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abstract:

In this paper we show that a unification of gravity and inertia, as it comes out of a correct 
implementation of Mach‘s principle, leads to elementary particles being oscillatory solitons in the 
gravitational field (or more general: a unified field including the gravitational one). We show how 
the properties of elementary particles then give rise to the phenomenology of special relativity as 
well as quantum mechanics in the usual classical framework and in flat, 3 dimensional Euclidean 
space. The oscillatory solitons exhibit the same structure as was originally postulated by De Broglie
for the quantum wave function. This structure of the elementary particles naturally gives rise to 
elementary quantum phenomena, like their wave-particle duality, the uncertainty principle, the De 
Broglie relations E=ℏω and P=ℏ k and discrete energy levels for bound states. A formula for 
h can in principle be obtained. This opens up a possibility to explain the origin of quantum 
mechanics in a purely classical framework. At the same time, also the special relativistic 
phenomena like length contraction, time dilation, the relativistic energy-momentum relation and the
apparent constancy of the speed of light can be explained from just the structure of the solitons. The
speed of light is just an apparent constant when measured with co-moving rulers and clocks, 
provided by the elementary particles themselves. It obeys the usual vector addition, just like all 
other velocities and vectors do, too. Ultimately, mass itself can be explained as entirely of 
(gravitational) field origin, as the field-energy which is concentrated within the soliton. This will 
also yield an explanation for the energy-mass equivalence. No additional scalar field like the Higgs 
field is needed. 

1. Introduction:

Theories implementing Mach‘s principle and giving a unified description of gravity and inertia [1-
5] turn out to have some far reaching consequences. This especially concerns the nature of mass and
therefore also the nature of the elementary particles themselves. It turns out, that such theories 
suggest, that mass is entirely of (gravitational) field origin and that elementary particles are solitons 
in the gravitational field (or more general: a unified field). This we want to prove and discuss in this
paper. We will show, that all basic phenomena of special relativity, as well as quantum mechanics, 
can be derived from such a theory in a classical framework and in flat, 3 dimensional space. No 
additional assumptions have to be postulated. However, we work with model equations here and 
just show how in principle the phenomena emerge from the theory. The exact field equations of the 
unified field remain to be found.
Before we start our discussion, we will give a brief introduction in what a soliton is. A reader 
already familiar with this concept is invited to skip to the next section. A soliton is a localised, self-
reinforcing, stable propagating wave packet which preserves its shape under collision. It owes its 
stability to an exact balance between dispersion and non-linearity. Solitons are therefore an 
intrinsically non-linear phenomenon; only non-linear partial differential differential equations have 
soliton solutions. They exhibit both wave and particle properties and are therefore a natural 
candidate for elementary particles (wave particle duality). An example for an equation admitting 
soliton solutions is the Korteweg-de-Vries equation:
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It describes surface waves in shallow water. The 2nd term is the non-linearity, the 3rd one is the 
dispersion. This equation admits soliton solutions of the form

(1.2)

Here, v is the velocity of the soliton, x0 its initial “position”. This wavepacket propagates form-
preserving, even when it collides with other solitons. It is localised and stable: The envelope decays 
exponentially away from  the “position“ of the wave x=vt+x0 . One can already see though, that 
the wave is not exactly localised in this „position“, but distributed around it. We will later see, that 
this naturally leads to quantum phenomena when used to describe elementary particles.

2. The Consequences of the unification of gravity and inertia:

As a consequence of Mach‘s principle and the resulting unification of gravity and inertia, inertial 
mass has its origin in the gravitational mass and the gravitational field [1-5].  In concrete terms, in 
[5], we found that the inertial mass of a particle k given by:   

(2.1)

Here, φ is the gravitational potential:

(2.2)

