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ABSTRACT 

Interest rate curves play an important role in financial market. Curve forecasting is used for 

risk management, hedge, and arbitrage. The article proposes a model for simulating forward 

interest rate. The number of drivers is to be three to adequately capture the short-, medium-, 

and long-term rates since each is driven by different mechanism, e.g., short-end is driven 

primarily by policy maker; long-end driven by market, although policy maker could also 

assert influence through Operation “Twist”.  
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There are different types of interest rates, mainly government rates and interbank rates, such 

as LIBOR (London Interbank Offered Rate) or OIS (Overnight Indexed Swap) rate. LIBOR, 

as the name implies, is the rate of interest that one London bank will offer to pay on a 

deposit by another. There will, in general, be a different LIBOR for each of the standard 

deposit maturities. Whereas government rates are determined by government issued bonds. 

 

An interest rate curve is the graph of function between maturities and associated interest 

rates. Curves can be bootstrapped from government bonds or index rates. An interest rate 

curve is also called the term structure of interest rates. 

 

LIBOR curves have more advantages than government curves. They are more liquid and 

have stronger correlation among financial products. Therefore, the base LIBOR curve 

become funding curve and more efficient for hedging and pricing. 

 

The manipulation scandal with LIBOR and other benchmarks was uncovered in 2012 that 

had negative impact on the reliability and robustness of financial markets. The Financial 

Stability Board (FSB) recommended to replace LIBOR or more general IBOR with risk free 

reference rates. The most popular risk reference rates are SOFR, ESTR, SONIA, TONA, 

CORRA, etc. 

 

There is a rich literature on interest rate. Medova al et. (2006) use a three-factor interest rate 

curve model and the Kalman filter to study EU swap yield data from 1997 to 2002 and 

capture the salient features of the whole term structure in forward simulation. 
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Bolder and Streliski (1999) create a framework to construct a historical data base of zero 

coupon and forward yield curves estimated from Government of Canada securities and have 

a better understanding of the behaviors of a class of parametric yield curve models.  

 

Madsen (2012) defines a general model for the shift function and specify a risk model that 

uses the shift function. Fisher (2004) examines the forces impacting interest rates in the 

context of an extremely simple model in which all uncertainty was resolved by the simple 

flip of a coin. 

 

Akram (2020) proposes a long-term interest rate model to represent John Maynard Keynes’s 

conjecture that the central bank’s actions influence the long-term interest rate primarily 

through the short-term interest rate. 

 

Li and Su (2021) apply a rolling-window strategy to determine the dynamic linear and 

nonlinear Granger causality relationship between short- and long-term interest rates over 

time and visualize the results. 

 

Crummp and Gospodinov (2024) introduce a nonparametric bootstrap for the yield curve 

that is agnostic to its true factor structure. They deconstruct the yield curve into primitive 

objects, which weak cross-sectional and time-series dependence, 

 

Levrero and Matteo [2019] study the causal relationship between short- and long-term 

interest rates and outline an asymmetry in the relationship. Bauer and Hamilton (2019) 

propose a new bootstrap procedure to test the spanning hypothesis and conclude that 
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conventional tests of whether variables other than the level, slope and curvature can help 

predict bond returns have significant size distortions. 

 

This article presents a new interest rate model. Three risk factors are designed to capture the 

dynamic of short-, medium-, and long-term interest rate. Given a scenario of these three risk 

factors, we can construct a curve at 3M, 5y3M, and 15y3M points. Linear interpolation may 

lead to some discrepancy with market curve which has more granular points on the term 

structure.  

 

Mean reversion of interest rates is considered a desirable property of a model because it is 

perceived that interest rates tend to trade within a fairly tightly defined rage. This indeed true, 

but when pricing exotic derivative (see https://finpricing.com/lib/EqWarrant.html) it is the 

effect of mean reversion on the correlation of interest rates at different time that is more 

important.  

