivial zeros in an L-function. We assert entire sets of unique

Incompletely Predictable nontrivial zeros (spectrum) in all L-functions [≡ GRH]; and in L-functions of

Riemann zeta function /Dirichlet eta function [≡ RH], must pass through Centroid (Origin) point whereby

this 0-dimensional "geometric" point is equivalent to 1-dimensional "mathematical" Critical Line.

Supporting GRH and BSD conjecture to be true for all L-functions from elliptic curves, one could [ana-

logically] derive computed Central values at vertical line s = 1 in their functional equations [relating

L(E, s) to L(E, 2 − s) for any s; see Remark 1.1], construct Polar graphs of ζE(σ ± ıt) with all UNIQUE

nontrivial zeros (as individualized E spectrum) being ONLY located at [analytically normalized] σ =
1
2

-

Critical Line for each elliptic curve, etc. Furthermore, validly applying Principle of Equidistant for Multi-

plicative Inverse (Remark 2.2) to elliptic functions and Infinitesimal value
1
∞

at just above / below σ =
1
2

-

Origin point (Centroid point) on graphed trajectories of elliptic curves for analytically normalized ζE(s)

[as similarly carried out for Riemann zeta function ζ(s) / Dirichlet eta function η(s) e.g. in Figure 10]

should also be possible for all elliptic curves that are defined for s over C.

With complex variable s = σ ± it, we further assert all L-functions with Analytic rank 0 [e.g. Dirichlet

eta function (proxy function for Riemann zeta function) and those Elliptic curves having Analytic rank

0] DO NOT have first nontrivial zero located at t = 0 on actual / normalized σ =
1
2

-Critical Line]. A

caveat here is the L-function of Riemann zeta function, as exception, DO NOT have nontrivial zeros. The

corollary is then true in that all L-functions with Analytic rank 1 or higher [e.g. Elliptic curves having

Analytic ranks of 1, 2, 3, 4, 5... (to an arbitrarily large number value)] DO have first nontrivial zero lo-

cated at t = 0 on the actual / normalized σ =
1
2

-Critical Line. The [more complex] L-functions of elliptic

curves having relatively higher Analytic ranks are expected to generally have higher frequency in appear-

ances of nontrivial zeros. By the very definitions and constructions of Dirichlet L-series from Dirichlet

L-functions [as various zeta functions], both mathematical objects must, by default, comply with three

fundamental Axioms I, II and III of L-functions. We recognize this deduction allows us to derive ζE(s),

LE(s), functional equations and (equivalent) Euler products expressions based on Dirichlet coefficients an

obtained from associated f (q) Modular forms. Intuitively, the mathematical objects of elliptic curves are

"higher" analogues of MOST BASIC Riemann zeta function ζ(s) and its analytic continuation to Dirichlet

eta function η(s), simplified-η(s) and Dirichlet Sigma-Power Law [=
∫

sim-η(s)dn], which can similarly

be constructed for all elliptic curves. The first nontrivial zero of Dirichlet eta function [viz, proxy function
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for Riemann zeta function] with Analytic rank 0, at height approximately 14.134, is higher than that of any

other algebraic L-function. Then any other algebraic L-function [with Analytic rank 0, 1, 2, 3, 4, 5...] will

always have comparatively more frequently occurring nontrivial zeros [that first occur at a relatively lower

height [for L-functions with Analytic rank 0], up to and including the (lowest) height of 0 [for L-functions

with Analytic rank 1 or higher].

Useful preliminary information on Generic Numbers, Generic Terms and Generic Equation with

their definitions and classification role:

Hyperreal numbers extend real numbers to include certain classes of infinite and infinitesimal numbers.

Surreal numbers is a totally ordered proper class containing the real numbers, infinite and infinitesimal

numbers that are larger or smaller in absolute value than any positive real number. Quaternion number

system extends the complex numbers. Quaternions have expression of the form a + b i + c j + d k , where

a, b, c, d are real numbers; i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i,k i = −i k = j. These higher or

more abstract number systems, and the main number systems below, form the Generic Numbers.

Integer numbers Z ⊂ Rational numbers Q ⊂ Real numbers R ⊂ Complex numbers C.

Natural numbers N {1, 2, 3, 4, 5...} ⊂Whole numbersW {0, 1, 2, 3, 4, 5...} ⊂ Integer numbers Z {...−3,

−2, −1, 0, 1, 2, 3...}. The pairing of Even numbers E {0, 2, 4, 6, 8, 10...} and Odd numbers O {1, 3, 5, 7,

9, 11...}, and the pairing of Prime numbers P {2, 3, 5, 7, 11, 13, 17, 19, 23...} and Composite numbers C

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20...} can be separately combined to formW whereby {0, 1} are neither

prime nor composite. Complex number z = a + bi where imaginary unit i =
√
−1; a, b ∈ R; and when

b = 0, z becomes a real number. Q =
p
q

where p, q ∈ Z; Q are Z when p = 1; and q = 0 is undefined.

Irrational numbers R\Q ⊂ Real numbers R or Complex numbers C. Then R\Q = [I] Algebraic (irrational)

numbers [viz, R or C that are the root of a non-zero polynomial of finite degree in one variable with integer

or, equivalently, rational coefficients e.g. golden ratio (1 +
√

5)/2,
√

2, 3√2, etc] + [II] Transcendental

(irrational) numbers [viz, R or C that are NOT the root of a non-zero polynomial of finite degree in one

variable with integer or, equivalently, rational coefficients e.g. π, e, ln 2]. The only even Prime number

{2} forms a Countably Finite Set (CFS). E, O, P, C, N,W, Z, Q and Algebraic numbers form Countably

Infinite Sets (CIS). Transcendental numbers, R\Q, R and C form Uncountably Infinite Sets (UIS).

We mathematically define the (finite) N terms in Generic Equation as: Generic Term T1 + Generic Term

T2 + Generic Term T3 + Generic Term T4 + ... Generic Term TN−1 + Generic Term TN = 0. The finite

Generic Equation with finite [n → N] terms is
N∑

n=1

Tn = 0, and infinite Generic Equation with infinitely

many [n → ∞] terms is
∞∑

n=1

Tn = 0. In particular, infinite series such as modular forms, power series

and harmonic series are simply various types of Equations. **Importantly, Euler products [infinite-like

expressions], when used for expansions of Dirichlet series resulting in infinite products [viz, NOT infinite

sums] indexed by prime numbers, are NOT Equations per se but could, in principle, form a Term(s) or part

of a Term(s) in an Equation.** The solutions or zeros (also sometimes called roots) of a real-, complex-,
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or generally vector-valued function f in a Generic Equation are members x of domain of f such that f (x)

vanishes at x. Observe the n index for Generic Equation to commence from 0 or 1 is an arbitrary choice

that is mathematically valid as long as consistency is maintained (viz, standardized).

Tn, the nth Term, is defined by either algebraic functions or non-algebraic (irrational or transcendental)

functions; or a mixture of the two. Examples of [univariate or 1-variable] Terms involving x as variable

(or indeterminate): anxn, ax−n ≡
a
xn [involving algebraic functions]; a n√x ≡ ax

1
n , a sinn x, enx, a logn x

[involving irrational or transcendental functions]; anxn sinn x [involving mixed functions]. Notations: a =

coefficient, n = exponent [or base for logarithm function, whereby when n = e, a loge x = a ln x involves

the natural logarithm]. The "generic" Infinite series are of two types: Convergent series or Divergent

series. In general, non-alternating harmonic series are usually Divergent series but alternating harmonic

series are usually Convergent series.

With infinitely many unit fractions as Terms [Infinite series], Harmonic series have Tn of the type
a
xn e.g.

alternating and non-alternating harmonic series, Riemann zeta function, Dirichlet eta function. Harmonic

series could also involve more than one variables with coefficients an that could theorectically also be

more complex and depend on variable x, etc. Egyptian fractions, being the finite sum of distinct unit

fractions, are roughly like Finite harmonic series. Note 1: Not related to harmonic series per se is the

Harmonic functions giving rise to non-polynomial (transcendental) terms e.g. second derivatives ex sin y

and −ex sin y of a 2-variable harmonic function; viz, twice continuously differentiable function f : U → R

where U is an open subset of Rn that satisfies this particular Laplace’s equation f (x, y) = ex sin y. Note

2: With the 1-variable now given here by s [= σ ± it] in various L-functions L(s) as harmonic series

associated with its L-series [see Remark 1.3], s can now be complex numbers, or be positive / negative

real numbers given by σ when t = 0.

With infinitely many Terms [Infinite series] that all have exponents (powers), Power series have Tn of the

type anxn e.g. alternating and non-alternating power series, geometric series, Taylor series, Maclaurin

series, exponential function formula, sine formula, etc. Power series can also involve more than one

variables. Having n as negative powers and fractional powers give rise to variants of power series called

Laurent series and Puiseux series. Formal power series capture the essence of power series without being

restricted to the fields of real and complex numbers, and without the need to talk about convergence.

With finitely many Terms [Finite series] that all have exponents (powers), Polynomials have Tn of the

type anxn e.g. integer polynomial, real polynomial, complex polynomial [as defined by their coefficients

derived from various number systems]; rational fraction [being the quotient (algebraic fraction) of two

polynomials], exponential polynomials [a bivariate polynomial where the second variable is substituted

for an exponential function applied to the first variable such as P(x, ex)], matrix polynomial [a polynomial

with square matrices as variables], trigonometric polynomial [a finite linear combination of functions

sin(nx) and cos(nx) with n taking on the values of one or more natural numbers, and having real- or

complex-valued coefficients]. Polynomial is formally defined as a mathematical expression consisting

of indeterminates (variables) and coefficients, that involves only the operations of addition, subtraction,
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multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms [viz,

monomial with 1 term, binomial with 2 terms, polynomial with ≥ 2 terms (whereby each term can also be

usefully labelled as a monomial)]. Polynomials can also involve more than one variables, as multivariate

polynomial. Polynomials are roughly like "finite power series" [having finite degree], or equivalently,

Power series are roughly like "infinite polynomials" [having infinite degree]. Laurent polynomials are like

polynomials, but allow negative powers of the variable(s) to occur.

A number field can be defined by many different irreducible polynomials f (x) ∈ Q[x]. The defining

polynomial of a number field K is an irreducible polynomial f ∈ Q[x] such that K � Q(a), where a is

a root of f (x). A root a ∈ K of the defining polynomial is a generator of K. Normalized polynomials

are always monic with integer coefficients, such that the sum of the squares of the absolute values of

all complex roots of f (x) is minimized. In comparison, the defining polynomial of a p-adic field K is

an irreducible polynomial f (x) ∈ Qp[x] such that K � Qp(a), where a is a root of f (x). The defining

polynomial can be chosen to be monic with coefficients in Zp; by Krasner’s lemma, we can further take

f (x) ∈ Z[x].

Remark 1.3. Normalized defining polynomial for L-functions and Number fields:

Integer ’0’ as Equation 0 = 0 is the zero polynomial P(x) = 0 of undefined degree arbitrarily assigned as

either −1 or −∞, with all coefficients = 0. It is the additive identity in set of polynomials; viz, P(x) + 0 =

P(x). Any nonzero integers c e.g. −3, −2, −1, 1, 2, 3... as Equation c = c is the constant polynomial P(x)

= c of degree 0 [since it can be written as c · x0], with coefficient of x0 = c & all other coefficients = 0.

Equation "P" x = 0 ≡ x + 0 = 0 is the [linear] defining polynomial P(x) = x of degree 1 [since it can be

written as 1 · x1], with coefficient of x1 = 1 & all other coefficients = 0. It conceptually represents the

"most basic" 1-variable infinite non-alternating harmonic series, an unique L-function Lζ(s), called

Riemann zeta function ζ(s) having infinitely many terms.

Equation "D" ±x = 0 ≡ ±x + 0 = 0 is [linear] defining polynomial P(x) = ±x of degree 1 [since it can be

written as ±1 · x1], with coefficient of x1 = ±1 & all other coefficients = 0. Conveniently, it conceptually

represents the "most basic" 1-variable infinite alternating harmonic series, an unique L-function

Lη(s), called Dirichlet eta function η(s) having infinitely many terms.

Equation "K" x = ±
√
−1 = ±i ≡ x2 + 1 = 0 is [non-linear] defining polynomial P(x) = x2 + 1 of degree 2,

with coefficient of x2 = 1, first coefficient = 1 & all other coefficients = 0, that connects Real numbers R

to Complex numbers C and conceptually represents an important 1-variable infinite non-alternating

harmonic series, as an unique L-function LK(s) containing the field of Gaussian rational numbers,

and is associated with Automorphic object "A" given by L-function LA(s). Both LK(s) and LA(s) have

infinitely many terms. Additional information: The ring of integers, Z[i], is a Euclidean domain, hence

unique factorization domain, with norm N(a + bi) = a2 + b2 = (a + bi)(a − bi). As a result, it is connected

to the question of which positive integers can be written as the sum of two squares, and more specifically,
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to the theorem of Fermat that a prime number p can be written as the sum of two squares if and only if

p . 3 (mod 4), and that if p = a2 + b2, then the representation is unique subject to 0 < a ≤ b.

Equation "E" y2 = x3 + ax + b ≡ y2 − x3 − ax − b = 0 is the [non-linear] 2-variable (bivariate) defining

polynomial P(x, y) = P(x) of degree 3 + P(y) of degree 2 = y2 − x3 − ax − b with coefficients 1, −1, −a,

−b & all other coefficients = 0. It conceptually give rise to important 1-variable infinite alternating

harmonic series, as unique L-functions LE(s) associated with Modular forms that act as (periodic)

’generating series or functions’ based on elliptic functions / curves. Both LE(s) and Modular forms have

infinitely many terms.

Riemann zeta function ζ(s) vs Dirichlet eta function η(s): ζ(s) is the 1-variable prototypical non-

alternating L-function. Analytic continuation of ζ(s) and its L-function Lζ(s) [with Convergence for

complex number when Re(s) > 1] to proxy function η(s) and its L-function Lη(s) [with Convergence

for any complex number when Re(s) > 0] is required to obtain nontrivial zeros. They are related via

proportionality factor γ = (1 − 21−s) as η(s) = γ · ζ(s). From Remark 1.3, we reiterate that η(s) and Lη(s)

is the 1-variable prototypical alternating L-function having infinitely many terms.

Infinitely-many Completely Predictable Trivial zeros of ζ(s) occurs at s = −2,−4,−6,−8,−10...

Infinitely-many Completely Predictable Trivial zeros of η(s) occurs at s = 0, −2,−4,−6,−8,−10...

Nontrivial zeros of ζ(s) DO NOT exist. Note that η(s) has "one extra" trivial zero at s = 0.

Infinitely-many Incompletely Predictable Nontrivial zeros in η(s) occurs at Critical Line as defined by

η(s) =
1
2
± it with ±t values ≈ ±14.13, ±21.02, ±25.01, ±30.42, ±32.93, ±37.58....

Particular values from Dirichlet eta function η(s):

In general, the kth derivative of η(s); viz, η′(s), η′′(s), η′′′(s), etc with convergence for ℜ(s) > 0 can be

expressed as η(k)(s) = (−1)k
∞∑

n=1

(−1)n−1(ln n)k

ns for k = 1, 2, 3,.... The derivative with respect to parameter

s for s , 1: η′(s) =
∞∑

n=1

(−1)n ln n
ns = 21−s ln(2) ζ(s) +(1 − 21−s) ζ′(s). Then, η′(1) = ln(2) γ − ln(2)2 2−1.

η(0) =
1
2

[the Abel sum of Grandi’s series 1−1+1−1+· · · ]; η(−1) =
1
4

[the Abel sum of 1−2+3−4+· · · ].

For k an integer > 1, if Bk is the kth Bernoulli number then η(1 − k) =
2k − 1

k
Bk. Also, η(1) = ln 2 as

an alternating harmonic series. η(2) =
π2

12
, η(4) =

7π4

720
≈ 0.94703283, η(6) =

31π6

30240
≈ 0.98555109, η(8)

=
127π8

1209600
≈ 0.99623300, η(10) =

73π10

6842880
≈ 0.99903951, η(12) =

1414477π12

1307674368000
≈ 0.99975769.

The general form for even positive integers is: η(2n) = (−1)n+1 B2nπ
2n
(
22n−1 − 1

)
(2n)!

. As n→ ∞, we obtain

η(∞) = 1. Via its functional equation, η(s) has Completely Predictable infinitely many trivial zeros at each

even negative integer s = −2n for n = 0, 1, 2, 3, 4, 5...; and also have infinitely-many nontrivial zeros.

Particular values from Riemann zeta function ζ(s):
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In general, the kth derivative of ζ(s); viz, ζ′(s), ζ′′(s), ζ′′′(s), etc with convergence for ℜ(s) > 1 can be

expressed as ζ(k)(s) = (−1)k
∞∑

n=1

(ln n)k

ns for k = 1, 2, 3,.... Derivative of ζ(s) when s = 0, for example, is

ζ′(0) = −
1
2

ln(2π). When s is considered for (purely) real number values: ζ(0) = −1
2 , ζ( 1

2 ) = −1.4603545...,

etc. Taking the limit s→ +∞ through the real numbers, one obtains ζ(+∞) = 1. But at complex infinity

on the Riemann sphere the zeta function has an essential singularity.

For any positive even integer 2n, ζ(2n) =
|B2n|(2π)2n

2(2n)!
, where B2n is the (2n)th Bernoulli number. For odd

positive integers, no such simple expression is known, although these values are thought to be related to

the algebraic K-theory of the integers.

For nonpositive integers, one has ζ(−n) = −
Bn+1

n + 1
for n ≥ 0 (using the convention that B1 =

1
2

).

In particular, ζ(s) vanishes at negative even integers because Bm = 0 for all odd m other than 1. These

are the trivial zeros. The point s = 1 in ζ(s) corresponds to a simple pole with complex residue 1. Even

though ζ(1) is undefined as it diverges to∞, its Cauchy principal value lim
ε→0

ζ(1 + ε) + ζ(1 − ε)
2

exists and

is equal to Euler-Mascheroni constant γ = 0.577218... [a transcendental number].

For special values of ζ(s) [as an L-function] for nonpositive integers [and where Bn+1 is the (n + 1)th

Bernoulli number], one has ζ(−n) = −
Bn+1

n + 1
for n ≥ 0 (using the convention that B1 =

1
2

). In particular,

ζ(s) vanishes at the negative even integers because Bm = 0 for all odd m other than 1. Then ζ(−1) =

−
1
12

, ζ(−3) = −
1

120
, ζ(−5) = −

1
252

, ..., ζ(−11) = −
691

32760
, ζ(−13) = −

1
12

,.... For other special values

of ζ(s) [as an L-function] involving small positive integer values of s: ζ(1) = ∞, ζ(2) =
π2

6
, ζ(3) =

1.2020569032..., ζ(4) =
π4

90
, ζ(5) = 1.0369277551..., ζ(6) =

π6

945
, ζ(7) = 1.0083492774..., ζ(8) =

π8

9450
, ζ(9) = 1.0020083928..., ζ(10) =

π10

93555
, etc. When s = 2, 4, 6, 8, 10...; computed ζ(s) values

all contain transcendental irrational number π. When s = 3, 5, 7, 9, 11...; computed ζ(s) values are

"likely" all algebraic irrational numbers. In fact, only ζ(3) or Apery’s constant is proven to be an irrational

number but it is unknown whether it is also a transcendental number derived from (e.g.) π3 or another

unrelated transcendental number. Here ζ(3) =
7

180
π3 − 2

∞∑
k=1

1
k3(e2πk − 1)

[as series representation found

by Ramanujan] and ζ(3) =
∫ 1

0

∫ 1

0

∫ 1

0

1
1 − xyz

dx dy dz, [as integrand of the known triple integral for

ζ(3)]. Despite these unknowns, the computed ζ(s) solutions from substituting s = even numbers 2, 4, 6, 8,

10... versus s = odd numbers 3, 5, 7, 9, 11... should all be irrational numbers that are, crucially, mutually

exclusive and mathematically, geometrically and topologically different from each other.