Thus, inertial mass is no longer an independent, a priori property of particles, but a consequence of 
their gravitational mass and the gravitational field. Only gravitational mass remains as fundamental.
This, in turn implies that the concept of mass only makes sense in relation to the gravitational field. 
Unlike in standard theories, where (inertial) mass has a meaning even in the absence of any 
(gravitational) field. Therefore, a unification of gravity and inertia puts mass and gravitational field 
hierarchically on the same level: There is no gravitational field without mass, but also the concept 
of mass is meaningless without a gravitational field, since the only thing it does is quantifying the 
interaction with this very field.
This leads to the obvious conclusion that mass is a special manifestation of the gravitational field 
itself. Or, to put it in other words: The elementary particles are a special, localised, form-preserved 
propagating energy „clump“ in the gravitational field, which even retains its shape under collisions. 
Those are exactly the properties which a soliton has. One can therefore conclude that elementary 
particles are solitons in the gravitational field. The mass of a particle is then just given via the 
energy-mass equivalence1):

(2.3)

where E is the field energy concentrated within the „clump“. Such a soliton approach unifies the 
concepts of fields and particles: There is no longer particles moving in fields, or fields generated by 
particles, but the particles are part of the field itself, namely the soliton. The particle is the core- or 
nearfield of the soliton, while what is usually referred to as „field“ is actually the far field of the 
soliton.

1) We will in section 7 actually prove this equation by showing that indeed the term E/c^2 plays the role of the inertial 
mass in Newton‘s law in the framework of soltion theory, without introducing any notion of mass a priori. 
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3. Particles as solitons in the gravitational field:

We now want to sketch how this would work and demonstrate how all the phenomenology of 
Special relativity and Quantum mechanics comes out. For simplicity reasons, we just work with the 
simplest relativistic field equation for the gravitational field in a 1 dimensional toy model. The 
correct, full 3 dimensional (non-linear) equations remain to be found. 
Consider therefore the relativistic equation of the gravitational field:

(3.1)

Assume now mass as a part of the gravitational field itself. We can then write above equation in the 
form:

(3.2)

where V is some function of the gravitational field φ. This equation admits travelling wave 
solutions of the form:

(3.3)

where γ is the Lorentz-factor and φ is an envelope satisfying:

(3.4)

We now want to show how this idea allows to explain all special relativistic as well as most basic 
quantum phenomena as properties of the elementary particles (the solitons) in a pure classical 
framework and in Euclidean space.  

4. The special relativistic phenomena:

4.1 L  ength contraction:  

We start with length contraction. The elementary particles provide elementary rulers. Their “size” L 
is characterised by a certain α (e.g. 1/e) decay of the envelope φ of the soliton, as is shown in the 
picture below.

Figure 1. The envelope of a soliton (3.3) plotted against the distance z=x-vt to its  “position” x=vt 
for some function decaying at infinity. The particles “size” is defined as the length L at which the 
value of the envelope has dropped to a fraction α of its highest value at x=vt.
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(4.1)

For a resting soliton we then have:

(4.2)

and for a moving one:

(4.3)

Since all macroscopic rulers are composed of elementary rulers, they inherit this behaviour.

4.2 Relativistic kinetic energy and momentum:

The field energy derived from equation (3.2) is given by the expression:

(4.4)

For a soliton at rest, one calculates from this, using the field equation (3.2):

(4.5)

For a moving soliton, one obtains:

(4.6)

Using the mass definition of the soliton m0=E0/c
2 , one obtains the formula for the relativistic 

kinetic energy.
The flux-density is given by the formula:

(4.7)

and evaluates to:

(4.8)

which is the well known formula for the relativistic momentum. Equation (4.6) and (4.8) together 
yield the relativistic energy-momentum relation:

(4.9)

4.3 Time-dilatation:

To describe time dilation, oscillatory soliton solutions are needed, the so called „breathers“2). The 
internal oscillations of the elementary particles then provide elementary clocks. To demonstrate how
this works, we follow Günther [6] and consider a toy model, the Sine-Gordon equation:

(4.10)

2) We will see in section 5, that exactly this type of soliton is also needed to account for quantum phenomena, and has 
exactly the structure that was originally postulated by De Broglie for the wavefunction.
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Here, d is some length parameter. This equation has a breather solution given by3):

