A Solution to the “Snellius-Pothenot” Problem via Rotations and Reflections in Geometric Algebra (GA)

July 10, 2024

James Smith
LinkedIn group “Pre-University Geometric Algebra”
https://www.linkedin.com/groups/8278281/

Abstract

Using GA’s capacities for rotating and reflecting vectors, we solve the classic 2-D version of the Snellius-Pothenot surveying problem. The method used here provides two solutions, which can be averaged to better estimate the location of the unknown point \(P \). A link to a GeoGebra worksheet of the solutions is provided so that the reader may test the validity of the method.

The vector \(\mathbf{p} \) is the reflection of \(\mathbf{a} \) with respect to \(\mathbf{w}_a \), where \(\mathbf{w}_a = \mathbf{a} + \mathbf{b} + [(\mathbf{a} - \mathbf{b}) \mathbf{i}] / \tan \alpha \). The vector \(\mathbf{p} \) is also the reflection of \(\mathbf{c} \) with respect to \(\mathbf{w}_c \), where \(\mathbf{w}_c = \mathbf{c} + \mathbf{b} - [(\mathbf{c} - \mathbf{b}) \mathbf{i}] / \tan \beta \). The vector \(s = \mathbf{v} \mathbf{i} / \tan (\alpha + \beta) \).
1 Statement of the Problem

Fig. 1 shows the problem statement.

Figure 1: Problem statement: Express the location of point \(P \) in terms of the locations of points \(A, B, C \) and the angles \(\alpha \) and \(\beta \).

2 Ideas that We Will Use

See also Macdonald [1].

1. For any two vectors \(q \) and \(t \), \(q \land t = [(q\mathbf{i}) \cdot t] \mathbf{i} = -[q \cdot (t\mathbf{i})] \mathbf{i} \).

2. For any two vectors \(q \) and \(t \), \(q \land t = (qt)_2 \).

3. The vectors \(q e^{i\theta} \) and \(q e^{-i\theta} \) are rotations of \(q \) by the same angle \(\theta \), but in opposite directions.

4. The reflection of a vector \(q \) with respect to vector \(t \) can be written as the product \(tqt^{-1} \), which is equal to \([tqt]/\|t\|^2 \) (Fig. 2).
Figure 2: The reflection of a vector q with respect to vector t can be written as the product tqt^{-1}, which is equal to $\frac{|tqt|}{\|t\|^2}$.

3 Formulation in GA Terms

Fig. 3 Shows the formulation. Note the sign convention for the angles α and β.

Figure 3: Formulation in terms of GA. As our origin, we use the midpoint of AC (point O). The vector s is from O to the center of K, and the vector v is from O to point A. Vector p is from S to point P. Regarding the algebraic signs of α and β: Angles are measured in the same direction as the rotation of i. In this diagram, α — the angle of rotation from PB to PA — is in the same sense as i. Therefore, the angle α in this diagram is positive. The angle β is the rotation from PC to PB. This rotation, too, is in the same sense as i. Therefore, the angle β in this diagram is positive.
4 Solution Strategy

We will begin by determining the location of the center of circle K (Fig. 3).

Then, we will right-multiply the vector $a - p$ by $e^{-i\alpha}$ to make it parallel to $b - p$, after which we use the fact that $(b - p) \wedge [(a - p) e^{-i\alpha}] = 0$ to obtain an equation for p. We will obtain a separate equation for p by right-multiplying the vector $c - p$ by $e^{i\beta}$ to make it parallel to $b - p$, then using the fact that $(b - p) \wedge [(c - p) e^{i\beta}] = 0$.

5 Solution

Readers who wish to test the solutions that are derived here can access the associated interactive GeoGebra worksheet (2).

5.1 Determining the Location of the Center of Circle K

The vector s, from the midpoint of AC to the center of K, is

$$s = \frac{vi}{\tan(\alpha + \beta)}.$$ \hfill (5.1)

Figs. 4 and 5 present two cases that show why this relationship holds.

