A Solution to the "Snellius-Pothenot" Problem via Rotations and Reflections in Geometric Algebra (GA)

July 10, 2024

James Smith
LinkedIn group "Pre-University Geometric Algebra" https://www.linkedin.com/groups/8278281/

Abstract

Using GA's capacities for rotating and reflecting vectors, we solve the classic 2-D version of the Snellious-Pothenot surveying problem. The method used here provides two solutions, which can be averaged to better estimate the location of the unknown point P. A link to a GeoGebra worksheet of the solutions is provided so that the reader may test the validity of the method.

The vector \mathbf{p} is the reflection of \mathbf{a} with respect to \mathbf{w}_{a}, where $\mathbf{w}_{a}=\mathbf{a}+\mathbf{b}+$ $[(\mathbf{a}-\mathbf{b}) \mathbf{i}] / \tan \alpha$. The vector \mathbf{p} is also the reflection of \mathbf{c} with respect to \mathbf{w}_{c}, where $\mathbf{w}_{c}=\mathbf{c}+\mathbf{b}-[(\mathbf{c}-\mathbf{b}) \mathbf{i}] / \tan \beta$. The vector $\mathbf{s}=\mathbf{v i} / \tan (\alpha+\beta)$.

1 Statement of the Problem

Fig. 1 Shows the problem statement.

Figure 1: Problem statement: Express the location of point P in terms of the locations of points A, B, C and the angles α y β.

2 Ideas that We Will Use

See also Macdonald 1].

1. For any two vectors \mathbf{q} and $\mathbf{t}, \mathbf{q} \wedge \mathbf{t}=[(\mathbf{q} \mathbf{i}) \cdot \mathbf{t}] \mathbf{i}=-[\mathbf{q} \cdot(\mathbf{t i})] \mathbf{i}$.
2. For any two vectors \mathbf{q} and $\mathbf{t}, \mathbf{q} \wedge \mathbf{t}=\langle\mathbf{q} \mathbf{t}\rangle_{2}$.
3. The vectors $\mathbf{q} e^{\mathbf{i} \theta}$ and $\mathbf{q} e^{-\mathbf{i} \theta}$ are rotations of \mathbf{q} by the same angle θ, but in opposite directions.

4. The reflection of a vector \mathbf{q} with respect to vector \mathbf{t} can be written as the product $\mathbf{t q} \mathbf{t}^{-1}$, which is equal to $[\mathbf{t q t}] /\|\mathbf{t}\|^{2}$ (Fig. 22).

Figure 2: The reflection of a vector \mathbf{q} with respect to vector \mathbf{t} can be written as the product $\mathbf{t q t}^{-1}$, which is equal to $[\mathbf{t q t}] /\|\mathbf{t}\|^{2}$.

3 Formulation in GA Terms

Fig. 3 Shows the formulation. Note the sign convention for the angles α and β.

Figure 3: Formulation in terms of GA. As our origin, we use the midpoint of $\overline{A C}$ (point O). The vector \mathbf{s} is from O to the center of \mathcal{K}, and the vector \mathbf{v} is from O to point A. Vector \mathbf{p} is from S to point P. Regarding the algebraic signs of α and β : Angles are measured in the same direction as the rotation of \mathbf{i}. In this diagram, α-the angle of rotation from $\overline{P B}$ to $\overline{P A}$-is in the same sense as \mathbf{i}. Therefore, the angle α in this diagram is positive. The angle β is the rotation from $\overline{P C}$ to $\overline{P B}$. This rotation, too, is in the same sense as \mathbf{i}. Therefore, the angle β in this diagram is positive.

4 Solution Strategy

We will begin by determining the location of the center of circle \mathcal{K} (Fig. 3).
Then, we will right-multiply the vector $\mathbf{a}-\mathbf{p}$ by $e^{-\mathbf{i} \alpha}$ to make it parallel to $\mathbf{b}-\mathbf{p}$, after which we use the fact that $(\mathbf{b}-\mathbf{p}) \wedge\left[(\mathbf{a}-\mathbf{p}) e^{-\mathbf{i} \alpha}\right]=0$ to obtain an equation for \mathbf{p}. We will obtain a separate equation for \mathbf{p} by right-multiplying the vector $\mathbf{c}-\mathbf{p}$ by $e^{\mathbf{i} \beta}$ to make it parallel to $\mathbf{b}-\mathbf{p}$, then using the fact that $(\mathbf{b}-\mathbf{p}) \wedge\left[(\mathbf{c}-\mathbf{p}) e^{\mathbf{i} \beta}\right]=0$.