(4.11)

r is some dimensionless parameter of order of unity. For a breather at rest, the envelope of this 
solution oscillates with a frequency of

(4.12)

An elementary clock at rest therefore ticks with a frequency ω 0 . For a moving breather, the 
envelope at the „position“ of the particle x=vt oscillates with a reduced frequency

(4.13)

Again, since all macroscopic clocks are composed of elementary clocks, they inherit this behaviour.
This also shows, that particles have to be a specific type of soliton, namely a breather. We will later 
see, that this demand is further strengthened by the approach to Quantum phenomena.

4.4 Apparant constancy of the speed of light:

The speed of light is only apparently constant, when measured with comoving rulers and clocks, but
otherwise obeys the normal velocity addition. This was shown in a similar way also by Günther [6] 
in the context of the Sine-Gordon model. 
Consider therefore a test section of rest-length x0 . The time needed for a light signal to travel 
back and forth with the test section at rest is:

(4.14)

The measured speed of light then is:

(4.15)

Consider now the test section moving with a velocity v. In this case, the time the light signal needs 
to travel back and forth is:

(4.16)

In addition, the test section is also contracted, according to (4.3) by Δ x=√1−β 2Δ x0 and the time

measured with a comoving clock is reduced by Δ t=√1−β 2Δ t 0 , according to (4.13). This yields 
for the measured speed of light

3) This solution still fulfills the relations (4.6) and (4.8) for the energy and momentum, just with a slightly different rest 
mass. Also, the envelope still shows the same contraction as was discussed in 4.1. Therefore all previously derived 
results apply in the same way to the breather solution, too.  
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(4.17)

Notice, that we assumed standard velocity addition to be valid for the speed of light, as is expressed 
by the equations (4.16). No assumptions about its constancy were postulated. The fact that it 
appears constant in a moving frame, as expressed by (4.17), is a natural consequence of the rulers 
and clocks, provided by the elementary particles, changing in this frame, as was demonstrated in 
section 4.1 & 4.3.
This concludes our section about the special relativistic effects. As we have seen, all the 
phenomenology of special relativity comes out as a consequence of the soliton properties. We 
emphasize again, that no Minkowski space is needed. No change in time or space occurs in a 
moving frame of reference. It is just the elementary particles which change their properties in a 
moving frame and thus give rise to all the relativistic phenomena in flat, 3 dimensional Euclidean 
space.

5. Quantum phenomena:

5.1 Uncertainty relation:

The soliton model naturally gives rise to quantum phenomena like the wave particle duality and the 
uncertainty principle. Since solitons are localised waves, which exhibit particle properties, particles 
naturally posses wave and particle properties when described as solitons. Further, uncertainty arises 
naturally due to the bandwidth theorem for signals. Suppose a signal (in this case a soliton) is given 
by a function u(x ,t ) . We can define an expectation value for some quantity g  analogous to 
quantum mechanics by4):

(5.1)

and the mean square deviation for position and wavenumber variables in the well known way as:

(5.2)

(5.3)

Then, the bandwidth theorem states the inequality:

(5.4)

This is exactly the Heisenberg uncertainty principle, apart from the De Broglie relation p=ℏ k . It
comes out naturally just from the soliton nature of the particles. For the De Broglie relations 
themselves, we will show in the next section, how they are included in all breather solutions to 
relativistic field equations. If one defines the mean square deviations for angular frequency and time
in the same way as done above for k and x as, then one also gets the second uncertainty relation:

(5.5)

4) We can identify u=|ψ|2 , then eq. (5.1) is exactly the same expectation value as in quantum mechanics, just the 
normalisation constant is not included in u, but written separately in the denominator (since solitons are not normalised)
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This is again equivalent to the Heisenberg uncertainty relation for energy and time, apart from the 
relation E=ℏω , which we will also derive in the next paragraph.

