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Abstract.  We  explore  three  combinatorial  sequences  derived  from  Pascal’s  triangle:  Binomial 
Coefficients, the Narayana Numbers and a variant of the Binomial Coefficients. The goal is to express 
particular cases of the sum of powers of the first n natural numbers using combinatorial sequences.

1p + 2p + 3p + 4 p + ... + np , where p , n ∈ ℕ

The methodology we employ is based on the differences between terms. We multiply each term by n to 
equal the next exponent and then add each term. Finally, we identify patterns in the sequences at the  
intermediate or final stage.

1 Introduction.

Pascal’s triangle is a representation of the binomial coefficients in the form of a triangle, named after 
the French mathematician Blaise Pascal(1623-1662).

The binomial coefficient is given by the formula:

(nk) = n!
k!(n−k )!

, 0⩽k⩽n
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1.1 Binomial coefficients in the Diagonals

The binomial coefficients that form the diagonals in the triangle are the first family of sequences that  
we can derive from it, where we denote the binomial coefficients as C(n, k).

Table-C(n, k)

C(n, 0) C(n, 1) C(n, 2) C(n, 3) C(n, 4) C(n, 5) C(n, 6) C(n, 7) C(n, 8) C(n, 9)
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28 36 45 55
1 4 10 20 35 56 84 120 165 220
1 5 15 35 70 126 210 330 495 715
1 6 21 56 126 252 462 792 1287 2002
1 7 28 84 210 462 924 1716 3003 5005
1 8 36 120 330 792 1716 3432 6435 11440
1 9 45 165 495 1287 3003 6435 12870 24310
1 10 55 220 715 2002 5005 11440 24310 48620

1.2 Variant of C(n, k)

The second family of sequences that we can derive from the triangle is a variant of C(n, k) where each  
sequence is constructed from the sum C(n, k) + C(n-1, k) which we denote as S(n, k).

S (n , k ) = n!
k!(n−k )!

+
(n−1)!

k!(n−1−k )!
, 0⩽k⩽n

Table-S(n, k)

S(n, 0) S(n, 1) S(n, 2) S(n, 3) S(n, 4) S(n, 5) S(n, 6) S(n, 7) S(n, 8) S(n, 9)
1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11
2 5 9 14 20 27 35 44 54 65
2 7 16 30 50 77 112 156 210 275
2 9 25 55 105 182 294 450 660 935
2 11 36 91 196 378 672 1122 1782 2717
2 13 49 140 336 714 1386 2508 4290 7007
2 15 64 204 540 1254 2640 5148 9438 16445
2 17 81 285 825 2079 4719 9867 19305 35750
2 19 100 385 1210 3289 8008 17875 37180 72930
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1.3 Narayana Numbers

Narayana numbers are the third family of sequences that we can derive from the triangle, where each 
sequence is constructed from the product of C(n, k)∙C(n-1, k) and divided by C(2, k), which we denote 
as N(n, k), named after the Indian-Canadian mathematician Tadepalli Venkata Narayana(1930-1987).

N (n , k ) = 1
n(nk)( n

k+1), 1⩽k⩽n
Table-N(n, k)

N(n, 0) N(n, 1) N(n, 2) N(n, 3) N(n, 4) N(n, 5) N(n, 6) N(n, 7) N(n, 8) N(n, 9)
1 1 1 1 1 1 1 1 1 1
1 3 6 10 15 21 28 36 45 55
1 6 20 50 105 196 336 540 825 1210
1 10 50 175 490 1176 2520 4950 9075 15730
1 15 105 490 1764 5292 13860 32670 70785 143143
1 21 196 1176 5292 19404 60984 169884 429429 1002001
1 28 336 2520 13860 60984 226512 736164 2147145 5725720
1 36 540 4950 32670 169884 736164 2760615 9202050 27810640
1 45 825 9075 70785 429429 2147145 9202050 34763300 ...
1 55 1210 15730 143143 1002001 5725720 27810640 … ...

1.4 Methodology

The methodology that we will follow during the development of the article can be separated into two 
phases. The first one is based on the differences between terms: multiplying by n and adding each term.  
The second phase is based on pattern recognition, where we will use strategies to try to clean up the 
sequence and arrive at one of the three families of sequences: C(n, k), S(n, k) and N(n, k).