 

The total amount of interest that the depositing bank will receive is calculated by multiplying 

the LIBOR by the amount of time, as a proportion of a year, for which this money has been 

on deposit This amount if tune us caked the accrual factor or day count fraction, 

 

Intuitively, multi-factor short rate or instantaneous forward rate driven term structure, is 

thought to be unlikely to guarantee non-negativity of forward rate on the curve, since the two 

points on the curve are driven by factors not necessarily meeting that condition. Forward rate 

model can satisfy that condition, but LMM is not mean-reverting. So we need to make it 

mean-reverting. 

https://finpricing.com/lib/EqWarrant.html


 

5 
 

 

we assume that the logarithm of each of these risk factors follows Vasicek model. The initial 

value can be derived from today’s yield curve. That guarantees the non-negativity and mean-

reversion of the forward rate. Also, the lognormal distribution of the forward rate at future 

simulation time buckets is consistent with the Black model condition for cap/floor. 

 

The only desirable feature this model fails to capture is the fat-tail of daily return (i.e. 

relative change) distribution of the risk factor. However, the daily return measured in 

absolute change is not normal and have fatter tail, as opposed to HW model where the 

absolute change is normal. Anyways, that’s not the primary concern of the model devised for 

CCR given long simulation horizon. 

 

if we want to reduce the number of risk factors, we could do principal component analysis 

(PCA), and select, say 3 risk drivers. Now, it requires a nx3 matrix to recover the n tenor 

points in simulation. This matrix is the transpose of the eigenvector of the corresponding PC. 

Again, there will be discrepancy at the initial curve since PCA is only a projection, and the 

system is over-determined (a smaller number of risk drivers than the number of tenor nodes) 

 

The rest of this paper is organized as follows: The model is presented in Section 1; Section 2 

elaborates calibration. Numerical results are discussed in Section 3; the conclusions are 

given in Section 4.  

 

1. Model 
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We propose to model the forward rate in a PCA setting. The number of drivers is to be three 

to adequately capture the short-, medium-, and long-term rate since each is driven by 

different mechanism (short-end driven primarily by policy maker, long-end driven by 

market, although policy maker could also assert influence through Operation “Twist”). Each 

driver is assumed to follow exponential OU process.   

 

Intuitively, multi-factor short rate or instantaneous forward rate driven term structure, is 

thought to be unlikely to guarantee non-negativity of forward rate on the curve, since the two 

points on the curve are driven by factors not necessarily meeting that condition. Forward rate 

model can satisfy that condition, but LMM is not mean-reverting. So we need to make it 

mean-reverting. 

 

Now, we assume that the logarithm of each of these risk factors follows Vasicek model. The 

initial value can be derived from today’s yield curve. That guarantees the non-negativity and 

mean-reversion of the forward rate. Also, the lognormal distribution of the forward rate at 

future simulation time buckets is consistent with the Black model condition for cap/floor. 

 

The only desirable feature this model fails to capture is the fat-tail of daily return (i.e. 

relative change) distribution of the risk factor. However, the daily return measured in 

absolute change is not normal and have fatter tail, as opposed to HW model where the 

absolute change is normal. Anyways, that’s not the primary concern of the model devised for 

CCR given long simulation horizon. 

 



 

7 
 

If we want to reduce the number of risk factors, we could do PCA, and select, say 3 risk 

drivers. Now, it requires a nx3 matrix to recover the n tenor points in simulation. This matrix 

is the transpose of the eigenvector of the corresponding PC. Again, there will be discrepancy 

at the initial curve since PCA is only a projection, and the system is over-determined (less 

number of risk drivers than the number of tenor nodes) 

 

Scenarios for an interest rate curve are generated by simulating the correlated returns of risk 

factors on the curve, which are currently computed as either relative returns or absolute 

returns. Since it is the returns and not the rates that are simulated, the returns scenarios need 

to be converted back to rates for re-pricing under each scenario. The rate scenarios, 𝑥𝑠, can 

be expressed in terms of the simulated returns as: 

 

𝑥𝑠 = (1 + 𝑅𝐸𝐿)𝑥0  for relative returns  (1) 

 

𝑥𝑠 = 𝐴𝐵𝑆 + 𝑥0  for absolute returns  (2) 

 

where 𝑥0 is the closing rate, 𝐴𝐵𝑆 is the absolute return scenario (i.e., 𝐴𝐵𝑆 = Δ𝑥), and 𝑅𝐸𝐿 

is the relative return scenario (i.e., 𝑅𝐸𝐿 =
Δ𝑥

𝑥0
). 