5 Solution

Readers who wish to test the solutions that are derived here can access the associated interactive GeoGebra worksheet ([2]).

5.1 Determining the Location of the Center of Circle \mathcal{K}

The vector \mathbf{s}, from the midpoint of $\overline{A C}$ to the center of \mathcal{K}, is

$$
\begin{equation*}
\mathbf{s}=\frac{\mathbf{v i}}{\tan (\alpha+\beta)} \tag{5.1}
\end{equation*}
$$

Figs. 4 and 5 present two cases that show why this relationship holds.

5.2 Finding p from the Rotations of the Vectors $\mathbf{a}-\mathrm{p}$ and c - p .

We will see that each rotation provides a separate solution. These could be averaged to better estimate the location of P.

5.2.1 Finding p from the Rotation of $\mathbf{a}-\mathrm{p}$.

The vector $(\mathbf{a}-\mathbf{p}) e^{-\mathbf{i} \alpha}$ is parallel to $\mathbf{b}-\mathbf{p}$. Therefore,

$$
\begin{aligned}
(\mathbf{b}-\mathbf{p}) \wedge\left[(\mathbf{a}-\mathbf{p}) e^{-\mathbf{i} \alpha}\right] & =0, \text { and } \\
\left\langle(\mathbf{b}-\mathbf{p})\left[(\mathbf{a}-\mathbf{p}) e^{-\mathbf{i} \alpha}\right]\right\rangle_{2} & =0
\end{aligned}
$$

Expanding the exponential and the geometric product $(\mathbf{b}-\mathbf{p})(\mathbf{a}-\mathbf{p})$,

$$
\left\langle\left[\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \wedge \mathbf{a}-\mathbf{b} \cdot \mathbf{p}-\mathbf{b} \wedge \mathbf{p}-\mathbf{p} \cdot \mathbf{a}-\mathbf{p} \wedge \mathbf{a}+p^{2}\right](\cos \alpha-\mathbf{i} \sin \alpha)\right\rangle_{2}=0
$$

Because the product of any outer product with \mathbf{i} is a scalar, the preceding equation simplifies to

$$
[\mathbf{b} \wedge \mathbf{a}-\mathbf{b} \wedge \mathbf{p}-\mathbf{p} \wedge \mathbf{a}] \cos \alpha-\left(\mathbf{b} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{p}-\mathbf{p} \cdot \mathbf{a}+p^{2}\right) \mathbf{i} \sin \alpha=0
$$

Figure 4: One of the arrangements of points used in deriving an equation for the location of the center of the circle \mathcal{K}. Point P is on the arc $A P C$, and B is on the opposite side of chord $\overline{A C}$. To find the length of \mathbf{s}, we must first find the central angle that subtends \mathbf{v}. To do so, we note that the magnitude of the central angle that subtends the same arc as $\angle C P A$ is $2(\alpha+\beta)$. (See Fig. 3 regarding the sign convention for α and β.) Thus, the magnitude of the central angle that subtends $\overline{A C}$ is $2 \pi-2(\alpha+\beta)$, and the magnitude of the angle that subtends \mathbf{v} is $\frac{1}{2}[2 \pi-2(\alpha+\beta)]=\pi-(\alpha+\beta)$. Using the trigonometric identity $\|\tan [\pi-(\theta+\phi)]\|=\|\tan (\theta+\phi)\|$, we find that the length of \mathbf{s} is $\|\mathbf{v}\| /\|\tan (\alpha+\beta)\|$. Vector \mathbf{s} is perpendicular to \mathbf{v} because the bisector of any chord (in this case, $\overline{A C}$) is perpendicular to that chord. The sense of rotation from \mathbf{v} to \mathbf{s} is contrary to the sense of \mathbf{i}. For that reason, $\mathbf{s}=-\|\mathbf{v}\| \mathbf{i} /\|\tan (\alpha+\beta)\|$. Because $\alpha+\beta$ is a positive angle between $\pi / 2$ and $\pi, \tan (\alpha+\beta)$ is a negative number. From the foregoing, we can see that the equation $\mathbf{s}=\mathbf{v i} / \tan (\alpha+\beta)$ captures both the magnitude of \mathbf{s} and the sense of vector \mathbf{s} 's rotation with respect to \mathbf{v}.