5.2 Finding p from the Rotations of the Vectors $a - p$ and $c - p$.

We will see that each rotation provides a separate solution. These could be averaged to better estimate the location of P.

5.2.1 Finding p from the Rotation of $a - p$.

The vector $(a - p) e^{-i\alpha}$ is parallel to $b - p$. Therefore,

$$(b - p) \wedge [(a - p) e^{-i\alpha}] = 0,$$
$$\langle (b - p) [(a - p) e^{-i\alpha}] \rangle_2 = 0.$$

Expanding the exponential and the geometric product $(b - p) (a - p)$,

$$\langle [b \cdot a + b \wedge a - b \cdot p - b \wedge p \cdot a - p \wedge a + p^2] (\cos \alpha - i \sin \alpha) \rangle_2 = 0.$$

Because the product of any outer product with i is a scalar, the preceding equation simplifies to

$$[b \wedge a - b \wedge p \wedge a] \cos \alpha - (b \cdot a - b \cdot p - p \cdot a + p^2) \sin \alpha = 0.$$
Figure 4: One of the arrangements of points used in deriving an equation for the location of the center of the circle K. Point P is on the arc APC, and B is on the opposite side of chord AC. To find the length of s, we must first find the central angle that subtends v. To do so, we note that the magnitude of the central angle that subtends the same arc as $\angle CPA$ is $2(\alpha + \beta)$. (See Fig. 3 regarding the sign convention for α and β.) Thus, the magnitude of the central angle that subtends AC is $2\pi - 2(\alpha + \beta)$, and the magnitude of the angle that subtends v is $\frac{1}{2}[2\pi - 2(\alpha + \beta)] = \pi - (\alpha + \beta)$. Using the trigonometric identity $\parallel \tan [\pi - (\theta + \phi)] \parallel = \parallel \tan (\theta + \phi) \parallel$, we find that the length of s is $\parallel v \parallel / \parallel \tan (\alpha + \beta) \parallel$. Vector s is perpendicular to v because the bisector of any chord (in this case, AC) is perpendicular to that chord. The sense of rotation from v to s is contrary to the sense of i. For that reason, $s = -\|v\|i / \|\tan (\alpha + \beta)\|$. Because $\alpha + \beta$ is a positive angle between $\pi/2$ and π, $\tan (\alpha + \beta)$ is a negative number. From the foregoing, we can see that the equation $s = \frac{vi}{\tan (\alpha + \beta)}$ captures both the magnitude of s and the sense of vector s’s rotation with respect to v.
Figure 5: Another arrangement of points used in deriving an equation for the location of the center of circle \mathcal{K}. Point P is on the arc APC, and B is on the same side of chord AC as point P. (Compare to Fig. 4.) As in the case of Fig. 4 we must find the magnitude of the angle that subtends \mathbf{v}. From elementary geometry, that magnitude is the same as the magnitude of $\angle APC$. Because the angles α and β are of opposite signs, the magnitude of that angle is $|\alpha + \beta|$. The negative angle (β) is larger than the positive one (α); therefore, $\alpha + \beta$ is negative. In addition, $|\alpha + \beta| < \pi/2$ because the arc that is subtended by $\angle APC$ is smaller than π. Thus, just as in Fig. 4 $\tan(\alpha + \beta)$ is negative, leading once again to $s = \mathbf{v}\lambda / \tan(\alpha + \beta)$.
Now, we divide by $\cos \alpha$, then use the identities $\mathbf{q} \land \mathbf{t} = [(\mathbf{q} \cdot \mathbf{t}) \mathbf{i} \text{ and } = \mathbf{(q \cdot t)}] - [\mathbf{q} \cdot (\mathbf{t} \mathbf{i})]$:

$$[(\mathbf{b} \cdot \mathbf{a}) \mathbf{i} - [(\mathbf{b} \cdot \mathbf{p}) \mathbf{i} - [(\mathbf{p} \cdot \mathbf{a}) \mathbf{i} - (\mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{p} - \mathbf{p} \cdot \mathbf{a} + p^2) \mathbf{i} \tan \alpha = 0$$

$$[\mathbf{a} \cdot (\mathbf{b}) \mathbf{i} - [\mathbf{p} \cdot (\mathbf{b}) \mathbf{i} + [\mathbf{p} \cdot (\mathbf{a}) \mathbf{i} - (\mathbf{a} \cdot \mathbf{b} - \mathbf{p} \cdot \mathbf{a} - \mathbf{p} \cdot \mathbf{b} + p^2) \mathbf{i} \tan \alpha = 0.$$