 

For large shocks, such as those for stress scenarios, the rate scenarios 𝑥𝑠 can potentially be 

negative-valued. We can see from the above expressions that negative values of 𝑥𝑠 would 

occur for relative return scenarios 𝑅𝐸𝐿 less than -1 and for absolute return scenarios 𝐴𝐵𝑆 

less than the closing rate 𝑥0. Under the current stressed VaR framework, the approach taken 
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to ensure non-negativity of rates is to floor the rate scenarios at 0, that is to say, the corrected 

rates �̃�𝑠 are given by: 

 

�̃�𝑠 = max(0, 𝑥𝑠).  (3) 

 

An alternative approach to dealing with the problem of negative-valued rates for the case of 

relative returns is to instead use log returns. The rate scenarios 𝑥𝑠 would then be given by: 

 

𝑥𝑠 =  𝑥0𝑒𝐿𝑅   (4) 

 

where 𝐿𝑅 is the log return scenario (i.e., 𝐿𝑅 = 𝑙𝑜𝑔 (
𝑥

𝑥0
)). We can clearly see that using log 

returns would ensure that the rate scenarios 𝑥𝑠 are always non-negative. 

 

In addition to negative rates potentially resulting from simulation, there is also the possibility 

of negative forward rates occurring. To correct for negative forward rates, an algorithm 

described in [1] is used to adjust the negative-valued rate scenarios. The method involves 

first checking the condition that all forward rates of the given interest rate curve are above a 

minimal constant level 𝜀 > 0, and then applying a perturbation to the key interest rates so 

that the condition is satisfied.  

 

For an interest rate curve that is described by a set of key zero coupon rates, {𝑟1, … , 𝑟𝑖, … , 𝑟𝑛}, 

and for the method of linear interpolation of interest rates between key rates, the necessary 
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and sufficient condition for all forward rates of an interest rate curve to be above a minimal 

constant level 𝜀 > 0 is the following set of inequalities: 

 

𝑟𝑖+1 −
𝑡𝑖+1

2𝑡𝑖+1−𝑡𝑖
𝑟𝑖 ≥ 𝜀

𝑡𝑖+1−𝑡𝑖

2𝑡𝑖+1−𝑡𝑖
 ,     𝑖 = 1, … , 𝑛 − 1  (5) 

 

If the above condition does not hold for a given Monte Carlo scenario of an interest rate 

curve, the key interest rates for the scenario need to be adjusted in such a way that the 

‘optimally’ adjusted set of key rates {�̃�1, . . , �̃�𝑛} satisfies the above condition. As described in 

[1], the adjustment of the key interest rates to satisfy the above condition can be formulated 

as the following optimization problem: 

 

Find a solution {�̃�1, … , �̃�𝑛} of the weighted least squares problem 

 

𝐹(�̃�1, … , �̃�𝑛) = ∑
1

𝜎𝑖
2 (�̃�𝑖 − 𝑟𝑖)

2𝑛
𝑖=1 ⟶ min  (6) 

 

with the linear constraints 

 

�̃�𝑖+1 −
𝑡𝑖+1

2𝑡𝑖+1−𝑡𝑖
�̃�𝑖 ≥ 𝜀

𝑡𝑖+1−𝑡𝑖

2𝑡𝑖+1−𝑡𝑖
 ,     𝑖 = 1, … , 𝑛 − 1 (7) 

 

where the 𝜎𝑖 are the volatilities (see https://finpricing.com/lib/FxVolIntroduction.html) 

corresponding to the key interest rates. We note that under the current stressed VaR 

framework, 𝜀 is set to 1 bp. A detailed description of the algorithm used to solve the above 

optimization problem is provided. 

https://finpricing.com/lib/FxVolIntroduction.html
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Each curve is as a linear interpolation and/or extrapolation of the following nine interest 

rates: 

{ , , ……, }    (8) 

 

For convenience, denote  

= 1m,  = 3m, ….., = 10y   (9) 

 

A correlated random movement of nine term rates for a given currency determines a random 

movement of their represented yield curve. A random movement for the nine term rates { , 

, …., } at time  is simulated by the equation [III.7] given a set of  nine random 

numbers { ,  , …, }.   Only three of these nine random numbers are drawn 

randomly.  Each of the nine random numbers is determined by three key numbers 

,  and .   It is given by the following formula: 

=   *

   (10)

 

 

where  is the  row of the following matrix: 
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= 

   (11)

 

 

and where  and  are the correlation coefficients between  and  and 

between   and  respectively.  