Via its functional equation, ζ(s) has Completely Predictable infinitely many trivial zeros at each even

negative integer s = −2n for n = 1, 2, 3, 4, 5...; but DO NOT have any nontrivial zeros.

More information on Elliptic curves E over Q of conductor N: E has good reduction at all primes p

not dividing N, has multiplicative reduction at the primes p that exactly divide N (i.e. such that p divides

N, but p2 does not, with this written as p||N), and has additive reduction elsewhere (i.e. at the primes
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where p2 divides N). Then Hasse-Weil zeta function of E is of the form ZV,Q(s) =
ζ(s)ζ(s − 1)

L(E, s)
. Here,

ζ(s) is the usual Riemann zeta function and L(E, s) is called the L-function of E/Q, which takes the form

L(E, s) =
∏

p

Lp(E, s)−1 where, for a given prime p, Lp(E, s) =


(1 − ap p−s + p1−2s), if p ∤ N

(1 − ap p−s), if p | N and p2 ∤ N

1, if p2 | N
where in the case of good reduction ap is p + 1− (number of points of E mod p), and in the case of mul-

tiplicative reduction ap is ±1 depending on whether E has split (plus sign) or non-split (minus sign)

multiplicative reduction at p. A multiplicative reduction of curve E by the prime p is said to be split if

−c6 is a square in the finite field with p elements. There is a useful relation not using the conductor:

1. If p doesn’t divide ∆ (where ∆ is the discriminant of the elliptic curve) then E has good reduction at p.

2. If p divides ∆ but not c4 then E has multiplicative bad reduction at p.

3. If p divides both ∆ and c4 then E has additive bad reduction at p.

Duality: In mathematics, a duality translates concepts, theorems or mathematical structures into other

concepts, theorems or structures in a one-to-one fashion, often (but not always) by means of an involution

operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points,

so that the dual of A is A itself. Any vector space V has a corresponding dual vector space consisting of

all linear forms on V together with the vector space structure of pointwise addition and scalar multiplica-

tion by constants. In any finite group, the number of nonisomorphic irreducible representations over the

complex numbers is precisely the number of conjugacy classes. A ket is of the form |v⟩ whereby it math-

ematically denotes a vector v in an abstract (complex) vector space V and physically represents a state

of some quantum system; and a bra is of the form ⟨ f | whereby it mathematically denotes a linear form

f : V → C, i.e. a linear map that maps each vector in V to a number in the complex plane C. Then letting

the linear functional ⟨ f | act on a vector |v⟩ is written as ⟨ f |v⟩ ∈ C. L-functions are fundamental mathe-

matical objects in Number theory that are dual to prime numbers; viz, each L-function can be viewed as a

vector in certain Hilbert space, and each prime can then be viewed as a vector in the dual Hilbert space.

From above discussion, the ubiquitous deep theme of duality exist in Linear algebra [viz, vector space

V ⇆ dual vector space V∗ having elements called functionals], Quantum mechanics [viz, bra ⇆ ket],

Group theory [conjugacy class ⇆ irreducible representations] and Number theory [viz, prime numbers

⇆ L-functions]. In particular, the duality present in Number theory is inevitably connected to Theory of

Symmetry from Langlands program whereby various power series and harmonic series, L-series, Dirichlet

series, Dirichlet eta function (proxy function for Riemann zeta function as the generating function for

all nontrivial zeros), Sieve of Eratosthenes (as the generating algorithm for all prime numbers), etc are

usefully regarded as variants of infinite series.

The complex number z = a + bi. Its real part a and imaginary part b are real numbers. Its imaginary

unit i satisfy power-series expansions
∞∑

n=0

in [as well as basic facts about powers of i] with given terms:
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i0 = 1, i1 = i, i2 = −1, i3 = −i,

i4 = 1, i5 = i, i6 = −1, i7 = −i

...
...

...
...

Using power-series definition, we prove Euler’s formula for real values of x:

eix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix −
x2

2!
−

ix3

3!
+

x4

4!
+

ix5

5!
−

x6

6!
−

ix7

7!
+

x8

8!
+ · · ·

= 1

Ç
x0

0!
−

x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · ·

å
+ i

Ç
x1

1!
−

x3

3!
+

x5

5!
−

x7

7!
+ · · ·

å
= cos x + i sin x. [Note that when x = π, eiπ = −1 (Euler’s identity).]

In the last step above we recognize
x0

0!
= 1 and the two terms are Maclaurin series [alternating power

series or, broadly, alternating infinite series] for cos x =
∞∑

n=0

(−1)nx2n

(2n)!
and sin x =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
with the

rearrangement of terms justified because each series is absolutely convergent. Recall that cos x & cosh x

are even functions, so cos(−x) = cos(x) & cosh(−x) = cosh(x); and sin x & sinh x are odd functions, so

sin(−x) = − sin(x) & sinh(−x) = − sinh(x).

sinh i =
ei − e−i

2
= i sin 1, cosh i =

ei + e−i

2
= cos 1 & tanh i =

sinh i
cosh i

=
(ei − e−i)
(ei + e−i)

= i tan 1.

sin i = i
e1 − e−1

2
= i sinh 1, cos i =

e1 + e−1

2
= cosh 1 & tan i =

sin i
cos i

=
i(e1 − e−1)
(e1 + e−1)

= i tanh 1.

cos i =
∞∑

n=0

1
(2n)!

=
1
0!
+

1
2!
+

1
4!
+

1
6!
+

1
8!
+ · · · & sin i = i

∞∑
n=0

1
(2n + 1)!

= i
Å

1
1!
+

1
3!
+

1
5!
+

1
7!
+ · · ·

ã
[Note: For n = 0 to∞, (i)2n = (i2)n = (−1)n].

Euler’s formula produces following analytical identities for sine, cosine and tangent in terms of e and i:

sin x =
eix − e−ix

2i
, cos x =

eix + e−ix

2
& tan x =

sin x
cos x

=
(eix − e−ix)
i(eix + e−ix)

.

The related or extended Lindemann-Weierstrass theorem, Gelfond-Schneider theorem, Baker’s theorem,

four exponentials conjecture or Schanuel’s conjecture could be used to establish transcendence of a large

class of numbers constituted from the (algebraic) irrational numbers, transcendental (irrational) numbers

and rational numbers. Natural logarithm of any natural number other than 0 and 1 (more generally, of any

positive algebraic number other than 1) e.g. ln 2 and ln
√

2 = ln 2
1
2 =

1
2

ln 2 are transcendental numbers

by the Lindemann-Weierstrass theorem. By the Gelfond-Schneider theorem, eπ [Gelfond’s constant], 2
√

2

[Gelfond-Schneider constant as an example of ab where a is algebraic but not 0 or 1, and b is (algebraic)

irrational number], e−
π
2 = ii, etc are all transcendental numbers.

As sum of infinite (power) series, Euler’s number e=
∞∑

n=0

1
(n)!
=

∞∑
n=1

1
(n − 1)!

= 1 +
1
1
+

1
1 · 2
+

1
1 · 2 · 3

+ · · ·

≊ 2.71828 is the limit lim
n→∞

Å
1 +

1
n

ãn

. It can be characterized using integral
∫ e

1

dx
x
= 1. As sum of
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infinite series, ln 2 =
∞∑

n=1

(−1)n+1

n
=

1
1
−

1
2
+

1
3
−

1
4
+ · · · ≊ 0.693147. This infinite series can also be

expressed using Riemann zeta function as
∞∑

n=1

1
n

[ζ(2n) − 1] = ln 2. Some explicit formulas for ln 2 as

a result of integration include
∫ 1

0

dx
1 + x

=

∫ 2

1

dx
x
= ln 2,

∫ ∞
0

e−x 1 − e−x

x
dx = ln 2,

∫ ∞
0

2−xdx =
1

ln 2
,∫ π

3

0
tan x dx = 2

∫ π
4

0
tan x dx = ln 2, −

1
πi

∫ ∞
0

ln x ln ln x
(x + 1)2 dx = ln 2. In principal branch of logarithm, ln(−1)

= 0 + iπ = iπ. The analytic identity using natural logarithm − ln(1 − i) is analogous to Euler’s formula for

chosen transcendental (real) number values as based on inverse functions ln i = ln(ei π2 ) = 0 +
π

2
i =

1.57079632679i & ei = cos(1) + i sin(1) = 0.540302306 + 0.841470985i. It conforms to Langlands pro-

gram’s Theory of Symmetry w.r.t. imaginary number (point) i =
√
−1 = 0 + i = cos(

π

2
) + i sin(

π

2
); viz,

ln(ei) = i & e(ln i) = i [c.f. Figure 8 manifesting (perfect) diagonal symmetry via ln(ex) = x & e(ln x) = x].

Then − ln(1 − i) = − ln
√

2+i
π

4

= 0 + i +
(i)2

2
+

(i)3

3
+

(i)4

4
+

(i)5

5
+

(i)6

6
+

(i)7

7
+

(i)8

8
+ · · ·

= 0 +
i
1
−

1
2
−

i
3
+

1
4
+

i
5
−

1
6
−

i
7
+

1
8
· · ·

= 1
Å

0 −
1
2
+

1
4
−

1
6
+

1
8
− · · ·

ã
+ i
Å

1
1
−

1
3
+

1
5
−

1
7
+ · · ·

ã
Transcendental numbers − ln

√
2 = −

∞∑
n=1

(−1)n+1

2n
≊ −0.3465... and

π

4
=

∞∑
n=1

(−1)n+1

2n − 1
≊ 0.7853... [aka

Leibniz formula for π] as two alternating power series [or, broadly, alternating infinite series] are rec-

ognizably related to each other as they represent the two terms in the last step above. As expected, our

additive identity 0 in − ln(1− i) is analogous to multiplicative identity 1 [viz,
x0

0!
] in Euler’s formula eix.

A formal series is an infinite series (sum) that is considered independently from any notion of convergence,

and is manipulated with usual algebraic operations on series such as addition, subtraction, multiplication,

division, partial sums, etc. A power series defines a function by taking numerical values for the variable

WITHIN a radius of convergence. In contrast with NO requirements of convergence, a formal power

series is a special kind of formal series whose terms are of the form axn where xn is the nth power of a

variable x (n is a non-negative integer), and a is called the coefficient.

Not actually regarded as a function per se with its "variable" remaining an indeterminate, a generating

function (or series) is a representation of infinite sequences of numbers as coefficients of a formal power

series. More generally, a formal power series can include series with any finite (or countable) number of

variables, and with coefficients in an arbitrary ring. Rings of formal power series are complete local rings,

and this allows using calculus-like methods in the purely algebraic framework of algebraic geometry and

commutative algebra. They are analogous in many ways to p-adic integers which can be defined as formal

series of the powers of p (see Page 22 – 23 of [8]). Various types of generating functions include ordinary

generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series.

Sieve of Eratosthenes (as generating algorithm for all prime numbers) and Dirichlet eta function (the proxy

function for Riemann zeta function as generating function for all nontrivial zeros) are infinite series since
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they both encapsulate "infinite sequences of numbers". In this sense, generating functions and generating

algorithms are literally synonymous with infinite series. By the same token, harmonic series formed by

summing all positive [or alternating positive and negative] unit fractions, are infinite series and can thus

also be conveniently regarded as generating functions.

Remark 1.4. L-functions, which can also be denoted by L [e.g. Dedekind zeta function, Riemann zeta

function ζ(s), Dirichlet eta function η(s), Dirichlet L-functions, Hecke L-functions, Artin L-functions,

automorphic L-functions, elliptic functions, etc] are meromorphic functions on the complex plane, asso-

ciated to one out of several categories of mathematical objects [viz, anything that has been or could be

formally defined, and with which one may do deductive reasoning and mathematical proofs] e.g. Dirichlet

character, Hecke character, Artin representations of Galois group G, modular form, λ-ring, Hilbert space,

dual vector space, elliptic curve E (abelian variety / group) defined over field K (which can be general

field, finite fields, quadratic field Q
√

d with d a square-free integer, field of p-adic numbers Qp, rational

numbers Q, real numbers R or complex numbers C), etc.

A ’general’ Dirichlet series is an infinite series of the form
∞∑

n=1

ane−λn s where an, s are complex numbers

and {λn} is a strictly increasing sequence of nonnegative real numbers that tends to infinity. An ’ordinary’

Dirichlet series
∞∑

n=1

an

ns is obtained by substituting λn = ln n while a power series
∞∑

n=1

an(e−s)n is obtained

when λn = n. **Riemann zeta function ζ(s) as non-alternating harmonic series Eq. (1) is the most basic

’ordinary’ Dirichlet series with complex sequence an = 1 for n = 1 to∞**. Hurwitz zeta function is one of

many zeta functions formally defined for complex variables s with Re(s) > 1 and a , 0,−1,−2,−3, ... by

ζ(s, a) =
∞∑

n=0

1
(n + a)s . This series is absolutely convergent for given values of s & a, and can be extended

to a meromorphic function defined for all s , 1. **Riemann zeta function is then ζ(s, 1)**.

In more details: Dirichlet L-series is a function of the form L(s, χ) =
∞∑

n=1

χ(n)
ns where χ is a Dirichlet

character and s a complex variable with Re(s) > 1. It is a special case of a Dirichlet series. By ana-

lytic continuation, it can be extended to a meromorphic function on whole complex plane, and is then

called Dirichlet L-function and also denoted L(s, χ). Since Dirichlet character χ is completely multi-

plicative, its L-function can also be written as an Euler product in the half-plane of absolute convergence

L(s, χ) =
∏

p

(
1 − χ(p)p−s)−1 for Re(s) > 1 where the product is over all prime numbers. Dirichlet L-

functions may be written as a linear combination of Hurwitz zeta function at rational values. Fixing an

integer k ≥ 1, Dirichlet L-functions for characters modulo k are linear combinations, with constant co-

efficients, of ζ(s, a) where a =
r
k

and r = 1, 2, 3,..., k. This means Hurwitz zeta function for rational a

has analytic properties that are closely related to Dirichlet L-functions. Specifically, let χ be a character

modulo k. Then we can write its Dirichlet L-function as L(s, χ) =
∞∑

n=1

χ(n)
ns =

1
ks

k∑
r=1

χ(r) ζ
(

s,
r
k

)
.

In more details: Dirichlet L-functions satisfy a functional equation, which provides a way to analytically

continue them throughout the complex plane. The functional equation relates the value of L(s, χ) to
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the value of L(1 − s, χ). Let χ be a primitive character modulo q, where q > 1. One way to express

functional equation is L(s, χ) = ε(χ)2sπs−1q1/2−s sin
(π

2
(s + a)

)
Γ(1 − s)L(1 − s, χ). In this equation, Γ

denotes gamma function; a is 0 if χ(−1) = 1, or 1 if χ(−1) = −1; and ε(χ) =
τ(χ)
ia
√

q
where τ(χ) is a Gauss

sum τ(χ) =
q∑

n=1

χ(n) exp(2πin/q). It is a property of Gauss sums that |τ(χ)| = q
1
2 , so |ε(χ)| = 1. Another way

to state functional equation is in terms of ξ(s, χ) =
(q
π

)(s+a)/2
Γ

( s + a
2

)
L(s, χ). The functional equation

is expressed as ξ(s, χ) = ε(χ)ξ(1 − s, χ). The functional equation implies L(s, χ) and ξ(s, χ) are entire

functions of s. Again, this assumes χ is primitive character modulo q with q > 1. If q = 1, then

L(s, χ) = ζ(s) has a pole at s = 1.

In mathematics and theoretical physics, techniques of zeta function regularization, dimensional regular-

ization and analytic regularization are types of regularization or summability methods that assigns finite

values to divergent sums or products. They are then used to define determinants and traces of some self-

adjoint operators [which admit orthonormal eigenbasis with real eigenvalues]. Inspired by Method of

Smoothed asymptotics developed by Prof. Terence Tao in 2010, we broadly base some deductions in this

paper on introduction in 2024 by Prof. Antonio Padilla and Prof. Robert Smith of a new ultra-violet regu-

larization scheme for loop integrals in Quantum field theory dubbed η regularization. We outline in section

4 rich underlying connections between analytic number theory and perturbative quantum field theory.

The functoriality conjecture states that a suitable homomorphism of L-groups is expected to give a corre-

spondence between automorphic forms (in the global case) or representations (in the local case). Roughly

speaking, the Langlands reciprocity conjecture is the special case of the functoriality conjecture when one

of the reductive groups is trivial. Broadly viewed as vast "resource materials" that support completed

2001 proofs on modularity theorem, we have bi-directional correspondences (bridges) existing between

Number theory↔ Harmonic analysis forming "framework" for L-functions and modular forms database

(LMFDB, launched on May 10, 2016)[3] involving reciprocity conjecture, functoriality conjecture, etc:

(i) {Elliptic curves↔Modular forms}; (ii) {Counting problem 1+ p−number of solutions mod p [in finite

series Elliptic curves]↔ Coefficients of qp [in infinite series Modular forms]} whereby nome q = eπiτ &

p = prime numbers from Modular forms act as (periodic) ’generating series or functions’ having Group of

symmetry = SL2(Z) [involving unit disk in complex plane], which is analogous to Group of symmetry =

Group of integers Z [involving real number line present in general solutions such as sin (x+2πn) = sin (x)

with n = ... − 3,−2,−1, 0, 1, 2, 3...]; viz, these properties conform to the Langlands program "Theory of

Symmetry" [for Transformations of Rotation, Translation, Dilation and Reflection]; and (iii) {Representa-

tions of Galois groups↔ Automorphic forms} whereby Modular forms are classified as a specific type of

these [more general] Automorphic forms, which are ultimate objects in Harmonic analysis.

Diophantine equations are effectively various "finite series" polynomial equations that generally involve

operation of adding finitely many terms e.g. Fermat’s equation xn + yn = zn and elliptic curve y2 =

x3 + ax + b. Proposed by Pierre de Fermat in 1637, Fermat’s Last Theorem states that no three positive
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integers a, b and c can satisfy Fermat’s equation for any integer value of n greater than 2. The 2001

modularity theorem asserts that every elliptic curve is modular. This meant that all elliptic curves are

associated with unique "infinite series" modular forms. In a nutshell, this was broadly a crucial step in

proving Fermat’s Last Theorem because it famously allowed Prof. Andrew Wiles to prove the theorem

in 1994 by establishing a deep connection between [semistable] elliptic curves and modular forms. Sir

Andrew Wiles was deservingly awarded the 2016 Abel Prize for this work.