Multiplying both sides by $-i$, then rearranging,

$$\mathbf{p} \cdot \left[\mathbf{a} + \mathbf{b} + \frac{(\mathbf{a} - \mathbf{b}) \mathbf{i}}{\tan \alpha} \right] = p^2 + \mathbf{a} \cdot \left[\mathbf{b} + \frac{-\mathbf{b} \mathbf{i}}{\tan \alpha} \right].$$

Now, we define $\mathbf{w}_a = \mathbf{a} + \mathbf{b} + \frac{(\mathbf{a} - \mathbf{b}) \mathbf{i}}{\tan \alpha}$, in order to transform the right-hand side:

$$\mathbf{p} \cdot \mathbf{w}_a = p^2 + \mathbf{a} \cdot \left[\mathbf{b} - \frac{2 \mathbf{a} \cdot \mathbf{w}_a - \mathbf{w}_a \mathbf{w}_a}{\|\mathbf{w}_a\|^2} \right] - \frac{\mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{w}_a}{\|\mathbf{w}_a\|^2} = 0.$$

Because \mathbf{a} and \mathbf{p} are radii of the same circle (K), $a^2 = p^2$. Therefore,

$$\mathbf{p} \cdot \mathbf{w}_a = \mathbf{a} \cdot \mathbf{w}_a.$$

Next, we recognize that because $\|\mathbf{a}\| = \|\mathbf{p}\|$, and because $\mathbf{p} \neq \mathbf{a}$, \mathbf{p} must be the reflection of \mathbf{a} with respect to \mathbf{w}_a. That is,

$$\mathbf{p} = [\mathbf{w}_a] \mathbf{a} [\mathbf{w}_a^{-1}]$$

$$= \frac{[\mathbf{w}_a] \mathbf{a} [\mathbf{w}_a]}{\|\mathbf{w}_a\|^2}$$

$$= \frac{\mathbf{w}_a \{2 \mathbf{a} - \mathbf{w}_a \mathbf{a} \} \|\mathbf{w}_a\|^2}{\|\mathbf{w}_a\|^2}$$

$$= 2 \frac{\mathbf{w}_a \cdot \mathbf{a}}{\|\mathbf{w}_a\|^2} \mathbf{w}_a - \mathbf{a}. \tag{5.2}$$

Therefore, the location of P with respect to the midpoint of AC is given by the vector \mathbf{p}^* (Fig. 6):

$$\mathbf{p}^* = \mathbf{s} + \mathbf{p}$$

$$= \frac{\mathbf{v} \mathbf{i}}{\tan (\alpha + \beta)} + 2 \frac{\mathbf{w}_a \cdot \mathbf{a}}{\|\mathbf{w}_a\|^2} \mathbf{w}_a - \mathbf{a}. \tag{5.3}$$

5.2.2 Finding \mathbf{p} from the Rotation of $\mathbf{c} - \mathbf{p}$.

The vector $(\mathbf{c} - \mathbf{p}) e^{i \beta}$ is parallel to $\mathbf{b} - \mathbf{p}$. Therefore,