1.4.1 Phase 1 and 2

Phase  1  can be  seen implicitly  in  telescoping sums,  which is  a  purely  algebraic  approach. 
However, in this text we will use phase 1 explicitly. We will not only multiply by n, but any  
exponent, with the only condition that it is smaller than the exponent we are dealing with. For  
example, if we are looking for a formula for sum of the first n cubes, we cannot multiply by n³, 
since this would result in n⁴(since the only exponents less than 3 are 2 and 1, omitting 0), which 
is greater than the exponent we are initially considering.

Since  we  express  all  the  formulas  in  combinatorial  sequences,  we  can  apply  them to  any 
sequence. This versatility will help us to use strategies for comparing sequences to arrive at 
sequences that are easily recognizable. This is the main difference with many other approaches.
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2 Sums of Powers.

The sum of powers of the first n natural numbers has been a classical problem of great interest to 
mathematicians  specializing  in  number  theory.  Some of  the  mathematicians  who have  contributed 
significantly are Johann Faulhaber(1580-1635) and Jacob Bernoulli(1654-1705). For a more detailed 
discussion of this topic, see references [1] and [2].

The sum of the p-th powers of the first n natural numbers

∑
k = 1

n

k
p

= 1p + 2p + 3p + ... + np

2.1 Trivial Cases of P

The first 3 values(0, 1, 2) taken by p can be considered trivial cases, since it is evident to recognize the  
sequences by contrasting with the tables previously presented. For p = 3, it can also be argued that it is  
a trivial case, since the nth term coincides with the square of the nth triangular number. However, this 
pattern cannot  be considered as  an absolute  truth,  but  rather  as  an initial  observation that  will  be 
justified later.

2.1.1 P = 0

Using the property(a⁰ = 1), we have that the sum of the first n natural numbers raised to an 
exponent 0 is:

∑
k=1

n

k0 = C (n, 1)

2.1.2 P = 1

∑
k=1

n

k1 = C (n, 2)

2.1.3 P = 2

∑
k=1

n

k2 = S (n , 3 ) = C (n , 3 ) + C (n−1, 3 )

2.1.4 P = 3

One of the first strategies we will use is to calculate the differences of the power we are 
considering with respect to the natural numbers:

1p − 1, 2p − 2, 3p − 3, ..., np − n
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We calculate the differences for p = 3 until n = 6:

1 − 1 , 8 − 2 , 27 − 3 , 64 − 4 , 125 − 5 , 216 − 6

0, 6, 24, 60, 120, 210

We note a divisibility by 6, so we will express the numbers in the form 6n:

6 (0 ) , 6 (1) , 6 (4 ) , 6 (10 ) , 6 (20 ) , 6 (35 )

Since we start with n³ – n, we clear the n:

n3 = 6⋅C (n−1, 3 ) + C (n, 1)

Therefore, we conclude that sum of first n cubic numbers is:

∑
k=1

n

k3 = 6⋅C (n−1, 4 ) + C (n, 2) = C (n, 2)2

The new formula can be easily proven, since the reduced formula for the tetrahedral numbers is 
(n³ – n)/6. Only a few algebraic manipulations are necessary. On the other hand, the formula for 
the squared triangular numbers is a fact established by the Greek mathematician Nicomachus of  
Gerasa(60-120).  The  new  formula  will  be  used  to  calculate  other  sequences,  while 
Nicomachus’s formula will be used to simplify them.

2.2 P > 3

2.2.1 P = 4

The second strategy is based on the differences between consecutive terms, denoted by ∆, 
previously described in (1.4), which we apply in C(n-1, 4) and C(n, 2):

C(n-1, 4) ∆C(n-1, 4) C(n, 2) ∆C(n, 2)
0 0 1 1
1 1 3 2
5 4 6 3
15 10 10 4
35 20 15 5
70 35 21 6
126 56 28 7
210 84 36 8
330 120 45 9
495 165 55 10
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Since the sequence C(n, k) is the partial sum of C(n, k-1) we have that:

∆C (n, k ) = C (n, k−1) ∆S (n, k ) = S (n, k−1)

The next step is to multiply by the set of natural numbers {1,2,3,4,…,n}:

∆C(n-1, 4)∙n ∆C(n, 2)∙n
0∙1 = 0 1∙1 = 1
1∙2 = 2 2∙2 = 4
4∙3 = 12 3∙3 = 9
10∙4 = 40 4∙4 = 16
20∙5 = 100 5∙5 = 25
35∙6 = 210 6∙6 = 36
56∙7 = 392 7∙7 = 49
84∙8 = 672 8∙8 = 64