In simplier language, Birch and Swinnerton-Dyer (BSD) conjecture asserts an elliptic curve E has

either an infinite number or a finite number of rational points (solutions) according to whether ζ(1) =

0 or ζ(1) , 0, respectively [when these rational points (solutions) are points of an abelian variety and

ζ(1) is an associated zeta function ζ(s) near point s = 1]. The rank of E(Q) [≡ subset of E(Q) with

its elements having infinite order] is the finite number of copies of Z in E(Q) or, equivalently, the finite

number of independent points on an elliptic curve mod p. It is the rank of E (denoted here by rE). Rank 0

[having zero independent basis point with infinite order]: There is a subset of E(Q) in E either with zero

finite integral points and zero finite E(Q) solutions or with non-zero finite integral points and non-zero

finite E(Q) solutions]. Rank 1 [having one independent basis point with infinite order]: There is a subset

of E(Q) in E with non-zero finite integral points and infinite E(Q) solutions. Higher Ranks 2 or more

[having two or more independent basis point with infinite order]: There are subsets of E(Q) with non-zero

finite integral points and infinite E(Q) solutions. The simpliest ("strong") version of BSD conjecture:

Proposition. In an elliptic curve E, there are infinitely many E(Q) solutions when LE(1) = 0; viz, when

Central value [at s = 1] = 0. Corollary. In an elliptic curve E, there are finitely many (or zero) E(Q)

solutions when LE(1) , 0; viz, when Central value [at s = 1] , 0. The standard ("weak") version of

BSD conjecture asserts rE can be arbitrarily large, and Algebraic rE [Order of zero at s = 1 in L(E, s)] =

Analytic r′E [related to leading coefficient of Taylor expansion of L(E, s) at s = 1].

We have infinities or infinitely large numbers as the unbounded and limitless quantities (∞) at the big end,

and infinitesimals or infinitely small numbers as the extremely small but nonzero quantities (
1
∞

) at the

small end. Applying infinitesimals to their corresponding outputs in section 6 allow us to prove 1859-

dated Riemann hypothesis [viz, the proposal that relevant outputs as infinitely many nontrivial zeros or

Origin intercept points of Riemann zeta function are all located on its σ = 1
2 -critical line or σ = 1

2 -Origin

point], and Polignac’s and Twin prime conjectures [viz, the proposal that relevant outputs as subsets of

Odd Primes derived from every even Prime gaps 2, 4, 6, 8, 10... all contain infinitely many unique

elements]. Referring to even Prime gap 2, 1846-dated Twin prime conjecture is simply a subset of 1849-

dated Polignac’s conjecture [which refers to all even Prime gaps 2, 4, 6, 8, 10...]. Altered terminology on

cardinality of Odd Primes being arbitrarily large number (ALN) instead of infinitely many was previously

used by us to denote Modified Polignac’s and Twin prime conjectures.

Our generic mathematical approaches for solving Riemann hypothesis, Polignac’s and Twin prime con-

jectures is applicable to selected branches of science such as relativistic quantum mechanics, quantum

gravity or string theory. When usefully construed as a self-sufficient research paper, correct and complete
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mathematical arguments condensed in this current paper are the major (core) arguments from publications

[6], [7] & [8] whereby Riemann zeta function [= function that faithfully generates output of all nontrivial

zeros via its proxy Dirichlet eta function] and Sieve of Eratosthenes [= algorithm that faithfully generates

output of all prime numbers] are treated as de novo or derived infinite series in order to prove their con-

nected open problems in Number theory. These infinite series are either convergent series or divergent

series where partial sums of sequence from the former tends to a finite limit, while that from the later do

not tend to a finite limit [viz, it tends to infinity]. Prime number theorem for Arithmetic Progressions [as

Axiom 1], Generic Squeeze theorem [as Theorem 3.1] and Theorem of Divergent-to-Convergent series

conversion for Prime numbers [as Theorem 4.1] are outlined (respectively) in section 2, section 3 and

section 4. Lemma 5.1 and Lemma 5.2 in section 5 (respectively) introduce novel concept of Incompletely

Predictable entities and innovatively classifying countably infinite sets into accelerating, linear or deceler-

ating subtypes. To the extent that some associated minor (peripheral) arguments were not included in this

paper, we advocate their absence do not adversely reflect the rigorous nature of our derived proofs but,

rather, helps disseminate mathematical knowledge to the lay person and scientific community.

A function [sometimes loosely termed an operator or an equation] is usefully defined as relation between

a set of inputs (called domain) and a set of possible outputs (called codomain) where each input is related

to EXACTLY one output. More precisely, classical example of [linear] operator performed on [eligible]

functions is differentiation. An algorithm is usefully defined as finite sequence of rigorous instructions

typically used to solve a class of specific problems or to perform a computation. Functions or algorithms

as infinite-dimensional vectors: A function or algorithm defined on real numbers R can be represented by

an uncountably infinite set of vectors (as a vector field) while a function or algorithm defined on natural

numbersN [or any other countably infinite domain such as prime numbers and composite numbers] can be

represented by a countably infinite set of vectors (as a vector field). One could also use the later countably

infinite set of vectors involving [discrete]N {e.g. all nontrivial zeros of Riemann zeta function interpolated

as "nearest" t-valued N 14, 21, 25, 30, 33, 38, 41, 43...} to approximate the former uncountably infinite

set of vectors that "pseudo-represent" [continuous] R {for the same nontrivial zeros when precisely given

as t-valued transcendental numbers} ≊ Law of continuity: If a quantity changes "continuously", then its

value at any point between two given values can be determined by the process of interpolation.

Based on Figure 1 and Figure 2 that accommodate both positive (+ve) parts and negative (–ve) counterparts

of prime numbers, composite numbers and nontrivial zeros, we can represent eligible functions with

complex vector space [having +ve and –ve complex vectors pointing in opposite directions] and

eligible algorithms with real vector space [having +ve and –ve real vectors pointing in opposite

directions]: Recall that a row vector or a column vector is, respectively, a one-row matrix or a one-

column matrix. Real numbers R [and natural numbers N] are exactly one-dimensional vectors (on a line)

and complex numbers C are exactly two-dimensional vectors (in a plane). A complex vector (or complex

matrix) as Cartesian representation z = x + iy or Polar representation z = r(cos θ + i · sin θ) is simply

a vector (matrix) of the complex numbers. A two-dimensional real vector (or real matrix) in a plane is
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Figure 1. Narrow range of positive & negative prime and composite numbers plotted

together on integer number line generated using Sieve-of-Eratosthenes and complement-

Sieve-of-Eratossthenes. The combined [positive] image and [negative] mirror image will

conceptually represent a one-dimensional line (state) having perfect Mirror symmetry

with integer number 0 acting as the Point of symmetry.

Figure 2. OUTPUT for σ = 1
2 as Gram points. Polar graph of ζ( 1

2 + ıt) depicted as

a two-dimensional figure (state) plotted along critical line for real values of t between

−30 and +30 [viz, for s = σ ± t range], horizontal axis: Re{ζ( 1
2 + ıt)}, and vertical axis:

Im{ζ( 1
2 + ıt)}. Origin intercept points are present. There is manifestation of perfect Mirror

symmetry about horizontal x-axis acting as the line of symmetry.

given by Cartesian representation as v = x + y or Polar representation as v = r(cos θ + sin θ). x & y are

R, modulus r = |z| or |v| =
√

x2 + y2, multi-valued arg(z) or arg(v) or principal-valued Arg(z) or Arg(v) =

θ = arctan(y/x), and imaginary unit i=
√
−1.

Integers {0, 1} are neither prime nor composite. Prime & composite numbers form distinct countably

infinite sets of integers as two subsets in uncountably infinite set of real numbers. Both [algorithmic]

inputs Sieve-of-Eratosthenes and Complement-Sieve-of-Eratosthenes in section 2 that faithfully generate

outputs prime & composite numbers are visually represented by countably infinite set of real vectors. We

recognize all real vector sub-spaces for even Prime gaps 2, 4, 6, 8, 10... with each unique sub-space
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constituted by its corresponding countably infinite set of real vectors, must imply Modified Polignac’s and

Twin prime conjectures are true.

Where σ, t, Re{ζ(s)}, Im{ζ(s)}, Re{η(s)} and Im{η(s)} are R, (input) parameter s = σ ± it used in (output)

functions from section 2 such as non-alternating Riemann zeta function Eq. 1 ζ(s) = Re{ζ(s)}+ i · Im{ζ(s)}

and alternating Dirichlet eta function Eq. 2 η(s) = Re{η(s)} + i · Im{η(s)} are recognized to all be given in

z = x + iy format, thus allowing uncountably infinite set of complex vectors to visually represent them.

Next consider the two derived functions from section 2: simplified Dirichlet eta function or sim-η(s) and

Dirichlet Sigma-Power Law or DSPL [=
∫

sim-η(s)dn ≡ "signed area under a curve" for this Riemann in-

tegrable function] with their corresponding horizontal and vertical axes being perpendicular to each other

or, equivalently, being
π

2
out-of-phase with each other (as per Page 12 of [6]). Complex vectors repre-

senting sim-η(s) and DSPL when combined together form an orthonormal set in the inner product space

since all these vectors in the set are mutually orthogonal ("perpendicular") and can be depicted using their

("normalized") unit length. When equivalently expressed using countably infinite set of complex vectors;

we recognize nontrivial zeros of ζ(s), η(s), sim-η(s) or DSPL that only exist in unique σ = 1
2 complex

vector sub-space, must imply Riemann hypothesis is true.

Non-alternating power series
∞∑

n=0

anxn = a0 + a1x + a2x2 + a3x3 + . . .

Alternating power series
∞∑

n=0

(−1)nanxn = a0 − a1x + a2x2 − a3x3 + . . .

Non-alternating harmonic series
∞∑

n=1

1
n
=

1
1
+

1
2
+

1
3
+

1
4
+

1
5
+ · · ·

Alternating harmonic series
∞∑

n=1

(−1)n+1

n
=

1
1
−

1
2
+

1
3
−

1
4
+

1
5
− · · ·

**When s = 1 in Eq. 1 ζ(s) & Eq. 2 η(s) with n = +ve integers, we (respectively) obtain the above most

basic Non-alternating harmonic series and Alternating harmonic series **. An infinite series [listed

above as various types of power series and harmonic series] (or a finite series) is sum of [≥ 1] infinite

(or finite) sequence of terms constituted by numbers, scalars, or anything e.g. functions, vectors, ma-

trices. As previously discussed, power series [with VARYING coefficients an] are infinite polynomials.

Sieve-of-Eratosthenes & Complement-Sieve-of-Eratosthenes as well-defined infinite algorithms give rise

to [infinite] n solutions of all primes & composites; viz, they are the "analogs" of power or harmonic

series as well-defined infinite functions. With SAME coefficients a, the (non-alternating) geometric series
∞∑

n=0

axn = a + ax + ax2 + ax3 + . . . having +ve common ratio x between successive terms, is simply a spe-

cial case of (non-alternating) power series e.g. when a = 1
2 & 1

2 for +ve common ratio. Cf when a = 1
2 &

− 1
2 for −ve common ratio in an "inverse" (alternating) geometric series, which is simply a special case of

(alternating) power series (Page 56 of [8]):
∞∑

n=0

1
2

(−
1
2

)n=
1
2
−

1
4
+

1
8
−

1
16
+ · · ·=

1
2

1 − (− 1
2 )
=

1
3

cf
∞∑

n=0

1
2

(
1
2

)n=
1
2
+

1
4
+

1
8
+

1
16
+ · · ·=

1
2

1 − (+ 1
2 )
=1.
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Power and Harmonic (infinite) series defined over prime numbers p, with apn = pn, for example:

Non-alternating power series
∞∑

n=1

apn xpn =

∞∑
n=1

pnxpn = 2x2 + 3x3 + 5x5 + 7x7 + 11x11 + . . .

Alternating power series
∞∑

n=1

(−1)n−1apn xpn =

∞∑
n=1

(−1)n−1 pnxpn = 2x2 − 3x3 + 5x5 − 7x7 + 11x11 − . . .

Non-alternating harmonic series
∞∑

n=1

1
p
=

1
2
+

1
3
+

1
5
+

1
7
+

1
11
+ · · ·

Alternating harmonic series
∞∑

n=1

(−1)n+1

p
=

1
2
−

1
3
+

1
5
−

1
7
+

1
11
− · · ·

An expression is in closed form if it is formed with constants, variables and a finite set of basic functions

connected by arithmetic operations (viz, +,−,×,÷, and integer powers) and function composition. The

commonly allowed functions are [I] the algebraic functions [viz, defined as the root of an irreducible poly-

nomial equation] e.g. nth root or raising to a fractional power and [II] the transcendental (non-algebraic)

functions e.g. exponential function, logarithmic function, Γ function, trigonometric functions and their

inverses. Algebraic and transcendental (non-algebraic) solutions form two subsets of closed-form expres-

sions. Thus, a solution in radicals or algebraic solution is a closed-form expression, and more specifi-

cally a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only

on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of nth roots

(square roots, cube roots, and other integer roots). Following directly from Galois theory using polynomial

f (x) = x5 − x − 1 as one of the simplest examples of a non-solvable quintic polynomial, Abel-Ruffini the-

orem states that there is no solution in radicals to SOME general (finite) polynomial equations of degree

five or higher with arbitrary coefficients. Here, general meant the coefficients of a polynomial equation are

viewed and manipulated as indeterminates. We extrapolate: Any power series [e.g. ex, sin x, sinh x, ln x,

etc] as general (infinite) polynomial equations having infinitely many coefficients should have no solution

in radicals [viz, have transcendental solutions]. However some power series with coefficients involving

(infinite) polynomials [e.g. geometric series, binomial series, etc] can have solutions expressible in terms

of radicals, provided the series converges within the domain where such expressions are valid. Similar

to, but not categorized as, power series are various hypergeometric series [as defined by the generalized

hypergeometric function] that could have either transcendental solutions or solutions in radicals.

Eq. 1 ζ(s) & Eq. 2 η(s) have complex variable s = σ ± it. In 0 < σ < 1 critical strip containing σ = 1
2

critical line, η(s) must act as proxy function for ζ(s) [with both ≡ infinite series]. Useful relationship:

z as a complex number C is defined by z = a + bi with i being the imaginary unit, and a & b being

real numbers R. Then R ⊂ C since when b = 0, z = a + 0i = a will always be R. Our "amalgated"

generic Fundamental Theorem of Algebra heuristically =⇒ (eligible) general [finite or infinite or ALN]

algorithms and functions (of degree n with real or complex coefficients) have exactly [finite or infinite or

ALN] n roots or n solutions as real or complex numbers, counting multiplicities {e.g. sin (x + 2πn) with

n = ...−3, −2, −1, 0, 1, 2, 3...; ±nontrivial zeros; ±Primes; ±Composites; etc}. Riemann hypothesis is



24 JOHN TING

Figure 3. INPUT forσ = 1
2 (for Figure 4), 2

5 (for Figure 5), and 3
5 (for Figure 6). Riemann

zeta function ζ(s) has two countable infinite sets of firstly, Completely Predictable trivial

zeros located at s = all negative even numbers and secondly, Incompletely Predictable

nontrivial zeros located at σ = 1
2 as various t-valued transcendental numbers.

true when nontrivial zeros as Origin point intercepts are the infinitely many n roots that only occur when

parameter σ = 1
2 resulting in [optimal] "formula symmetry" for η(s) [as infinite series]. Polignac’s and

Twin prime conjectures are true when Sieve-of-Eratosthenes algorithm and its derived sub-algorithms [as

"infinite series" via
ALN∑
n=i

pn+1 = 3 +
n∑

i=2

gi] have ALN of n solutions represented by the Set [≡ total] of

Odd Primes and Subsets [≡ subtotals] of Odd Primes derived from all even Prime gaps.

2. General notations including Prime number theorem for Arithmetic Progressions and creating

de novo Infinite Series

Common abbreviations used in this paper: CP = Completely Predictable, IP = Incompletely Predictable,

FL = Finite-Length, IL = Infinite-Length, CFS = countably finite set, CIS = countably infinite set, IM

= infinitely-many, ALN = arbitrarily large number. We treat eligible algorithms and functions as de

novo infinite series. Critical strip≡{s ∈ C : 0 < Re(s) < 1}& Critical line≡{s ∈ C : Re(s) = 1
2 } in Figure 3.

Phrase "inside the critical strip" refers to parameter s [= σ± it with 0 < σ < 1; viz, 0 < Re(s) < 1] having

complex number values defined for η(s) as given by parameter t over ± real numbers. Phrase "outside the

critical strip" refers to parameter s [= σ ± it with σ > 1; viz, Re(s) > 1] having complex number values

defined for ζ(s) as given by parameter t over ± real numbers.

List of abbreviations incorporating relevant definitions:

·CP entities: These entities manifest CP independent properties.

·IP entities: These entities manifest IP dependent properties.

·ζ(s): f (n) Riemann zeta function [≡ infinite (converging) series for Re(s) > 1] – see Eq. (1) below con-

taining variable n, and parameters t and σ will generate [via its proxy Dirichlet eta function] Zeroes when

σ = 1
2 and virtual Zeroes when σ , 1

2 .

·η(s): f (n) Dirichlet eta function [≡ infinite (converging) series for Re(s) > 0] – see Eq. (2) below as

the analytic continuation of ζ(s), containing variable n, and parameters t and σ will generate Zeroes when
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Figure 4. OUTPUT for σ = 1
2 as Gram points. Polar graph of ζ( 1

2 + ıt) plotted along

critical line for real values of t running from 0 to 34. Horizontal axis: Re{ζ( 1
2 + ıt)}.

Vertical axis: Im{ζ( 1
2 + ıt)}. Presence of Origin intercept points. Nil-shift w.r.t. Origin

point when σ = 1
2 .

Figure 5. OUTPUT for σ = 2
5 as virtual Gram points. Varying Loops are shifted to left

of Origin with horizontal axis: Re{ζ( 2
5 + ıt)}, and vertical axis: Im{ζ( 2

5 + ıt)}. Nil Origin

intercept points. Left-shift w.r.t. Origin point when σ < 1
2 ; viz, 0 < σ < 1

2 .

Figure 6. OUTPUT for σ = 3
5 as virtual Gram points. Varying Loops are shifted to right

of Origin with horizontal axis: Re{ζ( 3
5 + ıt)}, and vertical axis: Im{ζ( 3

5 + ıt)}. Nil Origin

intercept points. Right-shift w.r.t. Origin point when σ > 1
2 ; viz, 1

2 < σ < 1.
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Figure 7. Close-up view of virtual Origin points when σ = 1
3 . OUTPUT for σ = 1

3

[σ < 1
2 situation] as virtual Gram points. Polar graph of ζ( 1

3 + ıt) plotted along non-

critical line for real values of t running between 0 and 100, horizontal axis: Re{ζ( 1
3 + ıt)},

and vertical axis: Im{ζ( 1
3 + ıt)}. Total absence of all Origin intercept points at "static"

Origin point. Total presence of all virtual Origin intercept points (as additional negative

virtual Gram[y=0] points on x-axis) at "varying" [infinitely many] virtual Origin points.