$$(\mathbf{b} - \mathbf{p}) \land [(\mathbf{c} - \mathbf{p}) e^{i \beta}] = 0,$$

and

$$((\mathbf{b} - \mathbf{p}) [(\mathbf{c} - \mathbf{p}) e^{i \beta}])_2 = 0.$$
Figure 6: Vector \mathbf{p} is the reflection of \mathbf{a} with respect to \mathbf{w}_a, where $\mathbf{w}_a = \mathbf{a} + \mathbf{b} + [\mathbf{a} - \mathbf{b}]i / \tan \alpha$. Vector \mathbf{p} is also the reflection of \mathbf{c} with respect to \mathbf{w}_c, where $\mathbf{w}_c = \mathbf{c} + \mathbf{b} - [(\mathbf{c} - \mathbf{b})i \tan \beta]$. Therefore, the location of P with respect to the midpoint of AC is given by the vector $\mathbf{p}^* = \frac{\mathbf{vi}}{\tan (\alpha + \beta)} + 2 \left(\frac{\mathbf{w}_a \cdot \mathbf{a}}{||\mathbf{w}_a||^2} \right) \mathbf{w}_a - \mathbf{a}$, and also by $\mathbf{p}^* = \frac{\mathbf{vi}}{\tan (\alpha + \beta)} + 2 \left(\frac{\mathbf{w}_c \cdot \mathbf{c}}{||\mathbf{w}_a||^2} \right) \mathbf{w}_c - \mathbf{c}$.

Expanding the exponential and the geometric product $(\mathbf{b} - \mathbf{p})(\mathbf{c} - \mathbf{p})$,

$\langle [\mathbf{b} \cdot \mathbf{c} + \mathbf{b} \wedge \mathbf{c} - \mathbf{b} \cdot \mathbf{p} - \mathbf{p} \cdot \mathbf{c} - \mathbf{p} \wedge \mathbf{c} + \mathbf{p}^2] (\cos \beta + i \sin \beta) \rangle = 0$.

Because the product of any outer product with i is a scalar, the preceding equation simplifies to

$[\mathbf{b} \wedge \mathbf{c} - \mathbf{b} \wedge \mathbf{p} - \mathbf{p} \wedge \mathbf{c}] \cos \alpha + (\mathbf{b} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{p} - \mathbf{p} \cdot \mathbf{c} + \mathbf{p}^2) i \sin \beta = 0$.

Dividing by $\cos \beta$, then using the identities $\mathbf{q} \wedge \mathbf{t} = [(\mathbf{q}i) \cdot \mathbf{t}] i$ and $[(\mathbf{q}i) \cdot \mathbf{t}] - [\mathbf{q} \cdot (\mathbf{t}i)]$,

$[\mathbf{c} \cdot (\mathbf{b}i)] i - [\mathbf{p} \cdot (\mathbf{b}i)] i + [\mathbf{p} \cdot (\mathbf{c}i)] i + (\mathbf{c} \cdot \mathbf{b} - \mathbf{p} \cdot \mathbf{b} - \mathbf{p} \cdot \mathbf{c} + \mathbf{p}^2) i \tan \beta = 0$.

Multiplying both sides by $-i$, then rearranging,

$\mathbf{p} \cdot \left[\frac{\mathbf{c} + \mathbf{b} - (\mathbf{c} - \mathbf{b})i}{\tan \beta} \right] = \mathbf{p}^2 + \mathbf{c} \cdot \left[\mathbf{b} + \frac{\mathbf{bi}}{\tan \beta} \right]$.

8
Continuing as we did when finding p from the rotation of $a - p$,

$$p \cdot w_c = p^2 + c \cdot \left[c + b - \frac{(c - b) \mathbf{i}}{\tan \beta} \right] \left[w_c - \frac{c \cdot c}{c^2} \right] \left[c \cdot c \right] \tan \beta,$$

and

$$p \cdot w_c = c \cdot w_c,$$

leading to

$$p = [w_c] c \left[w_c^{-1} \right]$$

$$= 2 \left[\frac{w_c \cdot c}{||w_c||^2} \right] w_c - c. \quad (5.4)$$

Therefore, the derivation that starts from the rotation of $c - p$ finds that the location of P with respect to the midpoint of AC is given by the same vector p^* that we found when starting from the rotation of $a - p$. However, the vector p is now expressed in terms of c (Fig. 6):

$$p^* = s + p$$

$$= \frac{vi}{\tan (\alpha + \beta)} + 2 \left[\frac{w_c \cdot c}{||w_c||^2} \right] w_c - c. \quad (5.5)$$

References