Figure 5: Another arrangement of points used in deriving an equation for the location of the center of circle \mathcal{K}. Point P is on the arc $A P C$, and B is on the same side of chord $\overline{A C}$ as point P. (Compare to Fig. 4.) As in the case of Fig. 4. we must find the magnitude of the angle that subtends \mathbf{v}. From elementary geometry, that magnitude is the same as the magnitude of $\angle A P C$. Because the angles α and β are of opposite signs, the magnitude of that angle is $\|\alpha+\beta\|$. The negative angle (β) is larger than the positive one (α); therefore, $\alpha+\beta$ is negative. In addition, $\|\alpha+\beta\|<\pi / 2$ because the arc that is subtended by $\angle A P C$ is smaller than π. Thus, just as in Fig. $4 \tan (\alpha+\beta)$ is negative, leading once again to $\mathbf{s}=\mathbf{v i} / \tan (\alpha+\beta)$.

Now, we divide by $\cos \alpha$, then use the identities $\mathbf{q} \wedge \mathbf{t}=[(\mathbf{q} \mathbf{i}) \cdot \mathbf{t}] \mathbf{i}$ and $=$ $[(\mathbf{q} \mathbf{i}) \cdot \mathbf{t}]-[\mathbf{q} \cdot(\mathbf{t i})]$:

$$
\begin{aligned}
& {[(\mathbf{b i}) \cdot \mathbf{a}] \mathbf{i}-[(\mathbf{b i}) \cdot \mathbf{p}] \mathbf{i}-[(\mathbf{p i}) \cdot \mathbf{a}] \mathbf{i}-\left(\mathbf{b} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{p}-\mathbf{p} \cdot \mathbf{a}+p^{2}\right) \mathbf{i} \tan \alpha=0} \\
& {[\mathbf{a} \cdot(\mathbf{b i})] \mathbf{i}-[\mathbf{p} \cdot(\mathbf{b i})] \mathbf{i}+[\mathbf{p} \cdot(\mathbf{a i})] \mathbf{i}-\left(\mathbf{a} \cdot \mathbf{b}-\mathbf{p} \cdot \mathbf{a}-\mathbf{p} \cdot \mathbf{b}+p^{2}\right) \mathbf{i} \tan \alpha=0}
\end{aligned}
$$

Multiplying both sides by -i, then rearranging,

$$
\mathbf{p} \cdot\left[\mathbf{a}+\mathbf{b}+\frac{(\mathbf{a}-\mathbf{b}) \mathbf{i}}{\tan \alpha}\right]=p^{2}+\mathbf{a} \cdot\left[\mathbf{b}-\frac{\mathbf{b i}}{\tan \alpha}\right]
$$

Now, we define $\mathbf{w}_{a}=\mathbf{a}+\mathbf{b}+\frac{(\mathbf{a}-\mathbf{b}) \mathbf{i}}{\tan \alpha}$, in order to transform the right-hand side:

$$
\mathbf{p} \cdot \mathbf{w}_{a}=p^{2}+\mathbf{a} \cdot \underbrace{\left[\mathbf{a}+\mathbf{b}+\frac{(\mathbf{a}-\mathbf{b}) \mathbf{i}}{\tan \alpha}\right]}_{\mathbf{w}_{a}}-\underbrace{\mathbf{a} \cdot \mathbf{a}}_{a^{2}}-\underbrace{\mathbf{a} \cdot \frac{\mathbf{a i}}{\tan \alpha}}_{=0}
$$