With respect to σ = 1
2 -Origin point being analogically the σ = 1

2 -’Centroid’, then

the [depicted] "left-shifted" σ = 1
3 as being 1

3 −
1
2 = −

1
6 and the [undepicted] "right-

shifted" σ = 2
3 as being 2

3 −
1
2 = +

1
6 are BOTH equidistant from ’Centroid’ [thus fully

satisfying (Remark 2.2) Principle of Equidistant for Multiplicative Inverse – see last

paragraph discussion in section 6 Conclusions.

σ = 1
2 and virtual Zeroes when σ , 1

2 .

·sim-η(s): f (n) simplified Dirichlet eta function [≡ infinite (converging) series for Re(s) > 0], derived by

applying Euler formula to η(s), containing variable n, and parameters t and σ will generate Zeroes when

σ = 1
2 – see Eq. (4) below and virtual Zeroes when σ , 1

2 – see Eq. (5) below.

·DSPL: F(n) Dirichlet Sigma-Power Law [≡ "continuous" infinite (converging) series for Re(s) > 0] =∫
sim-η(s)dn containing variable n, and parameters t and σ will generate Pseudo-zeroes when σ = 1

2 – see

Eq. (6) below and virtual Pseudo-zeroes when σ , 1
2 whereby the (virtual) Zeros = (virtual) Pseudo-zeros

– π2 relationship allows (virtual) Pseudo-zeros to (virtual) Zeros conversion and vice versa.

·NTZ: Nontrivial zeros located on the one-dimensional (mathematical) σ = 1
2 -critical line are precisely

equivalent to G[x=0,y=0]P: Gram[x=0,y=0] points as Origin intercept points which are located at the

zero-dimensional (geometrical) σ = 1
2 -Origin point [as per Figure 4]. These entities, mathematically de-

fined by
∑

ReIm{η(s)} = Re{η(s)}+ Im{η(s)} = 0, are generated by equation G[x=0,y=0]P-η(s) containing

exponent 1
2 when σ = 1

2 .

·GP or G[y=0]P: ’usual’ or ’traditional’ Gram points = Gram[y=0] points = x-axis intercept points that

are [multiple-positioned] located on one-dimensional x-axis line are generated by equation G[y=0]P-η(s)

when σ = 1
2 . These entities are mathematically defined by

∑
ReIm{η(s)} = Re{η(s)} + 0, or simply

Im{η(s)} = 0. Riemann hypothesis is usefully stated as none of the [additional] virtual G[x=0]P generated

by equation G[x=0]P-η(s) when σ , 1
2 – as demonstrated by Figure 7 for σ = 1

3 – can be constituted by
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t transcendental number values that [incorrectly] coincide with t transcendental number values for NTZ

when σ = 1
2 .

·G[x=0]P: Gram[x=0] points = y-axis intercept points that are [multiple-positioned] located on one-

dimentional y-axis line are generated by equation G[x=0]P-η(s) when σ = 1
2 . These entities are mathe-

matically defined by
∑

ReIm{η(s)} = 0 + Im{η(s)}, or simply Re{η(s)} = 0.

·virtual NTZ: virtual nontrivial zeros or virtual G[x=0,y=0]P: virtual Gram[x=0,y=0] points. These are

virtual Origin intercept points located at the multiple-positioned virtual Origin points which are generated

by equation virtual-G[x=0,y=0]P-η(s) containing exponent values , 1
2 when σ , 1

2 . We note that each

virtual NTZ when σ < 1
2 in Figure 5 equates to an [additional] negative virtual G[y=0]P located at IP

varying positions on horizontal axis, and each virtual NTZ when σ > 1
2 in Figure 6 equates to an [addi-

tional] positive virtual G[y=0]P located at IP varying positions on horizontal axis. We observe overall less

virtual G[x=0]P when σ > 1
2 , and overall more virtual G[x=0]P when σ < 1

2 .

·Sieve-of-Eratosthenes (S-of-E): For i = 1, 2, 3, 4, 5... and with p1 = 2 [≡ even prime number 2 forming

a CFS with cardinality of 1] as the first term in S-of-E; the algorithm S-of-E as symbolically denoted by

pn+1 = 2 +
n∑

i=1

gi with gn = pn+1− pn and its derived sub-algorithms faithfully generate the set of all prime

numbers 2, 3, 5, 7, 11, 13... and subsets of Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10....

We now ignore even prime number 2 by changing variable i to instead commence from 2nd position. For

i = 2, 3, 4, 5, 6... and with p2 = 3 [≡ first Odd Prime 3] as the first term in Modified-S-of-E; the altered

algorithm Modified-S-of-E as symbolically denoted by pn+1 = 3 +
n∑

i=2

gi with gn = pn+1 − pn and its de-

rived sub-algorithms will faithfully generate the set of all Odd Primes 3, 5, 7, 11, 13, 17... and subsets of

Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10.... By performing summation [viz, conducting

repeated addition of sequence from ALN of prime gaps and prime numbers that are arranged in an unique

order] on above two algorithms as
ALN∑
n=i

pn+1 = 2 +
n∑

i=1

gi and
ALN∑
n=i

pn+1 = 3 +
n∑

i=2

gi, we obtain (de novo)

infinite series. These infinite series are all diverging series for this two algorithms [and their derived sub-

algorithms]. In contrast, Brun’s constants as outlined in section 4 are converging series. The cardinality

of CIS-ALN-decelerating is applicable for (i) set of all prime numbers, (ii) set of all Odd Primes, (iii)

subsets of Odd Primes, and (iv) set of all even Prime gaps =⇒ Modified Polignac’s and Twin prime

conjectures are true.

·Complement-Sieve-of-Eratosthenes: For i = 1, 2, 3, 4, 5... and with c1 = 4; this algorithm as sym-

bolically denoted by cn+1 = 4 +
n∑

i=1

ci with gn = cn+1 − cn and its derived sub-algorithms will faithfully

generate all composite numbers. Parallel arguments to construct de novo infinite series as diverging series

for (sub)sets of composite numbers are also possible.

In general, we note the infinite-length sequence of a given converging series or diverging series can the-

oretically be constituted by either positive terms e.g. ζ(s) as non-alternating harmonic series Eq. (1) OR
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alternating positive and negative terms e.g. η(s) as alternating harmonic series Eq. (2).

ζ(s) =
∞∑

n=1

1
ns(1)

=
1
1s +

1
2s +

1
3s +

1
4s +

1
5s + · · ·

=
∏

p prime

1
1 − p−s =

1
1 − 2−s ·

1
1 − 3−s ·

1
1 − 5−s ·

1
1 − 7−s ·

1
1 − 11−s · · ·

1
1 − p−s · · ·

Eq. (1) non-alternating harmonic series Riemann zeta function ζ(s) is a function of complex variable s

(= σ ± ıt) that continues sum of infinite series ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s + · · · for Re(s) > 1, and its

analytic continuation elsewhere for 0 < Re(s) < 1. Containing no nontrivial zeros, ζ(s) is defined only in

1 < σ < ∞ region where it is absolutely convergent. The common convention is to write s as σ + ıt with ı

=
√
−1, and with σ and t real. Valid for σ > 1, we write ζ(s) as Re{ζ(s)}+ıIm{ζ(s)} and note that ζ(σ + ıt)

when 0 < t < +∞ is the complex conjugate of ζ(σ− ıt) when −∞ < t < 0. In Eq. (1), the equivalent Euler

product formula with product over all prime numbers implies the presence of Sieve of Eratosthenes. Also

note that for all s ∈ C, s , 1, the integral relation ζ(s) =
1

s − 1
+

1
2
+ 2
∫ ∞

0

sin(s arctan t)(
1 + t2

)s/2 (e2πt − 1
) dt holds

true, which may be used for a numerical evaluation of the zeta function.

η(s) =
∞∑

n=1

(−1)n+1

ns =
1
1s −

1
2s +

1
3s −

1
4s +

1
5s − · · ·(2)

=
∏

p prime

1
1 ± p−s =

1
1 + 2−s ·

1
1 − 3−s ·

1
1 + 5−s ·

1
1 − 7−s ·

1
1 + 11−s · · ·

1
1 ± p−s · · ·

Eq. (2) alternating harmonic series Dirichlet eta function η(s) that faithfully generates all three types

of Gram points as three dependent CIS-IM-linear Incompletely Predictable entities when σ = 1
2 must

represent and act as proxy function for Eq. (1) in 0 < σ < 1-critical strip [viz, for 0 < Re(s) < 1]

containing σ = 1
2 -critical line because ζ(s) only converges when σ > 1. In Eq. (2), the equivalent Euler

product formula with product over all prime numbers also implies the presence of Sieve of Eratosthenes.

They are related to each other [via Analytic continuation] as ζ(s) = γ ·η(s) or equivalently as η(s) =
1
γ
·ζ(s)

with proportionality factor γ =
1

(1 − 21−s)
.

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s) ζ(1 − s)(3)

[The reflection functional equation for η(s) is already given previously and not reproduced here.] ζ(s)

satisfies Eq. (3) as the reflection functional equation whereby Γ is the gamma function. [Note that

derived for complex numbers with a positive real part, Γ is defined via a convergent improper integral

Γ(z) =
∫ ∞

0
tz−1e−t dt,ℜ(z) > 0. Γ is then defined as analytic continuation of this integral function to a

meromorphic function that is holomorphic in whole complex plane except zero and negative integers,

where the function has simple poles. The main motivation for its development is Γ(x + 1) interpolates

factorial function x! = 1 · 2 · 3 · ...· x to non-integer values.] As an equality of meromorphic functions
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valid on whole complex plane, Eq. (3) relates values of ζ(s) at points s and 1 − s; in particular, it re-

lates even positive integers with odd negative integers. Owing to zeros of sine function, the functional

equation implies ζ(s) has a simple zero at each even negative integer s = −2n = −2,−4,−6,−8,−10...

known as trivial zeros of ζ(s). When s is an even positive integer, product sin(
πs
2

)Γ(1 − s) on right is

non-zero because Γ(1 − s) has a simple pole, which cancels simple zero of sine factor. With perfect line

symmetry at the vertical line s =
1
2

, we have a symmetric version of this functional equation applied to

the Lambda-function given by Λ(s) = π−
s
2Γ

( s
2

)
ζ(s), which satisfies Λ(s) = Λ(1 − s) OR to the Riemann

xi-function given by ξ(s) =
1
2
π−

s
2 s(s − 1)Γ

( s
2

)
ζ(s), which satisfies ξ(s) = ξ(1 − s). Λ(s) OR ξ(s) is thus

the ’completed zeta function’ whereby π−
s
2Γ(

s
2

) = ΓR(s) is "Gamma factor" as the local L-factor corre-

sponding to the Archimedean place, with the other factors in the Euler product expansion being the local

L-factors of the non-Archimedean places. The conductor of L-function is the positive integer N from N
s
2 .

For Riemann zeta function, its conductor N as derived from π−
s
2 = (

1
π
· 1)

s
2 is 1.

Remark 2.1. Consider sequence λn =
1

(n − 1)!
dn

dsn

[
sn−1 log ξ(s)

]∣∣∣∣
s=1

. As a possible pathway to solve

Riemann hypothesis, Li’s criterion states that this hypothesis is equivalent to the statement λn > 0 for

every positive integer n [viz, positivity of λn].

The numbers λn (as the Additive invariants denoted by L∗ and sometimes defined with a slightly different

normalization) are called Keiper-Li coefficients or Li coefficients. They may also be expressed in terms

of nontrivial zeros of Riemann zeta function λn =
∑
ρ

ï
1 −
Å

1 −
1
ρ

ãnò
where the sum extends over ρ,

the nontrivial zeros of the zeta function. This conditionally convergent sum should be understood in the

sense usually used in Number theory; namely, that
∑
ρ

= lim
N→∞

∑
| Im(ρ)|≤N

. [Re(s) and Im(s) denote real and

imaginary parts of s].

At σ = 1
2 , sim-η(s) =

∞∑
n=1

(2n)−
1
2 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
1
2 2

1
2 cos(t ln(2n − 1) +

1
4
π)(4)

At σ = 2
5 , sim-η(s) =

∞∑
n=1

(2n)−
2
5 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
2
5 2

1
2 cos(t ln(2n − 1) +

1
4
π)(5)

For any real number n, eın = cos n+ ı · sin n is Euler’s formula where e [≊transcendental number 2.71828]

is base of natural logarithm, ı =
√
−1 is imaginary unit. When n = π [≊transcendental number 3.14159],

then eiπ + 1 = 0 or eiπ = −1, known as Euler’s identity. Applying this formula to f(n) η(s) results in

Eq. (4) f(n) simplified η(s) at σ = 1
2 that incorporate all nontrivial zeros [as Zeroes]. There is total

absence of (non-existent) virtual nontrivial zeros [as virtual Zeroes]. Eq. (5) f(n) simplified η(s) at σ = 2
5

will incorporate all (non-existent) virtual nontrivial zeros [as virtual Zeroes]. There is total absence of

nontrivial zeros [as Zeroes].
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Figure 8. The natural logarithm function logex or ln(x) and natural exponential function

exp(x) or ex. The graphs of logex and its inverse ex are symmetric with respect to line y =

x thus geometrically denoting diagonal symmetry of these two functions; viz, ln(ex) = x

and e(ln x) = x.

At σ = 1
2 , DSPL =

1

2
1
2

Å
t2 +

1
4

ã 1
2
ï
(2n)

1
2 cos(t ln(2n) −

1
4
π) − (2n − 1)

1
2 cos(t ln(2n − 1) −

1
4
π) +C

ò∞
1

(6)

F(n) Dirichlet Sigma-Power Law, denoted by DSPL, refers to
∫

sim-η(s)dn. Eq. (6) is F(n) DSPL at σ = 1
2

that will incorporate all nontrivial zeros [as Pseudo-zeroes to Zeroes conversion].

Remark 2.2. Given δ = 1
10 , the left-shifted σ = 1

2 − δ =
2
5 -non-critical line (Figure 5) and right-shifted

σ = 1
2 + δ =

3
5 -non-critical line (Figure 6) are equidistant from nil-shifted σ = 1

2 -critical line (Figure 4).

Let x = (2n) or
1

(2n)
or (2n− 1) or

1
(2n − 1)

. With multiplicative inverse operation of xδ·x−δ = 1 or
1
xδ
·

1
x−δ

= 1 that is applicable, this imply intrinsic presence of Multiplicative Inverse in sim-η(s) or DSPL for all

σ values with this function or law rigidly obeying relevant trigonometric identity. Then both f (n) sim-η(s)

and F(n) DSPL will manifest Principle of Equidistant for Multiplicative Inverse (as per Page 41 of [8]).

The dissertation based on Figure 8 with inverse functions ln(x) & e(x) in Page 30 – 35 of [8] confirms

Asymptotic law of distribution for prime numbers as lim
x→∞

Prime-π(x)î
x

ln(x)

ó =1 and Asymptotic law of distri-

bution for composite numbers as lim
x→∞

Composite-π(x)î
x

e(x)

ó = 1. This fully supports Prime number theorem

[viz, Prime-π(x)≈
x

ln(x)
] & derived Composite number theorem [viz, Composite-π(x)≈

x
e(x)

].

A number base, consisting of any whole number greater than 0, is number of digits or combination of

digits that a number system uses to represent numbers e.g. decimal number system or base 10, binary

number system or base 2, octal number system or base 8, hexa-decimal number system or base 16. Prime

counting function, Prime-π(x) = number of primes ≤ x and Composite counting function, Composite-

π(x) = number of composites ≤ x. As x → ∞, derived properties of Prime-π(x) occur in, for instance,

Prime number theorem for Arithmetic Progressions, Prime-π(x; b, a) [= number of primes ≤ x with last
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digit of primes given by a in base b]. For any choice of digit a in base b with gcd(a,b) = 1: Prime-

π(x; b, a) ∼
Prime-π(x)
ϕ(b)

. Here, Euler’s totient function ϕ(n) is defined as the number of positive integers

≤ n that are relatively prime to (i.e., do not contain any factor in common with) n, where 1 is counted as

being relatively prime to all numbers. Then each of the last digit of primes given by digit a in base b as

x→ ∞ is equally distributed between the permitted choices for digit a with this result being valid for, and

is independent of, any chosen base b.

Numbers with their last digit ending in (i) 1, 3, 7 or 9 [which can be either primes or composites] constitute

∼40% of all integers; and (ii) 0, 2, 4, 5, 6 or 8 [which must be composites] constitute ∼60% of all integers.

We validly ignore the only single-digit even prime number 2 and odd prime number 5. We note ≥ 2-digit

Odd Primes can only have their last digit ending in 1, 3, 7 or 9 but not in 0, 2, 4, 5, 6 or 8. These are given

as the complete List:

The last digit of Odd Primes having their Prime gaps with last digit ending in 2 [viz, Gap 2, Gap 12, Gap

22, Gap 32...] can only be 1, 3 or 9 [but not (5) or 7] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 4 [viz, Gap 4, Gap 14, Gap

24, Gap 34...] can only be 1, 3 or 7 [but not (5) or 9] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 6 [viz, Gap 6, Gap 16, Gap

26, Gap 36...] can only be 3, 7 or 9 [but not (5) or 1] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 8 [viz, Gap 8, Gap 18, Gap

28, Gap 38...] can only be 1, 7 or 9 [but not (5) or 3] as three choices.

The last digit of Odd Primes having their Prime gaps with last digit ending in 0 [viz, Gap 10, Gap 20, Gap

30, Gap 40...] can only be 1, 3, 7 or 9 [but not (5)] as four choices.

Axiom 1. Applications of the Prime number theorem for Arithmetic Progressions will confirm Modified

Polignac’s and Twin prime conjectures to be true (as per Page 31 – 32 in [8]).

Proof. We use decimal number system (base b = 10), and ignore the only single-digit even prime number

2 and odd prime number 5. For i = 1, 2, 3, 4, 5...; the last digit of all Gap 2i-Odd Primes can only end in 1,

3, 7 or 9 that are each proportionally and equally distributed as ∼25% when x→ ∞, whereby this result is

consistent with Prime number theorem for Arithmetic Progressions. The 100%-Set of, and its derived four

unique 25%-Subsets of, Gap 2i-Odd Primes based on their last digit being 1, 3, 7 or 9 must all be CIS-

ALN-decelerating. "Different Prime numbers literally equates to different Prime gaps" is a well-known

intrinsic property. Since the ALN of Gap 2i as fully represented by all Prime gaps with last digit ending

in 0, 2, 4, 6 or 8 are associated with various permitted combinations of last digit in Gap 2i-Odd Primes

being 1, 3, 7 and/or 9 as three or four choices [outlined above in List from preceding paragraph]; then

these ALN unique subsets of Prime gaps based on their last digit being 0, 2, 4, 6 or 8 together with their

correspondingly derived ALN unique subsets constituted by Gap 2i-Odd Primes having last digit 1, 3, 7 or

9 must also all be CIS-ALN-decelerating. The Probability (any Gap 2i abruptly terminating as x→ ∞) =

Probability (any Gap 2i-Odd Primes abruptly terminating as x → ∞) = 0. Thus Modified Polignac’s and
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Twin prime conjectures is confirmed to be true. With ordinary Riemann hypothesis being a special case,

we also note the generalized Riemann hypothesis formulated for Dirichlet L-function holds once x > b2,

or base b < x
1
2 as x→ ∞. The ["statistical" or "probabilistic"] proof is now complete for Axiom 12.

