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Some missed opportunities for Archimedes
and early pi-computors
Warren D. Smith, warren.wds@gmail.com, July 2024.

ABSTRACT. We point out some simple improvements to Archimedes' "regular polygon methods"
for computing and bounding π, which all the workers before 1650 could have used, but did not. All
methods employed before the 1970s to compute the first D decimals of π required order D or more
arithmetic operations (±, ×, ÷, x1/2, x-1/2). But we shall show that if Archimedes or his followers had
been a bit smarter, they could have sped that up to O(D2/3).

Early history of π-computing methods
To begin, let me briefly summarize computations of
π≈3.1415926535897932384626433832795028841971693993751...

All important workers from Archimedes (ca. 287-212 BC) up to Ludolph van Ceulen (1540-1610)
and apparently Christoph Grienberger (1561-1636) used some variant of the "regular polygon
method." That is, for each n=3,4,5,... the area of the regular n-gons with circumradius=1 and
inradius=1 provide lower and upper bounds on π. As n→∞ these bounds become arbitrarily tight
because both n-gons approach the unit circle arbitrarily closely. These areas are, respectively,
n·sin(π/n)cos(π/n)=(n/2)sin(2π/n)=π-2π3/(3n2)+O(n-4) and n·tan(π/n)=π+π3/(3n2)+O(n-4). We'll
discuss how to compute these areas next section. Using this idea, Archimedes showed
3.14084≈223/71<π<22/7≈3.14286. Liu Hui (ca.225-295) showed 3.141024<π<3.142704 using a
96-gon and the fact that 96=6×24. Zu Chongzhi (429-500) used Liu Hui's technique to show
3.14159261864<π<3.141592706934 using a 12288-gon and the fact that 12288=6×211, and also
estimated π≈355/113. Van Ceulen and his student Willebrord Snell (1580-1626) computed π to 35
decimal places, while Grienberger gave 3.14159 26535 89793 23846 26433 83279 50288
4196<π< 3.14159 26535 89793 23846 26433 83279 50288 4199 (38 correct decimals) in his 1630
book Elementa Trigonometrica. This already seems precise enough for every physical purpose.

After 1630, Archimedes' polygon method was supplanted by methods arising from Newton &
Leibniz's calculus. E.g. John Machin calculated 100 digits in 1706 by combining his identity
π=4arctan(1/5)-arctan(1/239) with Gregory's series arctan(x)=x-x3/3+x5/5-x7/7-x9/9-... Methods of
Machin's ilk continued to hold the #decimals record until the 1980s when fancier series by
Ramanujan, and various fancy algorithms, including "bianry splitting" hypergoemetric series
summation methods, and Brent & Salamin's AGM-based π-algorithm, took over. I shall not discuss
them, but they are asymptotically superior to, albeit more complicated to understand than, the
methods we shall discuss.

How Archimedes and his followers computed their areas

http://web.archive.org/web/20140201234124/http://librarsi.comune.palermo.it/gesuiti2/06.04.01.pdf
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Archimedes' simple idea was to use angle-doubling formulas for trig functions and hence angle-
halving formulas. For the tan(x) function we have

tan(2x) = 2tan(x) / (1-tan(x)2)

from which we deduce

tan(x) = tan(2x) / (1 + [tan(2x)2+1]1/2).

This allows us to start from the known values tan(π/4)=1 or tan(π/6)=3-1/2 and repeatedly halve the
angle to compute tan(2-nπ) for n=2,3,4,5,... or tan(2-nπ/3) for n=1,2,3,4,... using only division,
addition, squaring, and square-rooting operations. In this way, the upper bounds 2mtan(2-mπ) and
2m3tan(2-mπ/3) on π arising from a regular 2m-gon and 2m3-gon may be computed after [4+o(1)]m
such operations and should be accurate to additive errors at most 3.5×4-m and 1.3×4-m

respectively.

For the sin(x) function we have

sin(2x) = 2 sin(x) (1-sin(x)2)1/2

from which we deduce

sin(x) = sin(2x) (2 + 2[1-sin(2x)2]1/2)-1/2.

This allows us to start from the known values sin(π/4)=2-1/2 or sin(π/6)=1/2 and repeatedly halve
the angle to compute sin(2-nπ) for n=2,3,4,5,... or sin(2-nπ/3) for n=1,2,3,4,... using only division,
addition, subtraction, squaring, and square-rooting operations. In this way, the lower bounds 2m-

1sin(21-mπ) and 2m-13sin(21-mπ/3) on π arising from a regular 2m-gon and 2m3-gon may be
computed after [7+o(1)]m such operations and should be accurate to additive errors at most 4.6×4-

m and 0.6×4-m respectively.