120∙9 = 1080 9∙9 = 81
165∙10 = 1650 10∙10 = 100

We observe a clear pattern in column 2 that will end up simplifying in S(n, 3), and in column 1 
we notice a divisibility by 2 that will allow us to sort the sequences to identify a pattern:

∆C(n-1, 4)∙(n/2)
0/2 = 0
2/2 = 1
12/2 = 6
40/2 = 20
100/2 = 50
210/2 = 105
392/2 = 196
672/2 = 336
1080/2 = 540
650/2 = 825

Initially C(n-1, 5) is begin multiplied by 6, although in the process constants can be left out. 
However, it is important to keep track since in this case the constant is multiplied by 2 at the 

end:

6⋅2⋅S (n−1 , 4 ) + S (n, 2)

Therefore, we conclude that the sum of the first n numbers to the fourth power is:

∑
k=1

n

k4 = 12⋅S (n−1, 5 ) + S (n, 3 )
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2.2.2 P = 5

Since we already calculated S(n, 3) in (2.1.4), which is equal to C(n, 2)², we will now focus on 
calculating S(n-1, 5):

∆S(n-1, 5)∙n ∆S(n-1, 5)∙(n/2) ∑
0∙1 = 0 0/2 = 0 0
1∙2 = 2 2/2 = 1 1
6∙3 = 18 18/2 = 9 10
20∙4 = 80 80/2 = 40 50
50∙5 = 250 250/2 = 125 175
105∙6 = 630 630/2 = 315 490
196∙7 = 1372 1372/2 = 686 1176
336∙8 = 2688 2688/2 = 1344 2520
540∙9 = 4860 4860/2 = 2430 4950
825∙10 = 8250 8250/2 = 4125 9075

We note that the nth partial sum is equal to N(n-1, 3), Therefore, we conclude that the sum of 
the first n numbers to the fifth power is:

∑
k = 1

n

k5 = 24⋅N (n−1, 3 ) + C (n, 2)2

2.2.3 P = 6

Since we already calculated C(n, 2)² in (2.2.1), which is equal to 12∙S(n-1, 5) + S(n, 3), we will 
now focus on calculating N(n-1, 3):

∆N(n-1, 3)∙n (3x + y)/2 ∑: x, y
0∙1 = 0 (3∙0² + 0)/2 = 0 0, 0
1∙2 = 2 (3∙1² + 1)/2 = 2 1, 1
9∙3 = 27 (3∙4² + 6)/2 = 27 17, 7

40∙4 = 160 (3∙10² + 20)/2 = 160 117, 27
125∙5 = 625 (3∙20² + 50)/2 = 625 517, 77
315∙6 = 1890 (3∙35² + 105)/2 = 1890 1742, 182
686∙7 = 4802 (3∙56² + 196)/2 = 4802 4878, 378

1344∙8 = 10752 (3∙84² + 336)/2 = 10752 11934, 714
2430∙9 = 21870 (3∙120² + 540)/2 = 21870 26334, 1254
4125∙10 = 41250 (3∙165² + 825)/2 = 41250 53559, 2079

As we take higher and higher values of p, the difficulty of begin able to observe patterns in the 
sequences increases, so we will need more and more sophisticated tools.
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Special Function

Γ (n , p ) = np + np−4 − 2np−2

2p−4⋅9
, 6⩽p⩽10

The derivation of Γ is related to a pattern in the recurrence of the formulas for the exponents(6, 
7, 8, 9, 10), which will be very helpful for us to distinguish the new sequence from the already 
known ones.

Table-Γ(n, p)

Γ(n, 6) Γ(n, 7) Γ(n, 8) Γ(n, 9) Γ(n, 10)
0 0 0 0 0
1 1 1 1 1
16 24 36 54 81
100 200 400 800 1600
400 1000 2500 6250 15625
1225 3675 11025 33075 99225
3136 10976 38416 134456 470596
7056 28224 112896 451584 1806336
14400 64800 291600 1312200 5904900
27225 136125 680625 3403125 17015625

We note the nth term of Γ(n, 6) is equal to the square of the nth tetrahedral number.