3. Generic Squeeze theorem as a novel mathematical tool in Number theory

We adopt abbreviations P = Prime numbers, C = Composite numbers, NTZ = nontrivial zeros, G[y=0]P

= Gram[y=0] points (usual / traditional Gram points), and G[x=0]P = Gram[x=0] points.

Gram’s Law and Rosser’s Rule for Riemann zeta function via its proxy Dirichlet eta function at σ =
1
2 are perpetually associated with recurring violations (failures). Violations of Gram’s Law equates to

intermittently observing various geometric variants of two consecutive (positive first and then negative)

G[y=0]P that is alternatingly followed by two consecutive NTZ. Violations of Rosser’s Rule equates to

intermittently observing various geometric variants of reduction in expected number of certain x-axis

intercept points. Both types of violations may give rise to intermittent or cyclical events of two missing

G[y=0]P or, equivalently, to two extra NTZ.

We hereby artificially and conveniently regard the G[y=0]P ≤ G[x=0]P ≤ NTZ inequality as being appli-

cable for Theorem 3.1 below. Observe that this particular inequality has never been definitively confirmed

to be true over the large range of numbers. With full analysis, one of the following alternative inequalities

G[x=0]P ≤ G[y=0]P ≤ NTZ or NTZ ≤ G[y=0]P ≤ G[x=0]P or NTZ ≤ G[x=0]P ≤ G[y=0]P or G[x=0]P

≤ NTZ ≤ G[y=0]P or G[y=0]P ≤ NTZ ≤ G[x=0]P over the large range of numbers could instead be true.

Even the equality G[y=0]P = G[x=0]P = NTZ over the large range of numbers could instead also be true.

It may even be the case that all types of inequalities mentioned above could cyclically co-exist over the

large range of numbers. In principle, Theorem 3.1 should intuitively be validly applicable to the correctly

chosen inequality [or equality].

Theorem 3.1. (Generic Squeeze theorem). Crucially applicable to all prime numbers, composite numbers

and nontrivial zeros, our devised Theorem 3.1 is formally stated as follows (as per Page 51 – 53 in [8]).

Let I be an interval containing point a. Let g, f , and h be algorithms or functions defined on I, except

possibly at a itself. Suppose for every x in I not equal to a, we have g(x) ≤ f (x) ≤ h(x) and also suppose

lim
x→a

g(x)= lim
x→a

h(x) = L. Then lim
x→a

f (x) = L. The algorithms or functions g and h are said to be lower and

upper bounds (respectively) of f . Here, a is not required to lie in the interior of I. Indeed, if a is an

endpoint of I, then the above limits are left- or right-hand limits. A similar statement holds for infinite

intervals e.g. applicable to the IM t-valued NTZ (as CIS-IM-linear) obtained from Riemann zeta function

via its proxy Dirichlet eta function, and the ALN of P (as CIS-ALN-decelerating) obtained from Sieve-of-

Eratosthenes and IM C (as CIS-IM-accelerating) obtained from Complement-Sieve-of-Eratosthenes. In

particular, if I = (0,∞) or (0, ALN), then the conclusion holds, taking the limits as x→ ∞ or ALN.
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Let an, cn be two sequences converging to ℓ, and bn a sequence. If ∀n ≥ N, N ∈ N we have an ≤ bn ≤ cn,

then bn also converges to ℓ. From above arguments, we logically notice Generic Squeeze theorem is valid

for carefully selected sequences e.g. those precisely derived from algorithm Sieve-of-Eratosthenes gen-

erating set of all unique P 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... with progressive "cummulative" cardinality

≡ cn and sub-algorithms from Complement-Sieve-of-Eratosthenes generating two subsets of all unique

pre-prime-Gap 2-Even C 4, 6, 10, 12, 16, 18, 22, 28... with progressive "cummulative" cardinality ≡ bn

and of all unique 1st post-prime-Gap 1-Even C 8, 14, 20, 24, 32, 38, 44... with progressive "cummulative"

cardinality ≡ an. We recognize even P 2 is not a pre-prime-Gap 2-Even C, and 1st P 3, 5, 11, 17, 29, 41,

59... from all twin prime pairings (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61)... are never

associated with 1st post-prime-Gap 1-Even C as these even numbers 4, 6, 12, 18, 30, 42, 60... [which must

be *eternally ubiquitous*, not least, to comply with Law of Continuity] are all pre-prime-Gap 2-Even C.

Incorporating mixtures of P & C, our findings on twin prime pairings =⇒ {cn representing progressive

total of all P} > {bn representing progressive total of all pre-prime-Gap 2-Even C} > {an representing pro-

gressive total of all 1st post-prime-Gap 1-Even C}. Since lim
n→ALN

an = lim
n→ALN

cn = CIS-ALN-decelerating,

then lim
n→ALN

bn = CIS-ALN-decelerating. Stated in another insightful way: The perpetual recurrence of

intermittent inevitable DISAPPEARANCE of 1st post-prime-Gap 1-Even C is solely due to coinciding

intermittent inevitable APPEARANCE of twin primes =⇒ Twin prime conjecture is true.
*The 1st post-prime-Gap 1-Even C precisely forms OEIS sequence A014574 Average of twin prime pairs

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420,

432, 462, 522, 570, 600, 618... by R. K. Guy, N. J. A. Sloane & E. W. Weisstein (June 11, 2011)

https://oeis.org/A014574 whereby

(i) With an initial 1 added, these numbers form part of the complement of closure of {2} under the oper-

ations a ∗ b + 1 and a ∗ b − 1 within the set of all non-zero positive even numbers U = {2, 4, 6, 8, 10...}.

For a ∗ b + 1: 2 ∗ 2 + 1 = 5. For a ∗ b − 1: 2 ∗ 2 − 1 = 3. Under both operations, we obtain the set S = {2,

3, 5}. Therefore the complement of S within U would be all even numbers except 2 [and 5 & 3]; viz, S ′

= {4, 6, 8, 10, 12, 14, 16...}.

(ii) These numbers are also the square root of the product of twin prime pairs + 1. Two consecutive odd

numbers can be written as 2k + 1, 2k + 3. Then (2k + 1)(2k + 3)+ 1 = 4(k2 + 2k + 1) = 4(k + 1)2, a perfect

square [where the countably infinite set of all perfect squares ≡ product of an integer multiplied by itself

= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100...]. Since twin prime pairs are two consecutive odd numbers, the

statement is true for all CIS-ALN-decelerating twin prime pairs.

(iii) These numbers are single (or isolated) composites. Nonprimes k such that neither k − 1 nor k + 1 is

nonprime.

(iv) These form the numbers n such that σ(n − 1) = ϕ(n + 1). This equation involves two arithmetic

functions: the sum of divisors function σ [which calculates the sum of all positive divisors of n e.g. when

n = 30: Prime factorization of (n− 1) = 29 is 29 = 291, and σ(29) = 1+ 29 = 30] and Euler’s totient func-

tion ϕ [which gives the count of positive integers less than n that are coprime to n e.g. Prime factorization

of (n + 1) = 31 is 31 = 311, and ϕ(31) = 31 − 1 = 30].
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(v) Aside from first term 4 in the sequence, all remaining terms 6, 12, 18, 30, 42, 60, 72, 102, 108, 138,

150... have digital root 3, 6, or 9 e.g. digital root of 138 is 3 since 138 = 1 + 3 + 8 = 12 and 1 + 2 = 3.

(vi) These form the numbers n such that n2 − 1 is a semiprime [a natural number that is the product of two

prime numbers].

(vii) Every term but the first term 4 is a multiple of 6 [and all the multiple of 6 clearly constitute a countably

infinite set].

From above synopsis that is valid for [mixed] prime & composite numbers as x →ALN, we conclude:

Since there is an ALN of all prime numbers as (cn) and also an ALN of all 1st post-prime-Gap 1-Even

composite numbers as (an), then by the Generic Squeeze theorem, there must also be an ALN of all Gap

2-Even composite numbers as (bn). Thus ℓ must have the value of ALN. In theory, even if there are

[incorrectly] only finitely many twin primes, the mathematical relationship of an ≤ bn ≤ cn will still hold

except that the Generic Squeeze theorem is no longer applicable as there will be inevitable "errors" present

in the computed an, bn and cn.

By applying Generic Squeeze theorem [only] to Odd P, we now prove Polignac’s and Twin prime con-

jectures are true: We ignore even P 2. Let algorithm Sieve-of-Eratosthenes that generate the set of all

unique Total Odd P 3, 5, 7, 11, 13, 17, 19, 23, 29... with progressive "cummulative" cardinality ≡ cn and

sub-algorithms from Sieve-of-Eratosthenes that generate the two [randomly selected] subsets of all unique

Gap 4-Odd P 7, 13, 19, 37, 43, 67... with progressive "cummulative" cardinality ≡ an and of all unique

Gap 2, 6, 8, 10, 12...-Odd P 3, 5, 11, 17, 23, 23, 29, 31, 41, 47, 53, 59, 61... [viz, not including Gap

4-Odd P] with progressive "cummulative" cardinality ≡ bn. Instead of choosing bn to be even Prime gap

4, one could choose any other eligible even Prime gap derived from the set of all even Prime gaps [which

will inevitably also include Zhang’s landmark result of an unknown even Prime gap N < 70 million].

Since lim
n→ALN

an = lim
n→ALN

cn = CIS-ALN-decelerating, then lim
n→ALN

bn = CIS-ALN-decelerating. Stated in

another insightful way: In order for novel method Generic Squeeze theorem to be ubiquitously applicable

for Odd P, all even Prime gaps 2, 4, 6, 8, 10... must be associated with corresponding ALN of Odd P.

On 17 April 2013, Yitang Zhang announced an incredible proof that there are infinitely many pairs of

prime numbers that differ by less than 70 million[9]; viz, there is an arbitrarily large number of Odd Primes

with an unknown even Prime gap N of less than 70 million. By optimizing Zhang’s bound, subsequent

Polymath Project collaborative efforts using a new refinement of GPY sieve in 2014 lowered N to 246; and

assuming Elliott-Halberstam conjecture and its generalized form further lower N to 12 and 6, respectively.

Intuitively, N has more than one valid values such that the same condition holds for each N value. Using

different methods, we can at most lower N to 2 and 4 in regards to Odd Primes having small even Prime

gaps 2 & 4 with each uniquely generating CIS-ALN-decelerating Odd Primes. We anticipate there are all

remaining even Prime gaps w.r.t. Odd Primes with large even Prime gaps ≥ 6 as denoted by corresponding

N ≥ 6 values whereby each large even Prime gap generates its unique CIS-ALN-decelerating Odd Primes.

We justify "Zhang’s optimized result ≥ 3 up to ALN even Prime gaps with each having ALN of ele-

ments": Always as finite [but NOT infinite] length, we observe as side note that two or more consecutive
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Odd Primes are validly and rarely constituted by [same] even Prime gap of 6 or multiples of 6. With just

one or two existing even Prime gaps that have ALN of elements being simply "insufficient" in the large

range of prime numbers, then the landmark result by Zhang on this unknown even Prime gap N of less than

70 million is usefully extrapolated as "There must be at least one subset of Odd Primes having ALN of

elements". Hence there are aesthetically at least two, if not three, existing even Prime gaps generating cor-

responding CIS-ALN-decelerating Odd Primes. Modified Polignac’s and Twin prime conjectures equates

to all even Prime gaps 2, 4, 6, 8, 10... generating corresponding CIS-ALN-decelerating Odd Primes.

Near-identical arguments can be made for three types of Gram points located at σ = 1
2 -critical line of

Riemann zeta function but we leave out the full exercise of applying Generic Squeeze theorem to NTZ

as progressive "cummulative" cardinality ≡ cn, G[x=0]P as progressive "cummulative" cardinality ≡ bn

and G[y=0]P as progressive "cummulative" cardinality ≡ an. We immediately recognize the [trivial]

conclusion: Since lim
n→∞

an = lim
n→∞

cn = CIS-IM-linear, then lim
n→∞

bn = CIS-IM-linear.

Eq. (4) manifests exact Dimensional analysis homogeneity when σ = 1
2 whereby Σ(all fractional expo-

nents) = 2(−σ) = exact negative whole number –1 [c.f. Eq. (5) manifests inexact Dimensional analysis

homogeneity when σ = 2
5 whereby Σ(all fractional exponents) = 2(–σ) = inexact negative fractional

number – 4
5 ]. Only Dirichlet eta function having parameter σ = 1

2 will mathematically depict [optimal]

"formula symmetry" on Σ(all fractional exponents) as an exact negative whole number, whereby absolute

values of all fractional exponents = 1
2 when associated with constant 2 and variable (2n) or (2n–1). This

formula symmetry is not equivalent to geometrical symmetry about X-axis, Y-axis, Diagonal, or Origin

point that do not exist for any Dirichlet eta function when considered for either −∞ < t < 0 or 0 < t < +∞

from full range −∞ < t < +∞; whereby we conventionally adopt the positive range. Simple observation of

[optimal] "formula symmetry" implies only σ = 1
2 -Dirichlet eta function will perpetually & geometrically

intercept σ = 1
2 -Origin point as Origin intercept points or Gram[x=0,y=0] points (i.e. will perpetually &

mathematically lie on σ = 1
2 -critical line as nontrivial zeros) an infinite number of times.

Conforming to Langlands program "Theory of Symmetry", IL (sub-)algorithms or IL (sub-)equations

and FL (sub-)algorithms or FL (sub-)equations will respectively generate infinitely-many and finitely-

many entities. All the FL (sub-)algorithms or FL (sub-)equations are CP but the IL (sub-)algorithms

or IL (sub-)equations can be either CP or IP. Here, we validly regard equation Dirichlet eta function

(proxy for Riemann zeta function that generate nontrivial zeros when σ = 1
2 ), and algorithms Sieve-of-

Eratosthenes [for prime numbers] and Complement-Sieve-of-Eratosthenes [for composite numbers] as

non-overlapping "IP IL number generators".

Remark 3.1. Not least to maintain Dimensional analysis homogeneity and to conserve Total number of

elements (cardinality), it is a crucial sine qua non Pre-requisite Mathematical Condition that a parent IP

IL algorithm which is precisely constituted by its IP IL sub-algorithms or a parent IP IL equation which

is precisely constituted by its IP IL sub-equations must generally all be wholly IP IL [and not be mixed

IP IL and CP FL]. Useful self-explanatory analogy using CP IL (sub)algorithms or (sub)equations: Set

"twin" even numbers 0, 2, 4, 6, 8, 10... with Even gap 2, Subset "cousin" even numbers 0, 4, 8, 12, 16,
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20... with Even gap 4, Subset "sexy" even numbers 0, 6, 12, 18, 24, 30... with Even gap 6, etc must all be

constituted by CP IL [and not mixed CP IL and IP IL] even numbers that are derived from, paradoxically,

overlapping "CP IL number generators".

Remark 3.2. It was correctly asserted on Page 3 – 4 of [8] that any created Prime-tuplet or Prime-tuple is

not able to be used to either prove or disprove Modified Polignac’s and Twin prime conjectures. The main

reason is Prime-tuplets or Prime-tuples are "overlapping and incomplete" (Sub)Tuples Classification of

consecutive primes. In contrast, we can use "non-overlapping and complete" (Sub)Sets Classification

of grouped primes to prove these conjectures. Thus even Prime gap 2 = Prime 2-tuplets of diameter 2

and even Prime gaps 4, 6, 8, 10, 12... = Prime 2-tuples of diameter 4, 6, 8, 10, 12....

4. Applying the Theorem of Divergent-to-Convergent series conversion for Prime numbers to

Polignac’s and Twin prime conjectures

Recall from section 2 the algorithms Sieve-of-Eratosthenes (S-of-E) and Modified-S-of-E. Both algo-

rithms and their derived sub-algorithms faithfully generate set of all prime numbers 2, 3, 5, 7, 11, 13...;

set of all Odd Primes 3, 5, 7, 11, 13, 17...; and subsets of Odd Primes derived from even Prime gaps 2, 4,

6, 8, 10.... By performing summation given by
ALN∑
n=i

pn+1 = 2 +
n∑

i=1

gi and
ALN∑
n=i

pn+1 = 3 +
n∑

i=2

gi, we obtain

(de novo) infinite series as diverging series for these two algorithms [and their derived sub-algorithms].

For Polignac’s and Twin prime conjectures to be true, we deduce the cardinality for (i) set of all prime

numbers, (ii) set of all Odd Primes, (iii) subsets of Odd Primes, and (iv) set of all even Prime gaps must

all be CIS-ALN-decelerating. In contrast, we deduce below after Theorem 4.1 that all Brun’s constants as

(derived) infinite series are, in fact, converging series.

Helpful preliminary information about Theorem 4.1: Four basic arithmetic operations of addition [and

complementary substraction] and multiplication [and complementary division] obey Axioms of Addition

and Multiplication, and Axioms of Order. Division of one number by another is equivalent to multiplying

first number by reciprocal (or multiplicative inverse) of second number, whereby division by 0 is always

undefined. Subtraction of one number from another is equivalent to adding additive inverse of second

number (viz, a negative number) to first number (viz, a positive number). Below are Completely Pre-

dictable properties arising from (non-)alternating addition of any Even numbers (E) 0, 2, 4, 6, 8, 10, 12...

and any Odd numbers (O) 1, 3, 5, 7, 9, 11, 13...:

(1) E + E + E + E... when involving any number of terms = E.

(2) O + O + O + O... when involving an even number of terms = E; and when involving an odd number

of terms = O.

The alternating sum E + O + E + O + E + O... when involving (1 + n) terms for n = 1, 2, 3, 4, 5... =

repeating patterns of O, O, E, E, O, O,....

A convergent series (CS) as an infinite series having its partial sums of sequence that tends to a finite limit

is validly represented by the [defined] value of this finite limit. A divergent series (DS) as an infinite series
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having its partial sums of sequence that tends to a infinite limit is validly represented by the [undefined]

value of this infinite limit. As previously discussed in section 2, the infinite-length sequence of a given

CS or DS can theoretically be constituted by either positive terms OR alternating positive and negative

terms. The following are Completely Predictable properties arising from addition of any infinite series

constituted by ≥ 1 CS and/or ≥ 1 DS:

I. DS+DS+DS+... when involving any number of DS terms = DS.

II. CS+CS+...+DS+DS+... when involving any number of CS terms & any number of DS terms = DS.

III. CS+CS+CS+... when involving a finite number of CS terms = CS.

IV. CS+CS+CS+... when involving an infinite number of CS terms or arbitrarily large number (ALN) of

CS terms = DS.

Theorem 4.1. (Theorem of Divergent-to-Convergent series conversion for Prime numbers) (as per Page

53 – 54 in [8]).