 

The spot rate is given by: 

 

𝑟𝜏 = 𝑅𝜏 exp ( −
𝜎𝜏

2

2
 (

1−𝑒−2 𝜅𝜏 𝑡

2 𝜅𝜏
) + 𝜎𝜏  𝑌𝜏(𝑡)),    𝑌𝜏(𝑡) =  ∫ 𝑒−𝜅𝜏 (𝑡−𝑠)𝑑𝑊𝑠

𝑡

0
 (12) 

 

There are four calibration approaches available for the model: 1) Historical quantile match: 

we match the historical ratio of 95th and 5th and one of the 2 quantiles at ∞, the long-term 

mean is then implied by those 2 quantiles. 2) Historical 95th – 5th width match at ∞ and 

historical mean for long term mean. 3) Match the historical ratio of 95th and 5th and choose 

the long term mean independently. For example, using historical average or forward rates. 

𝜅 will be the same as in 1. 4)The last calibration is matching the historical 5th and mean of 

the distribution at ∞ and letting the lognormal distribution decide on the 95th location. This 

cB
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approach is conservative as the implied distance 95th - mean is always bigger than mean – 5th 

for a lognormal distribution, resulting in a wider envelope of simulated rates. 

 

2. Calibration 

 

The mean reversion speed κ is calibrated assuming the interest rate distribution is constant 

and not time dependent which theoretically happens at infinity. 

 

2.1  Quantile match 

In this calibration,  

• 𝜅 is obtained from matching the ratio of 
𝑟95

𝑟5
 at ∞ which yields one solution 

It is given by: 

WLNhist =  ln (𝑟95(𝑡)) − ln (𝑟5(𝑡)) = 𝜎√
1 − 𝑒−2𝜅𝜏 𝑡

2𝜅𝜏

(𝑁−1(0.95) − 𝑁−1(0.05))  

 

At 𝑡 = ∞, we get the simple equation: 

WLNhist = ln (𝑟95(∞)) − ln (𝑟5(∞)) =
𝜎

√2𝜅𝜏

(𝑁−1(0.95) − 𝑁−1(0.05))  

 

which has only one positive solution. 𝜃 is obtained from 𝜅 and the condition to match the 5th 

or 95th quantile (which produces logically the same result) 

𝑟5(∞) =  𝜃𝜏 exp( −
𝜎𝜏

2

4𝜅𝜏
+ 𝜎𝜏

𝑁−1(0.05)

√2𝜅𝜏

) 
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Therefore, they are no stability or multiple solution issues encountered during calibration. 

 

2.2  Width match 

The width match relies on matching  𝑟95 − 𝑟5 which yields the equation at 𝑡 = ∞: 

𝑟95(∞) − 𝑟5(∞) = 𝜃 ( 𝑒
−

𝜎𝜏
2

2𝜅𝜏
+𝜎𝜏

𝑁−1(0.95)

√2𝜅𝜏 − 𝑒
−

𝜎𝜏
2

2𝜅𝜏
+𝜎𝜏

𝑁−1(0.05)

√2𝜅𝜏 ) 

 

This equation yields one none degenerated solution 𝜅𝜏
∗ when 𝜃𝜏is chosen as the average of 

the historical rates. When 𝜃 is chosen to be too small (e.g. set to the current forwards), no 

solution to the minimization will be returned. 

 

2.3  Ratio match and flexible mean 

• 𝜅 is obtained the same way as in calibration 1 

• 𝜃 is obtained independently, e.g. set to the forwards or historical mean 

As per calibration 1, this calibration does not have instability of solutions except if 𝜅 is 

calibrated at a specific horizon instead of the proposed 𝑡 = ∞. 

 

2.4  Mean and one quantile match 

This last calibration matches 
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• The mean is obtained easily by setting 𝜃 = 𝑎𝑣𝑔ℎ𝑖𝑠𝑡. It could also be chosen to 

correspond to the forward rates. 

 

• 𝜅 needs to solve the following 

𝑟5(∞) =  𝜃 (𝑒
−

𝜎𝜏
2

2𝜅𝜏
+𝜎𝜏

𝑁−1(0.05)

√2𝜅𝜏 )  Which is a polynomial of degree 2 in 𝜅. 