Because \mathbf{a} and \mathbf{p} are radii of the same circle $(\mathcal{K}), a^{2}=p^{2}$. Therefore,

$$
\mathbf{p} \cdot \mathbf{w}_{a}=\mathbf{a} \cdot \mathbf{w}_{a}
$$

Next, we recognize that because $\|\mathbf{a}\|=\|\mathbf{p}\|$, and because $\mathbf{p} \neq \mathbf{a}, \mathbf{p}$ must be the reflection of \mathbf{a} with respect to \mathbf{w}_{a}. That is,

$$
\begin{align*}
\mathbf{p} & =\left[\mathbf{w}_{a}\right] \mathbf{a}\left[\mathbf{w}_{a}^{-1}\right] \\
& =\frac{\left[\mathbf{w}_{a}\right] \mathbf{a}\left[\mathbf{w}_{a}\right]}{\left\|\mathbf{w}_{a}\right\|^{2}} \\
& =\frac{\mathbf{w}_{a}\left\{2 \mathbf{a} \cdot\left[\mathbf{w}_{a}\right]-\left[\mathbf{w}_{a}\right] \mathbf{a}\right\}}{\left\|\mathbf{w}_{a}\right\|^{2}} \\
& =2\left[\frac{\mathbf{w}_{a} \cdot \mathbf{a}}{\left\|\mathbf{w}_{a}\right\|^{2}}\right] \mathbf{w}_{a}-\mathbf{a} . \tag{5.2}
\end{align*}
$$

Therefore, the location of P with respect to the midpoint of $\overline{A C}$ is given by the vector \mathbf{p}^{*} (Fig. 6):

$$
\begin{align*}
\mathbf{p}^{*} & =\mathbf{s}+\mathbf{p} \\
& =\frac{\mathbf{v i}}{\tan (\alpha+\beta)}+2\left[\frac{\mathbf{w}_{a} \cdot \mathbf{a}}{\left\|\mathbf{w}_{a}\right\|^{2}}\right] \mathbf{w}_{a}-\mathbf{a} . \tag{5.3}
\end{align*}
$$

5.2.2 Finding p from the Rotation of $c-p$.

The vector $(\mathbf{c}-\mathbf{p}) e^{\mathbf{i} \beta}$ is parallel to $\mathbf{b}-\mathbf{p}$. Therefore,

$$
\begin{aligned}
(\mathbf{b}-\mathbf{p}) \wedge\left[(\mathbf{c}-\mathbf{p}) e^{\mathbf{i} \beta}\right] & =0, \text { and } \\
\left\langle(\mathbf{b}-\mathbf{p})\left[(\mathbf{c}-\mathbf{p}) e^{\mathbf{i} \beta}\right]\right\rangle_{2} & =0
\end{aligned}
$$

We don't treat the possibility that $\mathbf{p}=\mathbf{a}$ because for a surveyor in the field, point P would not be "unknown" if it were the same point as A !

An identity: For any two vectors \mathbf{q} and $\mathbf{t}, \mathbf{q} \mathbf{t}=2 \mathbf{q} \cdot \mathbf{t}-\mathbf{t q}$.

Figure 6: Vector \mathbf{p} is the reflection of \mathbf{a} with respect to \mathbf{w}_{a}, where $\mathbf{w}_{a}=\mathbf{a}+\mathbf{b}+$ $[(\mathbf{a}-\mathbf{b}) \mathbf{i}] / \tan \alpha$. Vector \mathbf{p} is also the reflection of \mathbf{c} with respect to \mathbf{w}_{c}, where $\mathbf{w}_{c}=\mathbf{c}+\mathbf{b}-[(\mathbf{c}-\mathbf{b}) \mathbf{i}] \tan \beta$. Therefore, the location of P with respect to the midpoint of $\overline{A C}$ is given by the vector $\mathbf{p}^{*}=\frac{\mathbf{v i}}{\tan (\alpha+\beta)}+2\left[\frac{\mathbf{w}_{a} \cdot \mathbf{a}}{\left\|\mathbf{w}_{a}\right\|^{2}}\right] \mathbf{w}_{a}-\mathbf{a}$, and also by $\mathbf{p}^{*}=\frac{\mathbf{v i}}{\tan (\alpha+\beta)}+2\left[\frac{\mathbf{w}_{c} \cdot \mathbf{c}}{\left\|\mathbf{w}_{a}\right\|^{2}}\right] \mathbf{w}_{c}-\mathbf{c}$.