We validly ignore even prime number 2. Theorem 4.1, aka Smoothed asymptotics for Prime numbers

with an enhanced regulator, as given in next two paragraphs is further expanded below using three

Brun’s constants computed for twin primes, cousin primes and sexy primes.

For [eligible] homogenous entities of prime numbers with application of divergent series (DS) to conver-

gent series (CS) conversion relationship, we obtain CS + CS + CS +... when involving arbitrarily large

number (ALN) of CS terms [that faithfully "represent" all Subsets of Odd Primes] = DS [that faithfully

"represent" the Set of all Odd Primes]. We recognize the ALN of computed CS terms will precisely corre-

spond to Brun’s constants. The correctly chosen enhanced regulator for prime numbers ≡ sine qua non

condition [that must be fully complied with by all Odd Primes]: Derived from the set of all Odd Primes,

there must be an ALN of subsets of Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10... with each

subset of Odd Primes containing an ALN of unique elements.

The elimination of a DS to CS under our novel Divergent-to-Convergent series theorem for Prime numbers

fully supports Polignac’s and Twin prime conjectures to be true. As alluded to in section 1, this proce-

dure is reminiscent of invoking ’Method of Smooth asymptotics’ and ’regularization of divergent series or

integrals’ to enable elimination of divergences in analytic number theory and preservation of gauge invari-

ance at one loop in a wide class of non-abelian gauge theories coupled to Dirac fermions that preserves

Ward identity for vacuum polarisation tensor [viz, a regularized quantum field theory]. This is achieved

by Padilla and Smith via adopting suitable choices from their proposed families of enhanced regulators[4]

with analytic continuation that converge to Riemann zeta function value ζ(−1) = − 1
12 of extra relevance

to quantum gravity, string theory, etc.

Considering Euler products
∞∑

n=1

1
n
=
∏

p

1
1 − p−1 when taken over the set of all infinitely many primes,

Leonhard Euler in 1737 showed the [harmonic] infinite series of all infinitely many primes (as sum of the

reciprocals of all infinitely many primes) diverges very slowly; viz,
∑

p prime

1
p
=

1
2
+

1
3
+

1
5
+

1
7
+

1
11
+

1
13
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+
1
17
+

1
19
+ · · · = ∞. If it were the case that this sum of the reciprocals of twin primes (Prime gap 2),

cousin primes (Prime gap 4), sexy primes (Prime gap 6), etc all diverged; then that fact would imply that

there are infinitely many of twin primes, cousin primes, sexy primes, etc. However twin primes are less fre-

quent than all infinitely many prime numbers by nearly a logarithmic factor with this bound giving the in-

tuition that the sum of the reciprocals of twin primes converges very slowly, or stated in other words, twin

primes form a small set. The sum
∑

p : p+2∈P

Å
1
p
+

1
p + 2

ã
=

Å
1
3
+

1
5

ã
+

Å
1
5
+

1
7

ã
+

Å
1
11
+

1
13

ã
+

Å
1
17
+

1
19

ã
+ · · ·

= 1.902160583104... in explicit terms either has finitely many terms or has infinitely many terms but is

very slowly convergent with its value known as Brun’s constant for (consecutive) twin primes. Similar

deductive arguments can be developed for the sum of the reciprocals of cousin primes, sexy primes, etc

that also converges very slowly with their associated Brun’s constant for (consecutive) cousin primes

[≈ 1.19705479], (consecutive) sexy primes [≈ 1.13583508], etc. All these heuristically computed Brun’s

constants are irrational (transcendental) numbers ONLY IF there are infinitely many twin primes, cousin

primes, sexy primes, etc. Based on Zhang’s result[9], there must be at least one computed Brun’s constant

that is irrational (transcendental) associated with infinitely many Odd Primes having an even Prime gap

< 70 million. We ignore solitary even prime number 2. We use "Arbitrarily Large Number" to denote

"infinitely many". As an absolutely indispensable condition, there are ALN of subsets of Odd Primes with

each subset of Odd Primes containing ALN of elements – this is akin to choosing the correct "enhanced

regulator". From above discussions, we heuristically deduce very slowly diverging sum (series) of the

reciprocals of all ALN Odd Primes are fully constituted by very slowly converging sum (series) of the

reciprocals of ALN Odd Primes derived from each and every subsets of Odd Primes.

Erdos primitive set conjecture, now proven as a theorem by Prof. Jared Lichtman[2], is the assertion

that for any primitive set S with exactly k prime factors (with repetition),
∑
n∈S

1
n log n

≤
∑

p

1
p log p

=

1
2 log 2

+
1

3 log 3
+

1
5 log 5

+
1

7 log 7
+

1
11 log 11

+... = 1.6366... [as a very slowly converging sum

when k = 1 over infinitely-many integers 1, 2, 3, 4, 5...] =⇒ fk is maximized by the prime sum f1 =∑
p

1
p log p

= 1.6366... [representing the unique "largest" primitive set that ONLY contains all infinitely-

many prime numbers 2, 3, 5, 7, 11, 13...]. As supporting Modified Polignac’s and Twin prime conjectures

to be true [with all Odd Primes belonging to CIS-ALN-decelerating]; one can calculate the equivalent

f1 =
∑

p

1
p log p

[also as very slowly converging sums with values < 1.6366...] for individual subsets of

Odd Primes obtained from even Prime gaps 2, 4, 6, 8, 10... and notice these [derived] "infinite series"

calculations must all, in principle and in synchrony, incorporate corresponding CIS-ALN-decelerating

Odd Primes from each subset. This last statement is heavily supported by Yitang Zhang’s result[9]

which can be extrapolated as "There must be at least one subset of Odd Primes [obtained from an even

Prime gap < 70 million] having infinitely many elements".
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5. Subtypes of Countably Infinite Sets with Incompletely Predictable entities from Riemann zeta

function and Sieve of Eratosthenes

The sets of numbers generated using power (exponent) such as 2 or 1
2 , even numbers, odd numbers, etc

are morphologically constituted by Completely Predictable (CP) numbers in the sense that these sets of

numbers are actually not random and do not behave like one. The sets of nontrivial zeros, primes, com-

posites, etc are morphologically constituted by Incompletely Predictable (IP) numbers [or pseudo-random

numbers] in the sense that these sets of numbers are actually not random but behave like one; thus giving

rise to so-called "Mathematics for Incompletely Predictable Problems". The word number [singular noun]

or numbers [plural noun] in reference to CP even and odd numbers, IP prime and composite numbers, IP

Gram points and virtual Gram points can be interchanged with the word entity [singular noun] or entities

[plural noun].

Lemma 5.1. We can formally define the elements from (sub)sets and (sub)tuples as Completely Predictable

or Incompletely Predictable entities (as per Page 18 in [8]). Please also see Remark 3.1 & Remark 3.2

above in section 3 indicating the important significances arising from Lemma 5.1.

Proof. A set is a collection of zero (viz, the empty set) or more elements (viz, a finite set with a finite

number of elements or an infinite set with an infinite number of elements). A singleton refers to a finite

set with a single element. A set can be any kind of mathematical objects: numbers, symbols, points in

space, lines, other geometrical shapes, variables, or even other sets whereby these [mutable] non-repeating

elements are not arranged in an unique order. A subset can be a [smaller] finite set derived from its [larger]

parent finite set or its [larger] parent infinite set. A subset can also be a [smaller] infinite set derived from

its [larger] parent infinite set. A tuple, which can potentially be subdivided into subtuples, is a finite or-

dered list (sequence) of elements whereby these [immutable] non-repeating elements are arranged in an

unique order. Thus a tuple or a subtuple is regarded as a special type of finite set with the extra imposed

restriction. As shown below using worked examples:

CP simple equation or algorithm generates CP numbers e.g. even numbers 0, 2, 4, 6, 8, 10... or odd

numbers 1, 3, 5, 7, 9, 11.... Thus a generated CP number is locationally defined as a number whose ith

position is independently determined by simple calculations without needing to know related positions of

all preceding numbers – this is a Universal Property.

IP complex equation or algorithm generates IP numbers e.g. prime numbers 2, 3, 5, 7, 11, 13... or com-

posite numbers 4, 6, 8, 9, 10, 12.... Thus a generated IP number is locationally defined as a number whose

ith position is dependently determined by complex calculations with needing to know related positions of

all preceding numbers – this is a Universal Property.

We clearly note the elements in (sub)sets and (sub)tuples when generated by equations or algorithms will

precisely constitute relevant entities or numbers of interest. The proof is now complete for Lemma 5.12.

A formula for primes in Number theory is a formula generating all prime numbers 2, 3, 5, 7, 11, 13, 17,

19, 23... exactly and without exception. Computationally slow and inefficient formulas for calculating
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primes exist e.g. 1964 Willans formula pn = 1+
2n∑
i=1



â
n

i∑
j=1

úÅ
cos

( j − 1)! + 1
j

π

ã2
üì1/n

 which is

based on Wilson’s theorem n + 1 is prime iff n! ≡ n (mod n + 1). Then critics may ask the question "For

n = 1, 2, 3, 4, 5,...; does Willans formula that faithfully compute corresponding nth prime number pn for

all infinitely-many primes contradict Sieve-of-Eratosthenes algorithm as being an Infinite Length (IL) and

Incompletely Predictable (IP) algorithm?" The answer is categorically ’no’ based on carefully analyzing

this formula using following arguments [which lend further support to Polignac’s and Twin prime conjec-

tures being true]: Willans formula has two sub-components

úÅ
cos

( j − 1)! + 1
j

π

ã2
ü
=

1 if j is prime or 1

0 if j is composite

&
i∑

j=1

úÅ
cos

( j − 1)! + 1
j

π

ã2
ü
= (# primes ≤ i) + 1. We recognize this second sub-component stipulating

(# primes ≤ i) + 1 meant the actual position of every nth prime number will have to be fully and indirectly

computed each time, thus confirming the infinitely-many prime numbers are IP and of IL. Note all [com-

plementary] composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18... are simply obtained by discarding all

prime numbers from integers 2, 3, 4, 5, 6, 7, 8, 9, 10... whereby "special" integers 0 & 1 are neither prime

nor composite. We ignore even prime number 2. Zhang’s landmark result[9] states there are infinitely

many Odd Primes having an even Prime gap < 70 million. One could extrapolate Zhang’s result to: There

must be at least two or three up to all even Prime gaps being each associated with infinitely many Odd

Primes. All obtained consecutive Odd Primes pn and pn+1 can have their calculated pn+1 – pn values

grouped together as belonging to even Prime gaps 2, 4, 6, 8, 10... whereby when the Zhang’s result is

maximally extrapolated, Polignac’s and Twin prime conjectures are supported to be true.

Lemma 5.2. We can validly classify countably infinite sets as accelerating, linear or decelerating subtypes

(as per Page 18 – 19 in [8]).

Proof. We provide the following required mathematical arguments.

Cardinality: With increasing size, arbitrary Set [or Subset] X can be countably finite set (CFS), count-

ably infinite set (CIS) or uncountably infinite set (UIS). Denoted as ∥X∥ in this paper, the cardinality of

Set X measures number of elements in Set X. E.g., Set negative Gram[y=0] point as constituted by a

[solitary] rational (Q) t-value of 0 instead of a usual transcendental (R − A) t-value has CFS of negative

Gram[y=0] point with this particular ∥negative Gram[y=0] point∥ = 1, Set even Prime number (P) has

CFS of solitary even P 2 with ∥even P∥ = 1, Set Natural numbers (N) has CIS of N with ∥N∥ = ℵ0, and

Set Real numbers (R) has UIS of R with ∥R∥ = c (cardinality of the continuum). Then with ∥CIS∥ = ℵ0

= [countably] infinitely many elements; we provide a novel classification for CIS based on its number of

elements (cardinality) manifesting linear, accelerating or decelerating property constituting three subtypes

of CIS.

CIS-IM-accelerating: CIS with cardinality = ∥CIS-IM-accelerating∥ = ℵ0-accelerating = [countably]
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infinitely many elements that (overall) acceleratingly reach an infinity value. Examples: CP integers 0,

1, 4, 9, 16... generated by simple equation y = x2 for x = 0, 1, 2, 3, 4... and CP values obtained from

natural exponential function y = e(x); and IP composite numbers 4, 6, 8, 9, 10... faithfully generated

by complex Complement-Sieve-of-Eratosthenes algorithm [which is equivalent to simply discarding 0, 1,

and all generated prime numbers via Sieve-of-Eratosthenes algorithm from the set of integers 0, 1, 2, 3, 4,

5...].

CIS-IM-linear: CIS with cardinality = ∥CIS-IM-linear∥ = ℵ0-linear = [countably] infinitely many ele-

ments that (overall) linearly reach an infinity value. Examples: CP entities 0, 1, 2, 3, 4, 5... [representing

all positive integer numbers] generated by simple equation y = x for x = 0, 1, 2, 3, 4...; CP entities 0, 2,

4, 6, 8, 10... [representing all positive even numbers] generated by simple equation y = 2x for x = 0, 1, 2,

3, 4...; CP entities 1, 3, 5, 7, 9, 11... [representing all positive odd numbers] generated by simple equation

y = 2x − 1 for x = 1, 2, 3, 4, 5...; and IP nontrivial zeros, Gram[y=0] points and Gram[x=0] points (all

given as R − A t-values) generated from complex equation Riemann zeta function via its proxy Dirich-

let eta function. These IP entities will inevitably manifest IP perpetual repeating violations (failures) in

Gram’s Law and Rosser’s Rule occuring infinitely many times. E.g., the former give rise to Set negative

Gram[y=0] points whereby CIS negative Gram[y=0] points is constituted by R − A t-values classified as

having ∥negative Gram[y=0] points∥ = ∥CIS-IM-linear∥ = ℵ0-linear.

CIS-ALN-decelerating: CIS with cardinality = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating = [count-

ably] arbitrarily large number of elements that (overall) deceleratingly reach an Arbitrarily Large Number

value. Examples: CP entities 0, 1,
√

2,
√

3, 2,
√

5... generated by simple equation y =
√

x for x = 0, 1, 2,

3, 4, 5... and CP values obtained from natural logarithm function y = ln(x); and IP prime numbers 2, 3, 5,

7, 11... faithfully generated by complex Sieve-of-Eratosthenes algorithm.

The proof is now complete for Lemma 5.22.

6. Conclusions including applying infinitesimals to outputs from Sieve of Eratosthenes and

Riemann zeta function

NOTE: Additional materials regarding L-functions of relevance to Riemann hypothesis, and Birch and

Swinnerton-Dyer conjecture are supplied in Appendix A [containing important computations and an

overall SUMMARY provided at the end of this Appendix].

Figure 1 [depicting positive & negative prime numbers and composite numbers] and Figure 2 [depicting

the Co-linear Riemann zeta function for positive & negative range] will manifest perfect Mirror symmetry

and fully comply with Law of Continuity. Valid comments: Whereas the continuous-like equation Rie-

mann zeta function ζ(s) Eq. (1) [via proxy Dirichlet eta function η(s) Eq. (2)] for s = σ ± t range that

generate mutually exclusive CIS-IM-linear σ-valued co-lines be mathematically regarded as smoothly

continuous everywhere thus obeying Law of continuity; so must the discrete-like algorithms Sieve-of-

Eratosthenes and Complement-Sieve-of-Eratosthenes that generate mutually exclusive Primes and Com-

posites be conceptually regarded as jaggedly continuous everywhere thus also obeying Law of continuity.
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CIS-ALN-decelerating Primes and CIS-IM-accelerating Composites are dependent complementary enti-

ties. In ζ(s) Eq. (1), the equivalent Euler product formula with product over prime numbers [instead of

summation over natural numbers] represents ζ(s) =⇒ all primes and, by default, [complementary] com-

posites are intrinsically encoded in ζ(s). Since via analytic continuation, η(s) =
1
γ
· ζ(s) [proxy function

for ζ(s) in 0 < σ < 1- critical strip]; then all primes and, by default, [complementary] composites are also

intrinsically encoded in η(s) Eq. (2).

For i = 1, 2, 3, 4, 5,..., n (Page 14 of [8]): Recurring Accelerating primes as Prime gapi+2 – Prime gapi+1 >

Prime gapi+1 – Prime gapi, Decelerating primes as Prime gapi+2 – Prime gapi+1 < Prime gapi+1 – Prime

gapi and Steady primes as Prime gapi+2 – Prime gapi+1 = Prime gapi+1 – Prime gapi [≡"Alternating

Prime Gaps series" with Prime gaps alternatingly ↑ & ↓] are computed by (sub-)algorithms to obtain

mutually exclusive (solitary) even prime number 2 with odd Prime gap 1; odd Twin primes, odd Cousin

primes & odd Sexy primes with even Prime gaps 2, 4 & 6.

(a) For IP IL algorithm [Gap 2, 4, 6, 8, 10...]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi [where n = ALN]

that faithfully generates all Odd P {3, 5, 7, 11, 13, 17, 19...} with cardinality ℵ0-decelerating, the nth

even Prime gap between two successive Odd P is denoted by gn = (n + 1)st Odd P – (n)th Odd P, i.e.

gn = pn+1 − pn = 2, 2, 4, 2, 4, 2....

(b) For CP FL sub-algorithm [Gap 1]-Sieve of Eratosthenes pn+1 = 2 +
n∑

i=1

gi [where n = 1 and not ALN]

that faithfully generates the first and only Even P {2} ≡ first and only paired Even P {(2,3)} with cardi-

nality CFS of 1, the solitary nth odd prime gap between two successive primes is denoted by gn = (n+ 1)st

Odd P – (n)th Even P, i.e. gn = pn+1 − pn = 3 − 2 = 1.

(c) For IP IL sub-algorithm [Gap 2]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd twin P {3, 5, 11, 17, 29, 41, 59...} ≡ all paired Odd twin P {(3,5), (5,7), (11,13),

(17,19), (29,31), (41,43), (59,61)...} with cardinality ℵ0-decelerating, the nth even Prime gap between two

successive Odd twin P is denoted by gn = (n + 1)st Odd twin P – (n)th Odd twin P, i.e. gn = pn+1 − pn =

2, 6, 6, 12, 12, 18....

(d) For IP IL sub-algorithm [Gap 4]-Sieve of Eratosthenes pn+1 = 7 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd cousin P {7, 13, 19, 37, 43, 67...} ≡ all paired Odd cousin P {(7,11), (13,17),

(19,23), (37,41), (43,47), (67,71)...} with cardinality ℵ0-decelerating, the nth even Prime gap between two

successive Odd cousin P is denoted by gn = (n+1)st Odd cousin P – (n)th Odd cousin P, i.e. gn = pn+1− pn

= 6, 6, 8, 6, 24....