Hence it has 2 solutions. Both solutions are positive in this case. One solution is extremely 

close to zero for all tenors; we will discard it here since small 𝜅 (e.g. < 5%) indicate a 

complete diffusion behavior and create numerical problems during simulation. The other 

solution gives very reasonable 𝜅 values as it can be seen in the numerical examples 

hereafter. 

 

3. Numerical Results 

 

An example of an interest rate curve scenario for which an adjustment needs to be applied to 

remove negative forward rates is shown in Figures 1 and 2. The closing rates of the 

USD_STUB curve along with two stress scenarios using simulated 10-day returns are shown 

in Figure 1. 10-day returns were simulated as √𝐺(√10, √10) ⋅ 𝑍, where 𝐺(√10, √10) is a 

gamma-distributed random variable with both shape and scale parameters of √10, and 𝑍 is a 

standard normal random variable.  
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The scenario labeled ‘scenario 1’ does not exhibit any negative forward rates, while the 

scenario labeled ‘scenario 2’ requires an adjustment to remove negative forward rates that 

occur at short maturities.  

 

The short maturity region of ‘scenario 2’ is shown for the original and adjusted curves in 

Figure 2, where we see that only a small adjustment is required for two tenor points to 

correct for the negative forward rates. Even for the larger shocks associated with stress 

scenarios, the occurrence of negative forward rates is fairly low, as it was found that for a 

simulation run of 20,000 scenarios only 30 required adjustments. Interest rate curve is 

important for pricing derivatives, such as callable exotics. 

 

 

 

Figure 1:  10-day scenarios for USD_STUB curve. 
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Figure 2:  Adjustment to USD_STUB curve scenario to remove negative forward rates. 

 

The simulated rates are produced by the following parameters:  

  
Tenors 1M 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y 

USD Sigma 24.23% 30.20% 53.03% 65.11% 64.43% 58.22% 47.40% 41.36% 37.72% 32.91% 

Theta 2.00% 2.08% 2.20% 2.41% 2.73% 3.08% 3.81% 4.28% 4.70% 5.16% 

Kappa 2.91% 5.12% 17.49% 31.78% 42.77% 49.00% 62.25% 70.80% 85.16% 100.20% 

Whist 6.06% 6.03% 6.10% 6.17% 6.05% 5.84% 5.28% 4.86% 4.45% 3.94% 

Hist 
95th 

6.29% 6.31% 6.43% 6.63% 6.73% 6.82% 7.01% 7.13% 7.25% 7.36% 

Hist 
05th 

0.23% 0.28% 0.34% 0.45% 0.68% 0.99% 1.73% 2.27% 2.80% 3.43% 

Hist avg 3.45% 3.54% 3.56% 3.66% 3.94% 4.21% 4.64% 4.93% 5.23% 5.68% 
            

CAD Sigma 33.3% 24.4% 35.2% 50.8% 52.0% 45.9% 41.7% 33.8% 27.5% 20.2% 

Theta 2.1% 2.2% 2.2% 2.5% 3.1% 3.4% 3.9% 4.3% 4.9% 5.6% 

Kappa 8.3% 4.8% 10.8% 30.8% 52.0% 50.5% 56.5% 45.6% 41.8% 37.6% 

Whist 5.48% 5.44% 5.38% 5.22% 5.05% 5.04% 4.93% 4.99% 4.83% 4.27% 

Hist 
95th 

5.88% 5.89% 5.87% 5.92% 6.21% 6.49% 6.81% 7.26% 7.70% 7.97% 

Hist 
05th 

0.40% 0.44% 0.49% 0.70% 1.16% 1.44% 1.87% 2.27% 2.87% 3.71% 

Hist avg 3.34% 3.39% 3.41% 3.54% 3.88% 4.15% 4.55% 4.84% 5.18% 5.59% 
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EUR Sigma 65.36% 32.01% 31.05% 39.80% 44.24% 34.26% 29.66% 26.29% 24.22% 25.35% 