Expanding the the exponential and the geometric product $(\mathbf{b}-\mathbf{p})(\mathbf{c}-\mathbf{p})$,

$$
\left\langle\left[\mathbf{b} \cdot \mathbf{c}+\mathbf{b} \wedge \mathbf{c}-\mathbf{b} \cdot \mathbf{p}-\mathbf{b} \wedge \mathbf{p}-\mathbf{p} \cdot \mathbf{c}-\mathbf{p} \wedge \mathbf{c}+p^{2}\right](\cos \beta+\mathbf{i} \sin \beta)\right\rangle_{2}=0
$$

Because the product of any outer product with i is a scalar, the preceding equation simplifies to

$$
[\mathbf{b} \wedge \mathbf{c}-\mathbf{b} \wedge \mathbf{p}-\mathbf{p} \wedge \mathbf{c}] \cos \alpha+\left(\mathbf{b} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{p}-\mathbf{p} \cdot \mathbf{c}+p^{2}\right) \mathbf{i} \sin \beta=0
$$

Dividing by $\cos \beta$, then using the identities $\mathbf{q} \wedge \mathbf{t}=[(\mathbf{q} \mathbf{i}) \cdot \mathbf{t}] \mathbf{i}$ and $=[(\mathbf{q} \mathbf{i}) \cdot \mathbf{t}]-$ [q $\cdot(\mathbf{t i})$,

$$
[\mathbf{c} \cdot(\mathbf{b} \mathbf{i})] \mathbf{i}-[\mathbf{p} \cdot(\mathbf{b i})] \mathbf{i}+[\mathbf{p} \cdot(\mathbf{c i})] \mathbf{i}+\left(\mathbf{c} \cdot \mathbf{b}-\mathbf{p} \cdot \mathbf{b}-\mathbf{p} \cdot \mathbf{c}+p^{2}\right) \mathbf{i} \tan \beta=0
$$

Multiplying both sides by -i, then rearranging,

$$
\mathbf{p} \cdot \underbrace{\left[\mathbf{c}+\mathbf{b}-\frac{(\mathbf{c}-\mathbf{b}) \mathbf{i}}{\tan \beta}\right]}_{\mathbf{w}_{c}}=p^{2}+\mathbf{c} \cdot\left[\mathbf{b}+\frac{\mathbf{b i}}{\tan \beta}\right]
$$

Continuing as we did when finding \mathbf{p} from the rotation of $\mathbf{a}-\mathbf{p}$,

$$
\mathbf{p} \cdot \mathbf{w}_{c}=p^{2}+\mathbf{c} \cdot \underbrace{\left[\mathbf{c}+\mathbf{b}-\frac{(\mathbf{c}-\mathbf{b}) \mathbf{i}}{\tan \beta}\right]}_{\mathbf{w}_{c}}-\underbrace{\mathbf{c} \cdot \mathbf{c}}_{c^{2}}+\underbrace{\mathbf{c} \cdot\left[\frac{\mathbf{c i}}{\tan \beta}\right]}_{=0} \text {, and }
$$

$$
\mathbf{p} \cdot \mathbf{w}_{c}=\mathbf{c} \cdot \mathbf{w}_{c}
$$

leading to

$$
\begin{align*}
\mathbf{p} & =\left[\mathbf{w}_{c}\right] \mathbf{c}\left[\mathbf{w}_{c}^{-1}\right] \\
& =2\left[\frac{\mathbf{w}_{c} \cdot \mathbf{c}}{\left\|\mathbf{w}_{c}\right\|^{2}}\right] \mathbf{w}_{c}-\mathbf{c} \tag{5.4}
\end{align*}
$$

Therefore, the derivation that starts from the rotation of $\mathbf{c}-\mathbf{p}$ finds that the location of P with respect to the midpoint of $\overline{A C}$ is given by the same vector \mathbf{p}^{*} that we found when starting from the rotation of $\mathbf{a}-\mathbf{p}$. However, the vector \mathbf{p} is now expressed in terms of \mathbf{c} (Fig. 6):

$$
\begin{align*}
\mathbf{p}^{*} & =\mathbf{s}+\mathbf{p} \\
& =\frac{\mathbf{v i}}{\tan (\alpha+\beta)}+2\left[\frac{\mathbf{w}_{c} \cdot \mathbf{c}}{\left\|\mathbf{w}_{a}\right\|^{2}}\right] \mathbf{w}_{c}-\mathbf{c} \tag{5.5}
\end{align*}
$$

References

[1] A. Macdonald, Linear and Geometric Algebra (First Edition), CreateSpace Independent Publishing Platform (Lexington, 2012).
[2] J. A. Smith, "Snellious-Pothenot Solution via Geometric Algebra" www. geogebra.org/m/tmpxpx4z, 2024.