5.2 De Broglie relations:

As was shown by Enz [7], the De Broglie relations are included in the Sine-Gordon breather. We 
will show later, that this is not restricted to the Sine-Gordon breather, but a consequence of the 
Lorentz-symmetry of the underlying field equation when applied to a breather solution. Therefore, 
they are provided by any breather solution to a relativistic field equation.
To derive the relations, we first recall that De Broglie‘s idea [8,9] was that every particle possesses 
an internal oscillation, which in his rest frame is given by:

(5.6)

with ω= E
ℏ =

m0 c2

ℏ and a constant amplitude a. For a moving particle, equation (5.6) then reads:

(5.7)

with E=E0γ and p= E

c2
v . In addition to the ψ wave, De Broglie postulated a corresponding 

wave u which has an amplitude varying in space. This wave should have a large amplitude near the 
classical position of the particle, which decays rapidly further away from it. The u wave should be a
solution to some non-linear wave equation, which De Broglie didn’t specify further. De Broglie 
considered only the set of both waves u and ψ as a complete description of Quantum particles, the 
common wavefunction ψ alone being incomplete. 
If we now look again at the breather solution (4.11) of the Sine Gordon equation: 

(5.8)

we can easily see that it exactly exhibits the form postulated by De Broglie with 

with u given by

and the periodic function, describing the internal oscillation, is given by:

(5.9)

From this we can read of the frequency and wavenumber as:
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On the other hand, the energy and momentum of the breather can be calculated using equations (4.4
& 4.7), yielding:

(5.12)

(5.13)

From equations (5.10 & 5.11) and (5.12 & 5.13), we find the De Broglie relations:

(5.14)

(5.15)

with Planck‘s constant h given by:

(5.16)

It is very interesting to compare this expression with the „coincidence“

(5.17)

Since r∼1 , one can see that (5.16) and (5.17) have the same structure. In (5.16), E0 plays the 
role of a fundamental energy (the rest energy of the breather solution) and d is a fundamental length
scale, entering via the field equation (4.10). Equation (5.17) suggests, that both these roles in the 
complete theory are played by the „radius“ and the rest energy of the Proton (or the Neutron, 
respectively). It is remarkable and non-trivial, that already in the Sine-Gordon model, h depends on 
the rest-energy and radius of a particle (the breather). It is the same fact, that is found in the 
„coincidence“ (5.17).
Finally, we can show that the De Broglie relations are not just coincidentally included in the Sine-
Gordon breather, but that all breather solutions to relativistic field equations exhibit them. They are 
a result of the Lorentz-Symmetry of the underlying field equations. A resting breather has the 
general form:

(5.18)

where ψ is a function periodic in time in the sense of De Broglie and u is the corresponding function
of spatially variable amplitude. d is again some length parameter. Now, ψ has some oscillation 
frequency ω=rc/d with r some dimensionless parameter. If we now consider the same breather 
moving, due to the Lorentz-symmetry of the underlying field equation, we have:

(5.19)

From this, we can read off:

where r is again a dimensionless constant. Recalling E=E0γ and P=m0 vγ , which are also 
valid again due to the Lorentz symmetry of the underlying field equation, we obtain the relations 
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(5.14 & 5.15) with h given by (5.16) (the parameters r and d are, of course, different in general 
here). 
It is interesting to notice, that the reason why breather solutions to relativistic field equations exhibit
the De Broglie relations, is the structure of the Lorentz-Transformations, under which these 
equations are invariant. More precisely, the transformation of time

If the field equations would only exhibit Galilean symmetry, time would transform as t→t and 
therefore (5.19) would yield neither of the De Broglie relations (5.14 & 5.15). This is even more 
astonishing, since the De Broglie relations are already fundamental in non-relativistic quantum 
mechanics. It shows again, how quantum mechanics and relativistic phenomena have a common 
origin in the breather soliton structure of the elementary particles.