Theta 1.89% 2.24% 2.30% 2.47% 2.72% 3.04% 3.46% 3.80% 4.12% 4.36% 

Kappa 39.57% 14.65% 14.78% 31.02% 51.94% 46.34% 52.30% 53.58% 59.62% 67.81% 

Whist 4.41% 4.27% 4.23% 4.05% 3.85% 3.54% 3.28% 3.17% 3.00% 3.11% 

Hist 
95th 

4.84% 4.98% 4.99% 4.99% 5.06% 5.13% 5.34% 5.59% 5.79% 6.09% 

Hist 
05th 

0.43% 0.71% 0.76% 0.95% 1.21% 1.59% 2.06% 2.42% 2.79% 2.97% 

Hist avg 2.72% 2.86% 2.85% 2.93% 3.13% 3.38% 3.72% 3.99% 4.29% 4.67% 
            

JPY Sigma 40.09% 24.32% 39.20% 26.54% 33.08% 47.82% 50.18% 49.10% 39.25% 24.01% 

Theta 0.24% 0.31% 0.30% 0.33% 0.44% 0.57% 0.81% 1.06% 1.44% 2.32% 

Kappa 10.39% 3.92% 11.43% 6.16% 13.27% 34.25% 46.33% 62.83% 63.35% 113.50% 

Whist 0.67% 0.85% 0.78% 0.79% 0.90% 1.06% 1.37% 1.51% 1.64% 1.22% 

Hist 
95th 

0.70% 0.90% 0.84% 0.86% 1.02% 1.25% 1.67% 1.98% 2.41% 2.98% 

Hist 
05th 

0.04% 0.05% 0.06% 0.07% 0.12% 0.19% 0.30% 0.47% 0.76% 1.76% 

Hist avg 0.24% 0.30% 0.32% 0.35% 0.45% 0.60% 0.88% 1.17% 1.54% 2.37% 
            

CHF Sigma 106.3% 88.8% 162.2% 320.9% 112.8% 75.4% 40.9% 36.5% 32.2% 40.7% 

Theta 1.0% 1.2% 1.2% 1.3% 1.6% 1.9% 2.3% 2.7% 3.0% 3.0% 

Kappa 48.4% 47.5% 168.8% 830.0% 195.8% 139.9% 78.3% 95.5% 108.6% 173.5% 

Whist 3.3% 3.2% 3.2% 3.1% 3.0% 2.8% 2.5% 2.3% 2.2% 2.2% 

Hist 
95th 

3.4% 3.4% 3.4% 3.4% 3.5% 3.6% 3.8% 4.0% 4.2% 4.2% 

Hist 
05th 

0.1% 0.2% 0.2% 0.3% 0.5% 0.8% 1.3% 1.7% 2.1% 2.1% 

Hist avg 1.3% 1.4% 1.5% 1.6% 1.9% 2.1% 2.5% 2.8% 3.1% 3.1% 

 

 

These parameters are obtained with calibration 1 described above. The plots to follow, 

beyond displaying the resulting simulated shape produced by the model, stress the flexibility 

that the model possesses due to the various calibrations proposed.   
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Figure 3: USD results 

 

 

It can be seen that each tenor has a very distinct behavior due to each tenor its own volatility, 

mean reversion speed and long-term mean. The historical 95th-5thsits right at the edges of the 

envelop as per the calibration. In this simulation there is no intermediary regime changes, but 

rather a convergence to the long-term mean driven by 𝜅, 𝜎 and the level of 𝜃. USD exhibits 

very few crossings of tenors at the 5th level and none at the 95th. Due to the data not being 

log-normally distributed and the calibration matching the 2 extreme quantiles, the historical 
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mean sits typically above the simulated mean. This behavior is most apparent for the 3M rate 

and fades as tenors increase. 

 

4. Conclusion 

 

In this article we present simulation model under the physical measure using various 

calibration techniques. The model does not have particular restrictions in terms of the shape 

it may produce. Any shapes may be observed during simulations. This may lead to “wavy” 

shapes which are not possible or extremely unlikely in economic terms. Without explicit 

rejection rules at simulation run-time, negative forwards may be observed, although they 

should be rare as long term means and spot are usually not negative and consequently 

expected future spot rates. 

 

The model forecast log-normally distributed interest rates; therefore, interest rates cannot 

become negative. As observed in the simulation plots, rates are floored around zeros when 

volatility is sufficiently high or long-term 5th quantile is sufficiently low. 

 

Having more tenors available does not influence previously calibrated parameters since each 

tenor is calibrated separately. The model will simply gain accuracy without disrupting the 

previously calibrated parameters. 
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