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Abstract

Large Language Models (LLMs) have shown
exceptional generative abilities in various nat-
ural language and generation tasks. Large lan-
guage models (LLMs) have demonstrated re-
markable performance on a variety of natural
language tasks based on just a few examples
of natural language instructions, reducing the
need for extensive feature engineering. How-
ever, LLM is relatively weaker in reasoning and
problem-solving abilities. We propose a new
construction that solves the problem of insuffi-
cient logical mathematics and logical ability.

1 Introduction

With the remarkable progress made by large lan-
guage models such as GPT-4, ChatGPT, Google
Gemini, Llama-2 (Touvron et al., 2023), and Mis-
tral (Jiang et al., 2023) in NLP research, machines
are now capable of performing a wide range of
language tasks that were previously believed to be
exclusive to humans (OpenAI, 2023; Brown et al.,
2020; Zhao et al., 2023). Performs well on lan-
guage tasks such as Hellaswag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2021), PIQA (Bisk
et al., 2020) and ARC-Easy , but demonstrates
weakness in logical reasoning . However, Log-
ical reasoning is a critical component of intel-
ligence and is essential for many practical ap-
plications, including question-answering systems
(Khashabi, 2019) and conversational agents (Beygi
et al., 2022).

AGI needs to possess many capabilities that
would naturally be included in a notion of human
intelligence. Examples of these capabilities are gen-
eralizability, adaptability, robustness, explainabil-
ity, causal analysis, abstraction, common sense rea-
soning, ethical reasoning (Rossi and Mattei, 2019),
as well as a complex and seamless integration of
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learning and reasoning supported by both implicit
and explicit knowledge (Littman et al., 2021). We
have explored the mechanisms that enable humans
to possess these capabilities, which helps us under-
stand how to imbue AI systems with these compe-
tencies. (Rossi and Loreggia, 2019; Booch et al.,
2021).

We have delved deeply into D. Kahneman’s the-
ory of thinking fast and slow (Kahneman, 2011),
and we propose a new simple AGI architecture
(named the Dingfei model, for Artificial General
Intelligence) where divide AGI into Intuitive Brain,
Logical Brain, and Bottom Brain. The Intuitive
Brain reacts through intuition, and the modified
LLM can serve as the Intuitive Brain. The Logical
Brain is implemented through structured code.It
is responsible for logical reasoning. The Bottom
Brain is manually designed by humans. AGI can
update its own logical and intuitive brains through
autonomous learning, while it cannot modify its
Bottom Brain.

The interaction and collaboration of the three
brains can significantly enhance reasoning capa-
bilities. Furthermore, We introduced the concept
of skills and scratch paper, which achieves 100%
accuracy in reasoning .

2 Related Work

Several datasets have been proposed such as (Clark
et al., 2020; Tian et al., 2021; Joshi et al., 2020;
Saeed et al., 2021), LogiQA (Liu et al., 2021) , Re-
Clor (Yu et al., 2020) , FOLIO (Han et al., 2022)
and ProntoQA (Saparov and He, 2023) that demon-
strate the relatively weak ability of these LLMs to
reason logically over natural language text.

Large language models also perform poorly in
mathematics and code such as GSM8K (Cobbe
et al., 2021) with maj@8 , MATH (Hendrycks et al.,
2021) with maj@4 , Humaneval (Chen et al., 2021)
and MBPP (Austin et al., 2021) .



3 Task Definition

Our mission is to ensure 100% accuracy.The input
text is initially processed by the intuitive brain,
which predicts the next token. When a complex
logical problem is encountered, a special token is
generated, transferring the processing to the logical
brain.

We define a given AGI fAGI that comprises
three specified models fib ,flb,fbb and a set of input-
output pairs (x, y). we can define this process as:

fAGI(xi) =

{
flb(fib(xi)) if fib(xi) ∈ N(yi)

fib(xi) if fib(xi) ∈ other
(1)

where fib(xi) ∈ N(yi) represents fib(xi) con-
tains special tokens and is passed to the logic brain
for processing. fib represents the Intuitive Brain.
flb represents the Logical Brain.fbb represents the
Bottom Brain.