5.3 Discrete energy levels:

The discrete nature of the energy levels of bound states results from the modes of the trapped 
breathers in a potential, similar to the modes of a standing wave in classical physics. As an example 
of how this works, we consider a Sine-Gordon breather trapped in an infinite potential well of width
L. The breather is reflected at the walls of the well, resulting in a second breather, travelling in the 
opposite direction with the same velocity and phase shifted by π. Thus, the entire solution is a two 
breather solution to the Sine-Gordon equation, which can be found analytically. This solution has to 
fulfill the boundary conditions x (0)=x (L)=0 for all times t, as well as satisfy the Sine-Gordon 
equation (4.10). The explicit calculations are carried out in a separate paper [10], as they are a bit 
more technical. The basic idea is similar to how a standing wave occurs: A superposition of two 
waves travelling in opposite direction. Demanding that the solution fulfills the boundary conditions,
one obtains:

(5.20)

for the wavenumber of the breather, as defined by equation (5.11). The solution is then a breather 
oscillating back and forth between both ends of the potential well. The condition (5.20) exactly 
agrees with the quantisation condition derived from quantum mechanics. If we combine this with 
the De Broglie relation (5.15) and plug both in the relativistic energy-momentum relation (4.9), we 
obtain:

(5.21)

Those are the well known energy levels for the infinite potential well obtained from the Klein-
Gordon equation. To show that also for more sophisticated potentials in general the energy levels 
agree with those of the Klein-Gordon equation, remains a task to be done. Of course, this is to be 
expected from the full theory.

6.   Self-energy,   the Coulomb-Singularity   and „renormalisation“:  

Due to the particles not being points, but spread out distributions in space, the soliton model 
immediately removes the problem of infinite self energies, as well as the unphysical 1/r singularity 
in the potentials, be it gravitational or electromagnetic. As is well known, both problems can be 
tracked down to particles being described as points. We will restrict ourselves here to the 
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gravitational potential, but all arguments apply to the electromagnetic as well. The energy of a mass 
distribution in a field is given by:

(6.1)

For a point particle, the gravitational potential φ reads

(6.2)

which, if plugged into (6.1), yields an infinite energy. One can see, that this infinite self energy is a 
consequence of the likewise unphysical singularity of the 1/r field, which in turn is a result of point 
particles being the source. This, one can easily see by plugging the Dirac-distribution into the 
equation for the potential:

(6.3)

On the other hand, one can easily see that the potential (6.3), as well as its derivative, remain finite 
for r→0 for any density which remains finite in this limit, too. Now, a particle described by a 
soliton, obviously fulfills this requirement. Therefore, the singularity in the potential as well as the 
resulting infinite self energy are removed. Indeed, as mentioned at the beginning, the solitons are 
part of the field. Thus, the energy calculated by equation (4.4) contains both the combined energy of
the particle (the core field) and its (far-) field. As we saw, it yields a well defined, finite value for its
rest mass. No renormalisation is needed.
It must be emphasised, that from a physical perspective, there is no reason to demand that 
elementary particles are point-like. Like it is the case in the soliton model, a particle can be at the 
same time elementary, in the sense that all other matter is built out of it, and still be extended and 
posses an internal structure. This is also no contradiction to the speed of light being an upper limit 
of signal transmission, as is claimed in some texts [11]. It can be seen by the fact that the solitons 
obey a non-linear wave equation like (3.2) or (4.10): All signals travel at maximum with the 
velocity c, which is the speed of light. At the same time, the solitons themselves exhibit the known 
relativistic energy and momentum relations (4.6 & 4.8). Thus, it is impossible to accelerate them to 
the speed of light, or even beyond it. 