Therefore, we conclude that the sum of the first n numbers to the sixth power is:

∑
k=1

n

k6 = 36⋅∑
i=1

n

C (i−1, 3 )2 + 24⋅S (n−1, 5 ) + S (n, 3 )

2.2.4 P = 7

Recall that ∑ is the inverse operation of ∆, so:

Δ∑
k=1

n

Sk = Sn

Since we already calculated S(n-1, 5) and S(n, 3), respectively in (2.2.2) and (2.1.4), which is 
equal to 2∙N(n-1, 3) + C(n, 2)², we will now focus on calculating ∑C(i-1, 3)²:
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C(n-1, 3)²∙n C(n-1, 3)²∙(n/2) ∑
0∙1 = 0 0/2 = 0 0
1∙2 = 2 2/2 = 1 1

16∙3 = 48 48/2 = 24 25
100∙4 = 400 400/2 = 200 225
400∙5 = 2000 2000/2 = 1000 1225
1225∙6 = 7350 7350/2 = 3675 4900
3136∙7 = 21952 21952/2 = 10976 15876
7056∙8 = 56448 56448/2 = 28224 44100

14400∙9 = 129600 129600/2 = 64800 108900
27225∙10 = 272250 272250/2 = 136125 245025

We note that the nth partial sum is equal to C(n-1, 4)². Therefore, we conclude that sum of the 
firs n numbers to the seventh power is:

∑
k=1

n

k7 = 72⋅C (n−1 , 4 )2 + 48⋅N (n−1 , 3 ) + C (n , 2)2

2.2.5 P = 8

Since we already calculated N(n-1, 3) and C(n, 2)², respectively in (2.2.3) and (2.2.1), which is 
equal to (3∙∑C(i-1, 3)² + S(n-1, 5))/2 + 12∙S(n-1, 5) + S(n, 3), we will now focus on calculating 

C(n-1, 4)²:

∆C(n-1, 4)²∙n ∆C(n-1, 4)²∙(n/2) ∑
0∙1 = 0 0/2 = 0 0
1∙2 = 2 2/2 = 1 1

 24∙3 = 72 72/2 = 36 37
200∙4 = 800 800/2 = 400 437

1000∙5 = 5000 5000/2 = 2500 2937
3675∙6 = 22050 22050/2 = 11025 13962
10976∙7 = 76832 76832/2 = 38416 52378
28224∙8 = 225792 225792/2 = 112896 165274
64800∙9 = 583200 583200/2 = 291600 456874

136125∙10 = 1361250 1361250/2 = 680625 1137499

We note that by dividing by 2 we obtain the squares of S(n-1, 4). Therefore, we conclude that 
the sum of the first n number to the eighth power is:

∑
k=1

n

k8 = 144⋅∑
i=1

n

S (i−1, 4 )2 + 72⋅∑
i=1

n

C (i−1, 3 )2 + 36⋅S (n−1, 5 ) + S (n, 3 )
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2.2.6 P = 9

Since we already calculated ∑C(i-1, 3)², S(n-1, 5) and S(n, 3), respectively in (2.2.4), (2.2.2) 
and (2.1.4), which is equal to 2∙C(n-1, 4)² + 2∙N(n-1, 3) + C(n, 2)², we will now focus on 

calculating ∑S(i-1, 4)²:

S(n-1, 4)²∙n S(n-1, 4)²∙(n/2) ∑
0∙1 = 0 0/2 = 0 0
1∙2 = 2 2/2 = 1 1

36∙3 = 108 108/2 = 54 55
400∙4 = 1600 1600/2 = 800 855

2500∙5 = 12500 12500/2 = 6250 7105
11025∙6 = 66150 66150/2 = 33075 40180
38416∙7 = 268912 268912/2 =134456 174636
112896∙8 = 903168 903168/2 = 451584 626220

291600∙9 = 2624400 2624400/2 = 1312200 1938420
680625∙10 = 6806250 6806250/2 = 3403125 5341545

Combined Sequences

Combined sequences are those composed of two or more distinct  sequences where there is 
harmony(the sequence contains the 1), which makes them more difficult to find a pattern. One 
of the strategies we can apply for this type of sequences is to use two sequences with known 
patterns that approach each other from the left and from the right. This is the case for Γ(n. 9), 
where Γ(n, 8) is approximated by the left and Γ(n, 10) is approximated by the right. These help 
us to understand the possible behavior of the sequence.