(e) For IP IL sub-algorithm [Gap 6]-Sieve of Eratosthenes pn+1 = 23 +
n∑

i=1

gi [where n = ALN] that faith-

fully generates all Odd sexy P {23, 31, 47, 53, 61, 73, 83...} ≡ all paired Odd sexy P {(23,29), (31,37),

(47,53), (53,59), (61,67), (73,79), (83,89)...} with cardinality ℵ0-decelerating, the nth even Prime gap

between two successive Odd sexy P is denoted by gn = (n + 1)st Odd sexy P – (n)th Odd sexy P, i.e.

gn = pn+1 − pn = 8, 16, 6, 8, 12, 10....
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With n = ALN or, traditionally,∞; rigorous algorithm-type proof for Modified Polignac’s and Twin prime

conjectures can be stated here as two statements. Statement 1: All known prime numbers = IP IL algorithm

(a) + CP FL sub-algorithm (b). Statement 2: IP IL algorithm (a) = IP IL sub-algorithm (c) + IP IL sub-

algorithm (d) + IP IL sub-algorithm (e) +... [that involves all even Prime gaps 2, 4, 6, 8, 10...].

As proxy function for Riemann zeta function in 0 < σ < 1 critical strip, Dirichlet eta function when treated

as equation and sub-equation at (unique) σ = 1
2 -critical line will faithfully generate all x-axis intercept

points as usual Gram points or Gram[y=0] points, all y-axis intercept points as Gram[x=0] points, and all

Origin intercept points as Gram[x=0,y=0] points or nontrivial zeros. Confirming Riemann hypothesis to

be true, these entities that constitute the three types of Gram points are mutually exclusive, dependent and

endowed with t-valued irrational (transcendental) numbers except for initial Gram[y=0] point endowed

with a t-valued rational number:

(a) Considered for t = 0 to +∞ at σ = 1
2 , Dirichlet eta function as IP IL equation will faithfully generate

all above-mentioned three types of Gram points that are endowed with t-valued irrational (transcendental)

numbers except for first Gram[y=0] point.

(b) Considered only for t = 0 at σ = 1
2 , Dirichlet eta function as CP FL sub-equation will faithfully

generate the first and only Gram[y=0] point that is endowed with t-valued rational number 0.

We analyze the data of all CIS-IM-linear computed nontrivial zeros (NTZ) when extrapolated out over a

wide range of t ≥ 0 real number values. Akin to Prime counting function Prime-π(x) = number of primes

≤ x, we can symbolically define nontrivial zeros counting function NTZ-π(t) = number of NTZ ≤ t with

t assigned to having real number values which are conveniently designated by 10n whereby n = 1, 2, 3,

4, 5.... The cumulative Prevalence of nontrivial zeros = NTZ-π(t) / t = NTZ-π(t) / (10n) when t = 0 to

10n, whereby denominator t is [artificially] regarded as having integer number values. We conceptually

define all consecutive NTZ gaps as ith t-valued NTZ – (i-1)th t-valued NTZ. Thus there are CIS-IM-linear

computed NTZ gaps. The numbers of NTZ between 100 – 101 [interval = 9], 101 – 102 [interval = 90],

102 – 103 [interval = 900], 103 – 104 [interval = 9000], 104 – 105 [interval = 90000], 105 – 106 [interval

= 900000], 106 – 107 [interval = 9000000], 107 – 108 [interval = 90000000]... are 0, 29, 620, 9493,

127927, 1609077, 19388979, 226871900... with corresponding rolling Prevalence of nontrivial zeros =

0, 0.322, 0.689, 1.055, 1.421, 1.788, 2.154, 2.521... =⇒ rolling Prevalence of nontrivial zeros seems

to overall fluctuatingly increase by around 0.366 in a "linear" manner. This limited observation alone

suggests Cardinality of nontrivial zeros = ∥CIS-IM-linear∥ = ℵ0-linear.

In comparison, we further notice here the numbers of NTZ between 100 – 101 [interval = 9], 100 – 102

[interval = 99], 100 – 103 [interval = 999], 100 – 104 [interval = 9999], 100 – 105 [interval = 99999],

100 – 106 [interval = 999999], 100 – 107 [interval = 9999999], 100 – 108 [interval = 99999999]... are 0,

29, 649, 10142, 138069, 1747146, 21136125, 248008025... with corresponding cumulative Prevalence

of nontrivial zeros = 0, 0.293, 0.650, 1.014, 1.381, 1.747, 2.114, 2.480...

On the overall objective to rigorously derive Algorithm-type proofs for Modified Polignac’s and Twin

prime conjectures [as based on Figure 9] and Equation-type proof for Riemann hypothesis [as based
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Figure 9. Proportion (Prevalence) of Twin primes, Cousin primes [as partial calculations]

and Sexy Primes [as partial calculations] with Proportion (Prevalence) of all Primes in-

cluded. These Proportions (Prevalences) are essentially self-similar fractal objects. The

n = 1, 2, 3, 4, 5, 6, 7, 8... in 10n that is denoted with horizontal x-axis =⇒ the scale of

this axis is non-linearly depicted using increasing powers of 10.

Figure 10. Simulated dynamic trajectories showing Origin intercept points when σ = 1
2

and virtual Origin intercept points when σ = 2
5 and σ = 4

5 . Horizontal axis: Re{ζ(σ+ ıt)},

and vertical axis: Im{ζ(σ+ ıt)}. Total presence of all Origin intercept points at the [static]

Origin point. Total presence of all virtual Origin intercept points as additional negative

virtual Gram[y=0] points on the x-axis (e.g. when using σ = 2
5 value) at the [infinitely

many varying] virtual Origin points; viz, these negative virtual Gram[y=0] points on the

x-axis cannot exist at the solitary Origin point since the two trajectories form two colinear

lines (or co-lines) [two parallel lines that never cross over].

on Figure 10], we apply infinitesimal numbers
1
∞

at two places using the following colloquially-stated

propositions with their formal proofs given in Page 44 – 45 of [8].

Proposition 6.1. In the limit of never reaching a [nonexisting] zero hereby conceptually visualized as

Prevalences of both even Prime gaps and the associated [positive and negative] Odd Primes never be-

coming zero whereby arbitrarily large number of different even Prime gaps that uniquely accompany all

Odd Primes in totality will never stop recurring. Foundation Figure 9 is roughly and analogically based

on cohomology as an algebraic tool in topology allowing Geometrical-Mathematical interpretation for

positive Odd Primes. We note these Prevalences can only have
1
∞

values above zero in the large range of

prime numbers [but must never have zero values].
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Proposition 6.2. In the limit of reaching an [existing] zero hereby conceptually visualized as the entire

−∞ < t < +∞ trajectory of Dirichlet eta function, proxy for Riemann zeta function, touching (symbolic)

zero-dimensionalσ = 1
2 -Origin point only when parameterσ = 1

2 whereby all nontrivial zeros [mathemat-

ically] located on (symbolic) one-dimensional σ = 1
2 -critical line will [geometrically] declare themselves

in totality as corresponding Origin intercept points. Foundation Figure 10 is roughly and analogically

based on cohomology as an algebraic tool in topology allowing Geometrical-Mathematical interpretation

for 0 < t < +∞ range. Our Corollary is: Any σ , 1
2 co-lines that are

1
∞

above or below the zero-

dimensional σ = 1
2 -Origin point must never be classified as having nontrivial zeros. Then the Proposition

must be: Only one unique σ = 1
2 co-line that [repeatedly] touch the zero-dimensional σ = 1

2 -Origin point

must always be classified as having [infinitely-many] nontrivial zeros.

(0 < σ < 1) ≡ (0 < σ < 1
2 ) + (σ = 1

2 ) + ( 1
2 < σ < 1). Usefully regarded as variants of infinite series are

various power series and harmonic series [e.g. (with s = σ ± it) Riemann zeta function ζ(s) via Dirichlet

eta function η(s) generating infinitely-many 0 < σ < 1-associated trajectories that are all of −∞ < t < +∞

infinite length such as depicted by Figure 2 when σ = 1
2 ], and various (sub)algorithms [e.g. Sieve of

Eratosthenes generating Set of (±) prime numbers in its entirety and Subsets of (±) Odd Primes from

even Prime gaps 2, 4, 6, 8, 10... that all have cardinality of ALN]. **Note that each 0 < σ < 1-associated

trajectory represents a unique infinite series that is, crucially, mutually exclusive by being mathematically,

geometrically and topologically different from other infinite series**. Analogous to term ’centroid’

referring to fixed invariant (0-dimensional) point with PERFECT Point Symmetry representing center of

a geometric object in (n-dimensional) Euclidean space; there must be: (i) [being valid for entire range

+ve & –ve integers] the easily deduced integer number 0 in (1-dimensional) Figure 1 as Centroid point

and (ii) [being valid for entire range −∞ < t < +∞] Origin point in (2-dimensional) σ = 1
2 Figure 4

when combined together with (2-dimensional) 0 < σ < 1
2 Figure 5 and (2-dimensional) 1

2 < σ < 1 Figure

6 [while fully satisfying (Remark 2.2) Principle of Equidistant for Multiplicative Inverse as previously

discussed in Figure 7 with ONLY σ = 1
2 containing the most frequently & infinitely-often traversed

or visited Centroid (Origin) point]. Our unique Centroid (Origin) point for η(s) is conceptually the

Point Symmetry with ASSIGNED Central value as η(
1
2
± it) = 0.0 + 0.0i = 0 at intersection of horizontal

real axis & vertical imaginary axis [and having two Line Symmetry of horizontal real axis as depicted by

Figure 2 and vertical line σ = 1
2 as depicted by Figure 3]. In comparison, COMPUTED Central value

for ζ(s) via its functional equation having Line Symmetry of vertical line s = 1
2 [that intersect horizontal

real axis] is ζ(
1
2

) ≊ −1.4603545 + 0.0i ≊ −1.4603545. As overall summary, we insightfully conclude

mutually exclusive (sub)sets arising from prime numbers, composite numbers, Gram points and virtual

Gram points MUST all conceptually comply in full with Theory of Symmetry from Langlands program

and Inclusion-Exclusion Principle when "extended to the infinite (sub)sets".
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Appendix A. Predictability properties of Dirichlet L-series from Dirichlet L-functions that are

relevant to Riemann hypothesis, and Birch and Swinnerton-Dyer conjecture

One can derive an [motivic] L-function from a normalized defining polynomial and obtain the coefficient

sequence of this L-function associated to middle cohomology of the projective closure of hyperspace

defined by the given polynomial equation. Recall that the ’general’ Dirichlet series is an infinite series

of the form
∞∑

n=1

ane−λn s where an, s [= σ ± it] are complex numbers and {λn} is a strictly increasing
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sequence of nonnegative real numbers that tends to infinity. An ’ordinary’ Dirichlet series
∞∑

n=1

an

ns is

obtained by substituting λn = ln n while a power series
∞∑

n=1

an(e−s)n is obtained when λn = n. Parallel to

’ordinary’ Dirichlet series, we further define a useful ’extra-ordinary’ Dirichlet series [for non-polynomial

(transcendental) equations such as cos s and es] below.

We characterize the Predictability property of Eq. (7) Generic L-function [referring to non-polynomial

equations with having denominator = f (n) thus forming any mathematical expressions that do not involve

s], denoted by Generic-L(s), which is our ***useful ’extra-ordinary’ Dirichlet series [(non-)alternating

power series]*** where an = a0, a1, a2, a3, a4,... are the Dirichlet coefficients that are, in theory, either

Completely Predictable or Incompletely Predictable entities.

Generic-L(s) =
∞∑

n=0

an

f (n)
=

a0

f (0)
+

a1

f (1)
+

a2

f (2)
+

a3

f (3)
+

a4

f (4)
+ · · ·(7)

The Generic-L(s) for cos s =
∞∑

n=0

(−1)ns2n

(2n)!
=

s0

0!
−

s2

2!
+

s4

4!
−

s6

6!
+

s8

8!
− · · ·. When s = 1 + 0i = 1, we

obtain cos 1 =
10

0!
−

12

2!
+

14

4!
−

16

6!
+

18

8!
− · · · as alternating power series where an = (−1)2n = a0, a1, a2,

a3, a4,... = 1, −1, 1, −1, 1... are [computed] Dirichlet coefficients that are Completely Predictable entities.

When s = 0+ i = i, we obtain cos i =
10

0!
+

12

2!
+

14

4!
+

16

6!
+

18

8!
+ · · · as non-alternating power series where

an = (1)2n = a0, a1, a2, a3, a4,... = 1, 1, 1, 1, 1... are [computed] Dirichlet coefficients that are Completely

Predictable entities.

The Generic-L(s) for es =

∞∑
n=0

sn

n!
=

s0

0!
+

s1

1!
+

s2

2!
+

s3

3!
+

s4

4!
+

s5

5!
+ · · ·. When s = 1 + 0i = 1, we ob-

tain e1 =

∞∑
n=0

1n

n!
=

10

0!
+

11

1!
+

12

2!
+

13

3!
+

14

4!
+

15

5!
+ · · · as non-alternating power series where an = (1)n

= a0, a1, a2, a3, a4,... = 1, 1, 1, 1, 1... are [computed] Dirichlet coefficients that are Completely Pre-

dictable entities. When s = 0 + i = i, we obtain ei =

∞∑
n=0

in

n!
=

i0

0!
+

i1

1!
+

i2

2!
+

i3

3!
+

i4

4!
+

i5

5!
+ · · · =

1
0!
+

i
1!
−

1
2!
−

i
3!
+

1
4!
+

i
5!
− · · · as alternating power series where an = (i)n = a0, a1, a2, a3, a4, a5,...

= +1, +i, −1, −i, +1, +i... [as perpetual repeating (periodic) patterns of +1, +i, −1, −i] are [computed]

Dirichlet coefficients that are Completely Predictable entities.

We next characterize the Predictability property of Eq. (8) General L-function [referring to polynomial

equations with having denominator = f (n, s)], denoted by General-L(s), which is ***the ’ordinary’

Dirichlet series [(non-)alternating harmonic series]*** where an = a1, a2, a3, a4, a5,... are the Dirichlet
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coefficients that are, in theory, either Completely Predictable or Incompletely Predictable entities.

General-L(s) =
∞∑

n=1

an

ns =
a1

1s +
a2

2s +
a3

3s +
a4

4s +
a5

5s + · · ·(8)

The [reproduced] Eq. (9) Riemann zeta function ζ(s) is the most basic General L-function, denoted here

by Lζ(s) [as non-alternating harmonic series], where an = (1)n = a1, a2, a3, a4, a5,... = 1, 1, 1, 1, 1... are

[computed] Dirichlet coefficients that are Completely Predictable entities. In Eq. (9), the equivalent Euler

product formula with product over all prime numbers implies the presence of Sieve of Eratosthenes.

ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s +

1
4s +

1
5s + · · ·(9)

=
∏

p prime

1
1 − p−s =

1
1 − 2−s ·

1
1 − 3−s ·

1
1 − 5−s ·

1
1 − 7−s ·

1
1 − 11−s · · ·

1
1 − p−s · · ·

The [reproduced] Eq. (10) Dirichlet eta function η(s) is the most basic General L-function, denoted here

by Lη(s) [as alternating harmonic series], where an = (−1)n+1 = a1, a2, a3, a4, a5,... = 1, −1, 1, −1, 1, −1...

are [computed] Dirichlet coefficients that are Completely Predictable entities.

η(s) =
∞∑

n=1

(−1)n+1

ns =
1
1s −

1
2s +

1
3s −

1
4s +

1
5s − · · · =

1
1s +

−1
2s +

1
3s +

−1
4s +

1
5s + · · ·(10)

=
∏

p prime

1
1 ± p−s =

1
1 + 2−s ·

1
1 − 3−s ·

1
1 + 5−s ·

1
1 − 7−s ·

1
1 + 11−s · · ·

1
1 ± p−s · · ·

Reiterating: The complex number s = σ±it with parameter σ, variable t and imaginary unit i [=
√
−1]. Its

real part σ and imaginary part t are real numbers. Eq. (10), as Analytic continuation of Eq. (9), are related

to each other as ζ(s) = γ ·η(s) or equivalently as η(s) =
1
γ
· ζ(s) with proportionality factor γ =

1
(1 − 21−s)

.

Denote P = prime numbers, Z = integer numbers, R = real numbers andC = complex numbers [represented

by z = a+bi]. Based on the complex unit equation i2+1 = 0 that define imaginary unit i, Gaussian integers

are the set Z[i] = {a + bi | a, b ∈ Z} and Complex numbers are the set C = R[i] = {a + bi | a, b ∈ R}. The

"R-to-C" polynomial equation K is a case of motivic L-function [which is a non-alternating harmonic

series] referred to as Dedekind zeta function of the number field K defined by this specific one-variable

equation: x2 + 1 = 0 ≡ x2 = −1 ≡ x = ±
√
−1 ≡ x = ±i. Its L-function, LK(s), has [computed] Dirichlet

coefficients an = a1, a2, a3, a4, a5,... = 1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2,... that are Incompletely Predictable

entities [viz, LK(s) = ζK(s) =
1
1s +

1
2s +

0
3s +

1
4s +

2
5s + · · ·]. The norm is defined as N(a + bi) = a2 + b2.

Then the computed an values for Gaussian integers are precisely the Number of Points corresponding to

the norm N(a + bi) of values n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.... [Note: LK(0) = −
1
4

is a special

case of class number formula that relates many important invariants of a algebraic number field to a special

value of its Dedekind zeta function.] However, when combined with an = (1)n = a1, a2, a3, a4, a5,... =

1, 1, 1, 1, 1... from ζ(s)’s Lζ(s), one can construct the associated ["diagonal"] Automorphic L-function

[which is an alternating harmonic series] for LK(s) having eternally repeating (periodic) patterns given by

[Completely Predictable entities] 1, 0, −1, 0 to recursively derive all the an values in Motivic L-function
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LK(s). This fundamental Automorphic L-function for LK(s), denoted by LA(s) [with its unique eternally

repeating (periodic) an pattern of 1, 0, −1, 0], is one of the simpliest Automorphic L-function in nature.

Here LA(s) = ζA(s) =
1
1s +

0
2s −

1
3s +

0
4s +

1
5s + · · ·.