7. Soliton interaction:

Of course, one does not just want to recover the phenomenology of special relativity and Quantum 
mechanics, but also the known behaviour of particles in classical physics. As stated at the 
beginning, it is well known that solitons exhibit particle behaviour in the sense that they propagate 
and collide shape-perserving. Of course, one also wants to have soliton dynamics. This interaction 
between solitons via their fields is included in the soliton solutions themselves. More precisely, in 
the multi-soliton solutions of the field equations. To demonstrate this, we look again at the Sine-
Gordon equation and its two-soliton solution5):

(7.1)

5) We discuss the so called Kink-Kink solution. Since there are two types of solitons in the Sine Gordon equation, 
Kinks and Antikinks, there is also the Kink-Antikink solution. But it doesn‘t exhibit the known behaviour of classical 
particles upon collision (both solitons run through each other), therefore we chose the Kink-Kink solution here.
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(7.2)

Here, v1 , v2 are the velocities of the two solitons, x1, x2 their positions at t=0. α is a 
parameter depending on both velocities of the solitons in a bit more sophisticated way. The solution 
(7.1) describes two solitons propagating and eventually colliding. For simplicity reasons, we shall 
just consider the non-relativistic case. The picture doesn‘t change qualitatively, if the full relativistic
case is considered. 
In this case, both solitons follow a trajectory given by:

(7.3)

Here, „+“ is the right soliton, „-“ the left one, v12=v1−v2 . It is plotted in the following x-t-
diagram of the energy density:

Figure 2. Contour plot of the energy density of the two solution (7.1) against the position on the x-
axis and time on the y-axis. The energy density itself is given by the integrand in eq. (4.4). It is 
plotted for the values β 1=0.1 and β 2=0.5 , x1=x2=0 . 

After the collision, the slower soliton takes over the velocity of the faster soliton and vice versa. 
They behave the same way two particles of same mass behave, when they collide. With one 
important difference: The collision is not like a collision of two solid balls, but a continuous transfer
of momentum occurs via the fields of the particles. Indeed, eq. (7.3) describes an accelerated 
motion of both solitons, despite their „velocities“ v1 , v2 entering the solution (7.1) being constant.
Those velocities are actually the initial and terminal velocities of both solitons before and after the 
interaction. The dynamical interaction in between, due to the fields generated by the two solitons, is
encoded in the multi-soliton solutions.
An interesting side note is also, that the trajectory (7.3) of the particles can be found algebraically 
from the two soliton solution (7.1). No additional differential equation has to be solved. Therefore, 
in a soliton model of elementary particles, the solution to motions of particles can be found 
algebraically instead of by solving (differential) equations of motion. This could make a far larger 
class of motions solvable analytically, than currently are.

N  ewton‘s law of motion:  

We can show that the above interaction obeys Newtons law of motion

(7.4)
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when the solitons are separated far enough from each other. Physically, this means that the particles 
(the core fields of the solitons) are separated far enough so that their distance fulfills r≫d . In 
this case, the particles are only interacting with their far fields; the core interactions between the 
particles can be neglected. This condition is fulfilled in classical mechanics, but even quantum 
mechanics, as long as what is usually termed as „strong force“ can be neglected. 
To show (7.4), we first note that the centre of mass of the two solitons moves uniformly. Indeed, 
from (7.3), it can be seen that

(7.5)

For the relative separation of the solitons we have:

(7.6)

Differentiating this once with respect to time, solving (7.6) for r and plugging it into the result, one 
obtains6):

(7.7)

In the far field r>>d we have sinh( r
2 d
)≈1

4
exp ( r

d
) and β 12≪1 , thus

(7.8)

Now, the interaction energy between the two solitons is in the same limit given by [12]

(7.9)

Plugging this into (7.8), we can write it as

 (7.10)

Here, μ=
m0

2
is the reduced mass of the two solitons of mass m0 , which is given by:

(7.11)

In the second equality, we plugged in the energy of a single soliton obtained by direct calculation 
via equation (4.4). Equation (7.10) is the known energy expression for the motion of two particles 
in the center of mass system in Newtonian mechanics. We thus have seen, that the two solitons 
indeed move according to Newton‘s law in their generated (far-) fields.
Another important thing to notice is, that no notion of mass has been introduced a priori. We 
identified the expression (7.11) with the mass in Newton‘s law (via the reduced mass in the energy 
expression (7.10)). This is in fact a derivation of the formula

 (7.12)

6) It is also interesting to notice, that the 2nd term on the left side, which is the „interaction potential“ of the motion of 
the two particles, exhibits the same dependency on the relative velocities of the particles, as in the non-relativistic 
Machian theories [1-5].
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The expression playing the role of the inertial mass in Newton‘s law is E/c^2, where E is the entire 
field energy. This is also very similar to the expression (2.1) for the inertial mass of a particle 
derived from the Machian theories. There, it is also proportional to the entire field energy φ
divided by c^2.