∑Γ(n, 9) x + 6y
0 0² + 6(0) = 0
1 1² + 6(0) = 1
55 7² + 6(1) = 55
855 27² + 6(21) = 855
7105 77² + 6(196) = 7105
40180 182² + 6(1176) = 40180
174636 378² + 6(5292) = 174636
626220 714² + 6(19404) = 626220
1938420 1254²  + 6(60984) = 1938420
5341545 2079² + 6(169884) = 5341545

The first sequence, which is S(n-1, 5)², can be derived by a simple divisibility criterion. The 
other sequences that satisfy the inequality do not have constant divisibility, which would not 
allow us to know the other sequence.

∑
i=1

n

Γ (i , 8 ) < Sn < ∑
i=1

n

Γ (i , 9)
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Therefore, we conclude that the sum of the first n numbers to the ninth power is:

∑
k=1

n

k9 = 288⋅S (n−1 , 5 )2 + 1728⋅N (n−2 , 5 ) + 144⋅C (n−1 , 4 )2 + 72⋅N (n−1 , 3 ) + C (n , 2)2

2.2.7 P = 10

Since we already calculated C(n-1, 4)², N(n-1, 3), C(n. 2)², respectively in (2.2.5), (2.2.3) and 
(2.2.1), which is equal to 2∙∑S(n-1, 4)² + (3∙∑C(i-1, 3)² + S(n-1, 5))/2 + 12∙S(n-1, 5) + S(n, 3), 

we will now focus on calculating ∑Γ(n, 9):

Γ(n, 9)∙n Γ(n, 9)∙(n/2) ∑
0∙1 = 0 0/2 = 0 0
1∙2 = 2 2/2 = 1 1

54∙3 = 162 162/2 = 81 82
800∙4 = 3200 3200/2 = 1600 1682

6250∙5 = 31250 31250/2 = 15625 17307
33075∙6 = 198450 198450/2 = 99225 116532
134456∙7 = 941192 941192/2 = 470596 587128

451584∙8 = 3612672 3612672/2 = 1806336 2393464
1312200∙9 = 11809800 11809800/2 = 5904900 8298364

3403125∙10 = 34031250 34031250/2 = 17015625 25313989

We note that Γ(n, 9)∙(n/2) = Γ(n, 10) = (N(n-1, 3) – N(n-2, 3))². Therefore, we conclude that the 
sum of the first n numbers to the tenth power is:

∑
k=1

n

k10 = 576⋅∑
i=1

n

(N (i−1 , 3 ) − N (i−2 , 3 ))2 + 288⋅∑
i=1

n

S (i−1, 4 )2 + 108⋅∑
i=1

n

C (i−1, 3 )
2

+ 48⋅S (n−1, 5 ) + S (n, 3 )
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2.2.8 P = 11

Since we already calculated ∑S(i-1, 4)², ∑C(i-1, 3)², S(n-1, 5) and S(n, 3), respectively in 
(2.2.6), (2.2.4), (2.2.2) and (2.1.4), which is equal to 2∙S(n-1, 5)² + 12∙N(n-2, 5) + 2∙C(n-1, 4)² + 

2∙N(n-1, 3) + C(n, 2)², we will now focus on calculating ∑(N(n-1, 3) – N(n-2, 3))²:

(N(n-1, 3) – N(n-2, 3))²∙n ∑ 3x – y
0∙1 = 0 0 3∙0² – 0 = 0
1∙2 = 2 2 3∙1² – 1 = 2

81∙3 = 243 245 3∙10² – 55 = 245
1600∙4 = 6400 6645 3∙50² – 855 = 6645

15625∙5 = 78125 84770 3∙175² – 7105 = 84770
99225∙6 = 595350 680120 3∙490² – 40180 = 680120

470596∙7 = 3294172 3974292 3∙1764² – 174636 = 3974292
1806336∙8 = 14450688 18424980 3∙5292² – 626220 = 18424980
5904900∙9 = 53144100 71569080 3∙13860² – 1938420 = 71569080

17015625∙10 = 170156250 241725330 ...

We can deduce one thing from our initial sequence: since it starts at 2 and there is no clear  
divisibility by 2, it must necessarily contain at least two sequences starting at 1. By trial and 
error,  we  can  derive  the  two  sequences  by  contrasting  with  already  known  sequences  by 
calculating sequences in (2.2.6).