4 Proposed method

In this section, , we will present the detailed speci-
fications of the AGI we have implemented:

4.1 The Intuitive Brain

The Intuitive Brain is primarily driven by intu-
ition over careful consideration, providing quick
responses to straightforward questions. Intuition is
often generated after reading a sufficient amount of
data. They are tightly linked to the availability of
huge datasets and computational power (Marcus,
2020). However, these answers can occasionally be
incorrect due to unconscious biases or their reliance
on heuristics and other shortcuts (Gigerenzer and
Brighton, 2009), and typically lack explanations.

Furthermore, Intuition often fabricates false facts
(i.e. hallucination). But logical reasoning requires
precise answers, and this is when the rational brain
needs to be used.

When it comes to reasoning, we utilize the In-
tuitive Brain as a tool for organizing information,
transforming text into structured data, which is then
passed on to the Logical Brain for logical inference.

4.2 The Logical brain

The Logical Brain is implemented using structures
beyond large language models, making it proficient
in reasoning.

4.2.1 Training data
Textbooks and a large number of related exer-
cises from kindergarten, elementary school, middle
school, Senior high school, and University.

4.2.2 Training
How to train the rational brain? For example, math-
ematics. Let the LLM read textbooks, and then
summarize skills for each knowledge point . Then
Use the skills learned to answer practice questions.
If they are incorrect, correct and improve the skill.
A skill is a set of knowledge, rules, and operational
flowcharts. Then the skill is converted into exe-
cutable code and stored in the rational brain, ready
to be used when needed. Connect relevant skills
with each other.

4.3 Scratch paper

Psychological research reveals a fascinating in-
sight: even children and adults can have their
problem-solving prowess significantly dampened
by irrelevant information (Hoyer et al., 1979; Pa-
solunghi et al., 1999; Marzocchi et al., 2002) . Sim-
ilarly,We conducted a large number of experiments
that demonstrated the performance of large lan-
guage models can be affected by irrelevant context,
leading to incorrect results. To solve this problem,
we proposed the concept of draft paper, ensuring a
success rate of 100% when dealing with complex
issues. I will show the details later.

4.4 The bottom brain

In the bottom brain, human beings can set the be-
havioral norms for AI.The bottom brain runs di-
rectly on the hardware and provides support for
both the rational brain and the emotional brain. I
will introduce more details about the rational brain
and the bottom brain in the future.

5 Experiments

5.1 Prediction

For example, a math problem.

chatgpt:
chatgpt at Figure 1.Everything was correct until
it came to multiplication at the end . Although
ChatGPT was trained with a large amount of math-
ematical computation data to improve the accuracy
of mathematical computations, it obviously can-
not write out the correct answer to a three-digit
multiplication problem based on intuition alone.



Figure 1: chatgpt

Mistral:
Mistral at the top of Figure 2. Similarly, Mistral
has undergone significant optimization in its mathe-
matical capabilities, yet it still exhibits errors when
performing multiplication involving numbers ex-
ceeding three digits.

The Dingfei model:
The Dingfei model at the bottom of Figure 2. We
used cross-computation between the rational and
emotional brains to avoid giving an answer directly
through intuition alone, thereby ensuring the preci-
sion of the results . Here are the details:

At line 1 , the rational brain was tasked with
thinking, using the skill "formula for the volume of
a rectangular prism," to arrive at line 1.

At line 2 , the rational brain was tasked with
thinking, using the skill "Associative Property of
Multiplication", to arrive at line 3.

At line 3 , uses the scratch paper to calculate 936
× 332 and obtains the result in line 4.

At line 4 , the rational brain was tasked with
thinking, using the skill "Multiplication of large
numbers", to arrive at line 5.

At line 5 , uses the scratch paper to calculate each
multiplication separately and obtains the result in
line 6.

At line 6 , the rational brain was tasked with
thinking, using the skill "Adding Multiple Num-
bers", to arrive at line 7.

6 Conclusion

We combine multiple techniques to break down
complex logical problems into a series of simpler
ones. By recursively calling the Logical Brain, we

Figure 2: Top: mistral, Bottom: Dingfei model

ensure that each step of the logical reasoning pro-
cess is error-free from the ground up.The Dingfei
model can achieve 100% accuracy in complex prob-
lems.

7 Limitations

In this work, due to insufficient computational
power , we have only trained part of the mathe-
matics textbooks, and the accuracy rate of doing
exercises can reach 100%. In the future, we will
continue to train mathematics and other discipline .
We expect the accuracy rate to remain at 100%.
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