8. N-particle model:

In non-relativistic Machian theories, as in principle also in Newtonian dynamics, the universe is 
described by an N-particle model. Many soliton equations posses anayltic N-soliton solutions, as 
well as N-breather solutions. The particles (the soliton core fields), their (far-) fields as well as their 
mutual interaction (and the resulting motion) is then described in a single solution to the underlying 
field equations, as was shown for the two soliton case in section 7. As an example, the multi soliton 
solution of the sine-Gordon equation is given by [13]:

Here, W denotes the Wronskian with derivatives performed after X. ℑ,ℜ are the real and 
imaginary part of f; X, T are the so called light cone coordinates and δ is a complex phase. N is the 
number of solitons, respectively particles. 
It is to be expected, that the correct gravitational field equations, too posses such N-soliton 
solutions. They are then the relativistic generalisation of the N-particle model in classical 
mechanics. 

9. Conclusions

We have shown that it is suggested by a unification of gravity and inertia that elementary particles 
are oscillatory solitons in the gravitational field, or more general, a „unified“ field. We have shown, 
that from such a theory of elementary particles all the basic phenomena of special relativity and 
quantum mechanics can be derived in a classical framework, in flat 3 dimensional Euclidean space. 
We saw, that the breather solitons have exactly the structure which had been postulated by De 
Broglie for the quantum mechanical wave function. Such an approach allowed us to derive the De 
Broglie relations including an expression for the unexplained constant h, as well as other basic 
quantum phenomena like the wave-particle nature and the uncertainty principle. We also showed, 
that such breather solitons are able to produce discrete energy levels for bound states, arising in a 
similar way than the modes of trapped waves occur. Further, we were able to actually explain the 
apparent constancy of the speed of light, instead of having to postulate it. Other than in common 
theories, the speed of light is not actually constant, but only appears to be constant due to the 
changes of the elementary rulers and clocks in moving frames, provided by the elementary particles.
The theory also yields actual physical explanations for effects like length contraction, time dilation, 
as well as for the mentioned quantum phenomena. The same applies to the energy mass 
equivalence, which in current theories can be derived, but no physical explanation can be given for 
it. This also lead us directly to the origin of mass, which could be explained as entirely of field 
origin, as the energy of the soliton divided by c^2.

φ=4 arctan( ℑ(f )
ℜ(f )

)

f=W (ψ 1 ,... ,ψ N )(X) ψ i=exp( 1
2
(α i X+ 1

α i
T )+δ i)

X= x+ct
2 d

T= x−ct
2d



The above said leads us to the conviction, that a soliton theory of elementary particles, as was 
presented here, is the gateway to a unified field theory from which both relativistic phenomena and 
Quantum mechanics emerge. It would therefore be worthwhile to direct research programs into this 
direction and search for suitable candidates for non-linear field equations with N breather soliton 
solutions. Since Special relativity is based on space and time actually changing, while in a soliton 
theory, it is the elementary particles themselves which are changing in flat, Euclidean space, it is 
necessary and possible to part ways with this theory, when pursuing the soliton approach further. 
The same, consequently, also applies to General relativity and Quantum mechanics in its current 
formulation. The effects currently described by Special relativity and Quantum mechanics then are 
described by the soliton nature of the elementary particles themselves. To show, that also all of 
those experiments, which are currently correctly described by General relativity can be explained 
by the soliton model, remains a task to be done, once the full, 3 dimensional equations are found.
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