Odd Pattern

The main sequences for odd values of p can be encapsulated in the following pattern:

σ (n , p ) =
S (n , 4 )p

C (n , 3 )
, 2⩽p⩽4

Table-σ(n, p)

σ(n, 2) σ(n, 3) σ(n, 4)
1 1 1
9 54 324
40 800 16000
125 6250 312500
315 33075 3472875
686 134456 26353376
1344 451584 151732224
2430 1312200 708588000
4125 3403125 2807578125
6655 8052550 9743585500
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By means of σ(n, p) we can calculate the differences between terms of the new sequences for 
odd values of p.

We note that the sequences S(n-1, 5)² and 6∙N(n-2, 5) cancel. Therefore, we conclude that the 
sum of the first n numbers to the eleventh power is:

∑
k=1

n

k11 = 1728⋅N (n−1, 3 )2 + 216⋅C (n−1, 4 )2 + 96⋅N (n−1, 3 ) + C (n, 2)2

2.2.9 P = 12

Since we already calculated C(n-1, 4)², N(n-1, 3), C(n. 2)², respectively in (2.2.5), (2.2.3) and 
(2.2.1), which is equal to 2∙∑S(n-1, 4)² + (3∙∑C(i-1, 3)² + S(n-1, 5))/2 + 12∙S(n-1, 5) + S(n, 3), 

we will now focus on calculating N(n-1, 3)²:

∆N(n-1, 3)²∙n x + y ∑: x, y
0∙1 = 0 0³ + 0² 0, 0
1∙2 = 2 1³ + 1² 1, 1

99∙3 = 297 6³ + 9² 217, 82
2400∙4 = 9600 20³ + 40² 8217, 1682

28125∙5 = 140625 50³ + 125² 133217, 17307
209475∙6 = 1256850 105³ + 315² 1290842, 116532
1142876∙7 = 8000132 196³ + 686² 8820378, 587128

4967424∙8 = 39739392 336³ + 1344² 46753434, 2393464
18152100∙9 = 163368900 540³ + 2430² 204217434, 8298364
57853125∙10 = 578531250 825³ + 4125² 765733059, 25313989

Following the same strategy in (2.2.8), we can derive the two sequences from an already known 
sequence. Therefore, we conclude that the sum of first n numbers to the twelfth power is:

∑
k=1

n

k12 = 1728⋅∑
i=1

n

S (i−1 , 4 )3 + 1728⋅∑
i=1

n

(N (i−1 , 3 ) − N (i−2 , 3 ))2 + 432⋅∑
i=1

n

S (i−1 , 4 )2

+ 144⋅∑
i=1

n

C (i−1 , 3 )2 + 60⋅S (n−1, 5 ) + S (n , 3 )
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2.3 OEIS: Online Encyclopedia of Integer Sequences

The OEIS is a database with more than 370,000 documented numerical sequences, useful for 
identifying and studying mathematical and scientific patterns. It allows searching sequences by 
number or keywords, facilitating the identification of recurring patterns and the validation of 
previous discoveries.  It  also helps to discover new relationships between seemingly distinct 
sequences  and  provides  tools  for  detailed  analysis,  including  explicit  formulas  and 
mathematical properties.

A great resource we can resort to when working with combinatorial sequences, where I have 
had the opportunity to contribute with several formulas, some of which are already documented 
in this article: (2.2.2), (2.2.3), (2.2.4), (2.2.6), (2.2.8), which can be consulted respectively in the 
references [3], [4], [5], [6], [7].

Note:  The  formula  presented  in  (2.2.6)  is  not  found  in  reference  [6],  so  the  formula  is  
compacted due to a pattern that unifies three sequences.

144⋅C (n−1 , 4 )2 + 72⋅N (n−1 , 3 ) + C (n , 2)2 = (n4 − (n−1)4 + (n−2)4 − ... 04)2

3 Open Problem: P ≥ 13.

Something that has been emphasized throughout the article is that as the value of p increases,  the 
patterns become more complex and, consequently, more sophisticated tools are required. As a result, 
there  are  no  known formulas  for  p-values  equal  to  or  greater  than  13.  In  addition,  there  is  little  
mathematical literature available on this subject that is easily accessible.

3.1 P = 13

The problem for p = 13 is equivalent to finding a pattern in  ∑σ(n,4), since we have already 
calculated the other sequences.

∑σ(n, 4)
1

325
16325
328825
3801700
30155076
181887300
890475300
3698053425
13441638925
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