"Elliptic curve with LMFDB label 11.a2" https://www.lmfdb.org/EllipticCurve/Q/11/a/2 having analytic

rank 0 can be equivalently written as y2 + y = x3 − x2 − 10x − 20 (Minimal Weierstrass equation; viz,

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 whereby a1, a3 = 0 or 1 and a2 = −1, 0 or 1 are Weierstrass

coefficients in Z) OR y2z+ yz2 = x3− x2z−10xz2−20z3 (Minimal Weierstrass equation, homogenize with

extra variable z) OR y2 = x3−13392x−1080432 (simplified equation; viz y2 = x3+Ax+B). The [proven]

modularity theorem asserts that every elliptic curve [viz, fundamental mathematical objects defined by

Genus 1 cubic (or degree 3) polynomial diophantine equations in two variables] over the rational numbers

is modular, meaning it is associated with an "infinite series" modular form. The unique correspondence

in Langland program is given as {Counting problem 1 + p−number of solutions mod p [in finite series

Elliptic curves] ↔ Coefficients of qp [in infinite series Modular forms]} whereby nome q = eπiτ & p =

prime numbers from Modular forms act as the (periodic) ’generating series or functions’ having Group of

symmetry = SL2(Z) [involving unit disk in complex plane]. Let E be an elliptic curve, and let Np denote

the number of points on E (mod p). Set ap = p + 1 − Np. We can define the incomplete L-function of E

[viz, Hasse-Weil L-function L(E, s) of E]. We hereby provide the modern formulation of BSD conjecture

that relates arithmetic data associated with E over a number field K to the behavior of this L(E, s) of E at

s = 1. More specifically, it is conjectured that algebraic rE = ords=1L(E, s); viz, the rank of abelian group

E(K) of points of E is the order of the zero of L(E, s) at s = 1. By the modularity theorem, for any E,

L(E, s) has a holomorphic continuation to the entire complex plane. Then there exist the analytic r′E as

an integer such that the Taylor expansion of L(E, s) at s = 1 is of a certain form that involves r′E . BSD

conjecture asserts that rE = r′E . Known results involving rE or r′E: If r′E = 0 or 1 for an elliptic curve E,

then BSD conjecture is true for E, whereby most E [viz, at least 83%] have rank 0 or 1. BSD conjecture

is true for > 66% of all E [of rank 0, 1 or > 1]. Eventhough "≈100% of E" are conjectured to have rank

0 or 1 [infinite in numbers], the remaining "≈0% of E" having rank at least 2, while extremely rare, will

also be infinite in number. **Analogous to distribution of prime numbers being deceleratingly infinitely-

many or arbitrarily large in number (ALN), then rank rE ≥ 2 should heuristically be ALN associated with

increasing rank size of 2, 3, 4, 5....** Large exact rank 20 (by Noam Elkies & Zev Klagsbrun in 2020) and

28 (by Noam Elkies in 2006) for elliptic curves E:

rE = 20: y2 + xy + y = x3 −x2 − 244537673336319601463803487168961769270757573821859853707x

+ 961710182053183034546222979258806817743270682028964434238957830989898438151121499931

rE = 28: y2 + xy + y = x3 −x2 − 20067762415575526585033208209338542750930230312178956502x +

34481611795030556467032985690390720374855944359319180361266008296291939448732243429

Example of a Family of L-function Ln(s) from elliptic curves: For n = 1, 2, 3, 4, 5..., y2 = x3 − n2x. This

family is related to the congruent number problem; viz, finding a congruent number which is a positive

integer [or positive rational number] that is the area of a right triangle with three rational number sides.
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Example "Elliptic curve with LMFDB label 14.a5" https://www.lmfdb.org/EllipticCurve/Q/14/a/5 ["mixed"

polynomial equation E as two-variable equation having analytic rank 0 is an alternating harmonic series

that can be expressed in terms of a simplier periodic sequence; viz, an Automorphic object called a Dirich-

let L-function or an L-function of a modular form]: y2 + xy + y = x3 − x ≡ [factorized] y(y + x + 1) =

x(x + 1)(x − 1). Its degree 2 Euler product LE(s) =
∏

p

Fp(p−s)−1 has [finitely-many] "bad primes"

of 2 and 7 corresponding to FpT of (1 + T ) and (1 − T ), and [infinitely-many] "good primes" 3, 5,

11... corresponding to FpT of (1 + 2T + pT 2), (1 + pT 2), (1 + pT 2).... Its LE(s) [which is a (com-

plex) alternating harmonic series] has "Counting solutions mod p" as an = a1, a2, a3, a4, a5,... = 1,

−1, −2, 1, 0, 2, 1, −1, 1, 0, 0, −2, −4, −1, 0, 1, 6, −1, 2,.... These [computed] Dirichlet coefficients

are Incompletely Predictable entities with perpetually alternating increasing and decreasing +ve and

−ve integer values. All an values can now be precisely obtained from the particular generating series

below for this LE(s) [with FINITE unique numbers 1, 2, 7, 14 in the exponents of Euler product for-

mula]: f (z) = η(z)η(2z)η(7z)η(14z) = q
∞∏

n=1

(1 − qn)(1 − q2n)(1 − q7n)(1 − q14n), whereby f (z) is some of

the simpliest modular forms known as eta quotient, and can be described in combinatorial terms. The

q-expansion is f (q) = q− q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 +O(q10). Here, as alternating harmonic series,

LE(s) = ζE(s) =
1
1s −

1
2s −

2
3s +

1
4s +

0
5s + · · ·.

**We now compare and contrast LE(s) for Elliptic curve as ζE(s) versus L-function for Riemann zeta

function ζ(s). [1] Convergence: ζE(s) converges for Re(s) >
3
2

. ζ(s) converges for Re(s) > 1. [2] Trivial

zeros: For ζE(s) occurs at s = all negative integers including 0. For ζ(s), occurs at s = all negative even

integers but not including 0 / For ηE(s) occurs at s = all negative integers including 0. [3] Nontrivial zeros

("spectrum") obtained via Analytic continuation: For ζE(s), nontrivial zeros occurs ONLY at its Critical

Line σ = 1. For ζ(s) there is NO nontrivial zeros / For η(s), nontrivial zeros occurs ONLY at its Critical

Line σ =
1
2

**. Multiply ζE(s) by "Gamma factor" 2 · (2π)−sΓ (s) = ΓC(s) to obtain a symmetric version of

its functional equation applied to the Lambda-function given by ΛE(s) = 14−
s
2 2 · (2π)−sΓ (s) ζE(s), which

satisfies ΛE(s) = ΛE(1 − s) and having conductor of 14. This is associated with perfect Line Symmetry

at vertical line s = 1. We can perform Analytic normalization for elliptic curves by shifting ΓC(s) to

ΓC(s +
1
2

) to instead obtain convergence for Re(s) > 1, Critical Line as σ =
1
2

and perfect Line Symmetry

as vertical line s =
1
2

that is present in, for example, ζA(s), ζK(s), ζ(s), etc [as the uniformly used notation

in Generalized Riemann hypothesis]. An important analytic ingredient for elliptic curves is a function of

a complex variable, L, the Hasse-Weil zeta function [viz, L(E, s) as mentioned above in relation to BSD

conjecture] of E overQ. This function is a variant of Riemann zeta function ζ(s) and Dirichlet L-function,

defined as an Euler product with one factor for every prime number p.

Having Euler product and functional equation for ζA(s) [denoting Automorphic L-function LA(s) for

LK(s)]: ζA(s) converges for Re(s) > 1, Trivial zeros occurs at s = all negative odd integers, and Non-

trivial zeros ("spectrum") via analytic continuation occurs ONLY at its Critical Line σ =
1
2

. Having Euler

product and functional equation for ζK(s) [denoting L-function for LK(s)]: ζK(s) converges for Re(s) > 1,
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Trivial zeros occurs at s = all negative integers but not including 0, and Nontrivial zeros ("spectrum") via

analytic continuation occurs ONLY at its Critical Line σ =
1
2

. Also having Euler product and functional

equation for the sum of divisors function σ for a real or complex number z [expressed in sigma notation

as σz(n) =
∑
d|n

dz, where d | n is shorthand for "d divides n"], its L-function has Dirichlet L-series giving

rise to this (complex) non-alternating harmonic series Lσ(s) = ζσ(s) =
1
1s +

3
2s +

4
3s +

7
4s +

6
5s + · · · hav-

ing Incompletely Predictable +ve an integer values 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31...

that alternatingly increase and decrease in a perpetual manner [and is overall slowly increasing].

Complex multiplication for complex number z = a+bi can be carried out using only three real multiplica-

tions ac, bd, and (a+b)(c+d) as R[(a+ ib)(c+ id)] = ac−bd, I[(a+ ib)(c+ id)] = (a+b)(c+d)−ac−bd.

The natural definition of L(E, s) for elliptic curves only converges for values of s in complex plane with

Re(s) > 3
2 [or Re(s) > 1

2 via performing analytic normalization by shifting ΓC(s) to ΓC(s +
1
2

) to con-

form with Generalized Riemann hypothesis]. Helmut Hasse conjectured that L(E, s) could be extended

by analytic continuation to the whole complex plane. This conjecture was first proved by Deuring in 1941

for elliptic curves with complex multiplication. It was subsequently shown to be true for all elliptic curves

over Q, as a consequence of the modularity theorem in 2001. Reiterating: BSD conjecture relates the

order of vanishing and the first non-zero Taylor series coefficient of the L-function associated to an elliptic

curve E defined over Q at the central point s = 1 to certain arithmetic data, the BSD invariants of E.

Elliptic curve y2+xy = x3−x2−2x−1 LMFDB label 49.a4 [https://www.lmfdb.org/EllipticCurve/Q/49/a/4]:

Integral point / Torsion generator = (2,−1), Conductor = 49 [with Modular form 49.2.a.a given by

q + q2 − q4 − 3q8 − 3q9 + 4q11 − q16 − 3q18 + O(q20) having Modular degree 1], Discriminant = −343

with all p-adic regulators being identically 1 since Analytic rank = 0 =⇒ finite E(Q) solutions. At

Central Point s = 1, Special value L(E, 1) is the first non-zero value among L(E, 1), L′(E, 1), L′′(E, 1),

. . . ≈ 0.96665585280840577336653841951 for elliptic curve 49.a4 computed using previous formula
1
r!

L(r)(E, 1); viz, 0.966655853 ≈ L(E, 1)=
#X(E/Q) ·ΩE · Reg(E/Q) ·

∏
p cp

#E(Q)2
tor

≈
1 · 1.933312 · 1.000000 · 2

22

≈ 0.966655853. We now regard center of the critical strip as being s =
1
2

; viz, analytically normalized

Central Point is s =
1
2

. Then computing Central value at this Central Point of elliptic curve 49.a4 that

obeys Complex Multiplication is possible as per formula given previously in this paper (Remark 1.1).

Broadly, operations on L-functions using L-series include Unary operation [e.g. λ-operation], Binary op-

eration [e.g. Addition, Multiplication, Selberg inner product], Pairing, Property, Relation, Family and

Invariants [e.g. Sign, Self-dual (viz, Dirichlet coefficients an in L-function L(s) =
∞∑

n=1

an

ns are real), Prim-

itive, Degree of elliptic curves, Motivic (Arithmetic) weight war, Algebraic weight walg (whereby Hodge

conjecture asserts that walg = war for any motivic L-function); Conductor for various classes of elliptic

curves with Analytic rank = 0 include integer values 11, 14, 15, 17, 19, 20, 21, 24, 26, 27, 30, 32, 33,

34,...; etc]. Two specific operations: Addition (Direct Sum) e.g. Lζ(s) ⊕ LA(s) = LK(s); and Multiplication
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Figure 11. Graph of Z-function along ℜ(s) =
1
2

-critical line for −∞ < t < ∞ depicting

UNIQUE nontrivial zeros spectrum for Elliptic curve with LMFDB label 389.a1 [with

non-zero Analytic rank of 2] whereby we note Line Symmetry of vertical y-axis and the

trajectory intersecting Origin point. Integral points are (−2, 0), (−2, −1), (−1, 1), (−1,

−2), (0, 0), (0, −1), (1, 0), (1, −1), (3, 5), (3, −6), (4, 8), (4, −9), (6, 15), (6, −16), (39,

246), (39, −247), (133, 1539), (133, −1540), (188, 2584), (188, −2585).

(Tensor product or Rankin-Selberg convolution) e.g. LA(s) ⊗ LK(s) = LK(s), LA(s) ⊗ LA(s) = Lζ(s), Lζ(s)

⊗ LE(s) = LE(s) where Lζ(s) is identity element for ⊗.

Trivial zeros for LK(s) = −1,−2,−3,−4,−5,−6,−7... (most frequent).

Trivial zeros for LA(s) = −1,−3,−5,−7,−9,−11,−13... (intermediate frequency).

Trivial zeros for Lη(s) = 0,−2,−4,−6,−8,−10, ... (least frequent but include 0).

Trivial zeros for Lζ(s) = −2,−4,−6,−8,−10, ... (least frequent).

Nontrivial zeros for LK(s) = 6.02, 10.24, 12.99, 14.13, 16.34, 18.29, 21.02... (most frequent).

Nontrivial zeros for LA(s) = 6.02, 10.24, 12.99, 16.34, 18.29... (intermediate frequency).

Nontrivial zeros for Lη(s) = 14.13, 21.02, 25.01, 30.42, 32.93, 37.58... (least frequent).

Nontrivial zeros for Lζ(s) DO NOT exist.

We adopt here ζ(σ + it) when 0 < t < ∞ and ignore its complex conjugate ζ(σ − it) when −∞ < t < 0.

As confirming the obvious relationship of trivial zeros and nontrivial zeros [located at σ =
1
2

-Critical

Line] derived from LK(s), LA(s) and Lζ(s) [when analytically continued from Convergence for R > 1 to

the entire complex plane]; we observe these entities derived from LK(s) represent the combined entities

derived from both LA(s) and Lζ(s).

The gamma factors are ΓR(s) = π−
s
2Γ(

s
2

) and ΓC(s) = 2(2π)−sΓ(s). Required gamma factors to obtain

functional equations [as completed zeta functions] will validly result in the Λ(s) = Λ(1 − s) reflection

relationship. Functional equations obtained for Riemann zeta function ζ(s) in Lζ(s) requires gamma factor

ΓR(s); for ζA(s) in LA(s) requires gamma factor ΓR(s + 1); for ζK(s) in LK(s) requires gamma factor ΓC(s)

[with Conductor = 4]; for ζA(s) in LA(s) requires gamma factor ΓR(s + 1) [with Conductor = 4]; and for

ζE(s) in LE(s) require gamma factor ΓC(s) with different Conductor integer values for different elliptic

curves. For Analytic normalization in elliptic curves, the required gamma factor is instead ΓC(s +
1
2

).
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We again adopt here ζ(σ+it) when 0 < t < ∞ and ignore its complex conjugate ζ(σ−it) when −∞ < t < 0.

WITH applying analytic normalization, we now supply trivial zeros and nontrivial zeros [located atσ =
1
2

-

Critical Line (instead of σ = 1-Critical Line)] derived from randomly selected Rank 2 Elliptic curve with

LMFDB label 389.a1 { y2 + y = x3 + x2 − 2x } https://www.lmfdb.org/EllipticCurve/Q/389/a/1 [when

analytically continued from Convergence for R(s) > 1 (instead of Convergence for R (s)>
3
2

) to the entire

complex plane; viz, R(s) > 0]; we comparatively observe these [unrelated] **even MORE frequently

occurring ** entities of trivial zeros and nontrivial zeros to be:

Trivial zeros for LE(s) = 0,−1,−2,−3,−4,−5,−6....

Nontrivial zeros for LE(s) = 2.87, 4.41, 5.79, 6.98, 7.47, 8.63, 9.63, 10.35....

Complying with simpliest version of BSD conjecture: Analytic LE(
1
2

) = 0 associated with this Rank 2

[viz, Rank , 0] elliptic curve =⇒ infinitely many E(Q) solutions. Cf Analytic LE(
1
2

) , 0 associated

with Rank 0 elliptic curves =⇒ finitely many or zero E(Q) solutions.

Euler product: L(s) =
∏

p

Fp(p−s)−1. Here, the reader can look up in LMFDB website the [single] "bad"

prime at p 389 with Fp(T ) = 1 − T of degree 1, and all other [infinitely-many] "good" primes with their

corresponding Fp(T ) e.g. at p 2, Fp(T ) = 1 + pT + pT 2 of degree 2.

This Elliptic curve with LMFDB label 389.a1 has Dirichlet series, an (infinite) alternating harmonic series,

of LE(s) = 1− 2 · 2−s − 2 · 3−s + 2 · 4−s − 3 · 5−s + 4 · 6−s − 5 · 7−s + 9−s + 6 · 10−s − 4 · 11−s − 4 · 12−s − 3 ·

13−s + 10 · 14−s + 6 · 15−s − 4 · 16−s − 6 · 17−s − 2 · 18−s + 5 · 19−s − 6 · 20−s + 10 · 21−s + 8 · 22−s − 4 ·

23−s + 4 · 25−s + 6 · 26−s + 4 · 27−s − 10 · 28−s − 6 · 29−s − 12 · 30−s + ....

Functional equation (analytically normalized) for this elliptic curve: Λ(s) = 389
s
2 ΓC(s +

1
2

) L(s) = Λ(1 − s).

(Hardy or Riemann-Siegel) Z-function for the Riemann zeta-function is a real-valued function defined in

terms of the values of ζ(s) on the critical line via the formula Z(t) := eiθ(t)ζ

Å
1
2
+ it
ã
, where θ(t) is the

Riemann-Siegel theta function θ(t) := arg
Å
Γ

Å
2it + 1

4

ãã
−

log π
2

t. There is a bijection between zeros t0

of Z(t) and zeros
1
2
+ it0 of ζ(s). The Z-function of a general L-function is a smooth real-valued function

of a real variable t such that |Z(t)| = |L(
1
2
+ it)|. Specifically, if we write the completed L-function as

Λ(s) = γ(s)L(s), where Λ(s) satisfies the functional equation Λ(s) = εΛ(1 − s), then Z(t) is defined by

Z(t) = ε
1
2
γ( 1

2 + it)

|γ( 1
2 + it)|

L(
1
2
+ it). The square root is chosen so that Z(t) > 0 for sufficiently small t > 0. The

multiset of zeros of Z(t) matches that of L(
1
2
+ it) and Z(t) changes sign at the zeros of L(

1
2
+ it) of odd

multiplicity. The graph of nontrivial zeros spectrum for this NON-ZERO Analytic Rank 2 Elliptic curve

with LMFDB label 389.a1 is depicted in Figure 11. Summary by way of important observations at

LMFDB website: We note the analogical graphs for elliptic curves with Analytic Rank 0 [viz, having

zero independent basis point with infinite order which can be associated with either finitely many or zero

E(Q) solutions] DO NOT have trajectories that intersect the Origin point. This implies the simpliest ver-

sion of BSD conjecture is true. Elliptic curves are conventionally always of degree 2 [based on the degree
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Figure 12. Graph of Z-function along ℜ(s) =
1
2

-critical line for −∞ < t < ∞ depicting

UNIQUE nontrivial zeros spectrum for Dirichlet eta function, the analytic continuation

of Riemann zeta function [with Analytic rank of 0] whereby we note Line Symmetry of

vertical y-axis and the trajectory DO NOT intersect the Origin point. Integral basis is 1.

of their L-functions being the number J + 2K of Gamma factors occurring in their functional equations].

For x2 + 1 = 0, this "simpliest" defining polynomial of degree 2 DO NOT have first trivial zero located

at s = 0 and DO NOT have first nontrivial zero located at t = 0. Riemann zeta function ζ(s) is the most

basic L-function associated with the simpliest 1-variable polynomial equation P(s) = x of degree 1. It has

the analytically continued Dirichlet eta function η(s), again of degree 1, having trivial zeros and nontrivial

zeros (spectrum) on ℜ(s) =
1
2

-critical line whereby this spectrum [Figure 12; associated with Analytic

rank 0] also DO NOT intersect the Origin point =⇒ its first nontrivial zero IS NOT located at t = 0.

Finally, when based on Polar graph such as Figure 2 at
1
2

-critical line for [Analytic rank 0] Riemann zeta

function /Dirichlet eta function, we observe the first Gram[y=0] Point is located to the left of Origin point.

Then, similar Polar graphs plotted for any zeta functions with non-zero Analytic rank will always show

equivalent first Gram[y=0] Point to be located AFTER the first nontrivial zero, or Gram[x=0,y=0] Point,

that is located on the Origin point.
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