Tighter upper bound still accessible to Archimedes
Archimedes knew that the area under a parabolic arc equals (2/3) times the base times the height.
For example, the area of the region 0<y<1-x2 equals (2/3)×2×1=4/3. Archimedes should also have
been able to realize that if we replaced each side of the regular n-gon with inradius=1 by a
parabolic arc osculatory to the circle at its midpoint, then we still get something strictly containing
the circle, but smaller than the original n-gon, and hence whose area provides a tighter upper
bound on π. Specifically,

π < n·[tan(π/n) - (2tan(π/n) / ([2tan(π/n)2+1]1/2 + 1)])3/3] = π - 3π5/(10 n4) + O(n-6).

http://en.wikipedia.org/wiki/Quadrature_of_the_Parabola
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Tighter lower bound still accessible to Archimedes
Archimedes should have been able to realize that if we replaced the side of a regular n-gon
inscribed in the unit circle, by a parabolic arc with the same endpoints, and tangent to the circle at
its midpoint, then we still get something strictly contained inside the circle, but larger than the
original n-gon, and hence whose area provides a tighter lower bound on π. Specifically,

π > n·[sin(2π/n)/2 + (4/3) sin(π/n) [1-cos(π/n)]] = n·[4sin(π/n)/3 - sin(2π/n)/6] = π - π5/(30 n4) +
O(n-6).

You still can use angle-halving to compute these when n is a power of 2 (or three times a power of
2). These tighter lower and upper bounds evidently would have enabled attaining roughly twice as
many decimals of accuracy in the same number of arithmetic operations.

Much better approximations with same-order arithmetic-op
count

We can extrapolate the π-approximations Am arising from 2m-gon areas (or Bm arising from 2m3-
gon areas) to m=∞ using Wynn's epsilon-algorithm. This simple modern extrapolation algorithm
unfortunately was not known to the ancients.

Without extrapolation, Am and Bm are each accurate to order m decimal places and computable via
order m arithmetic operations. While our "parabola improvements" improve the constant factors,
they do not alter the fundamental nature of that situation.

But if we Wynn-extrapolate the 1+√m values Am, Am+1, ..., Am+√m (or Bm, Bm+1, ..., Bm+√m) to m=∞,

then we should null out the first √m nonzero terms in the error series in ascending powers of 2-m,
thus obtaining approximations to π accurate to order m3/2 decimal places, while still only using
O(m) arithmetic operations!

This "extrapolated Archimedes" method is an unboundedly huge improvement in computational
efficiency, superior in terms of arithmetic-op-count to any method used by pi-computors until the
advent of the quadratically-convergent Brent-Salamin algorithm in the 1970s. Extrapolated
Archimedes should take O(D2/3) arithmetic operations, each O(DlogD) compute-time using "fast
arithmetic," to compute the first D decimals of π in O(D4/3logD) bit-operations.

By contrast: Machin takes order D operations, each order D time, for O(D2) total single-precision
ops (albeit somewhat more if D gets so huge it cannot fit in one machine word anymore). The
iteration x←x+sin(x), which converges quadratically to x=π, takes order logD evaluations of the
Maclaurin series for sin(x)=x-x3/3!+x5/5!-x7/7!+... out to, ultimately, order D/logD terms, although
early iterations can use fewer series terms. The net arithmetic-op count then is O(D/logD). Brent-
Salamin with fast arithmetic takes O(logD) arithmetic ops, which can be done via O((logD)2D) bit-

http://dlmf.nist.gov/3.9#E11
http://en.wikipedia.org/wiki/Gauss%C3%A2%E2%82%AC%E2%80%9CLegendre_algorithm
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ops.

References
Jonathan & Peter Borwein: Pi and the AGM, A study in computational and analytic number theory,
Wiley-Interscience 1987.

Richard P. Brent: Fast multiple-precision evaluation of elementary functions, Journal of the Assoc.
for Computing Machinery 23 (1976) 242-251.

C.Brezinski & M.Redivo Zaglia: Extrapolation Methods. Theory and Practice, North-Holland
Publishing Co., Amsterdam 1991 (Studies in Computational Mathematics #2).

Eugene Salamin: Computation of pi Using Arithmetic-Geometric Mean, Math. Comput. 30,135
(1976) 565-570.

Jet Wimp: Sequence transformations and their applications, Academic Press 1981 (Mathematics in
science and engineering #154).

Alexander J. Yee: Y-cruncher – A Multi-Threaded Pi-Program, http://www.numberworld.org/y-
cruncher/


