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Plane waves of spin angular momentum density in an ideal elastic solid are analyzed using vector
and bispinor descriptions. In both classical and quantum physics, spin density is the axial vector field
whose curl is equal to twice the incompressible intrinsic momentum density. The second-order vector
wave equation assumes that temporal changes of spin density in an ideal elastic solid are attributable
to convection, rotation, and torque density. The corresponding first-order wave equation for Dirac
bispinors incorporates terms describing wave propagation, convection, rotations of the medium and
rotations of wave velocity relative to the medium. The two rotation terms are also operators for
rotational kinetic energy and conventional potential energy, respectively. The potential energy
corresponds to half the mass term of the free electron Dirac equation. Bispinor plane wave solutions
are constructed consistent with the usual dynamical operators of relativistic quantum mechanics.
Lagrangian and Hamiltonian densities are also constructed with each term having a clear classical
physics interpretation. The intrinsic momentum associated with the Belinfante-Rosenfeld stress
tensor is explained. Application to elementary particles is discussed, including classical physics
analogues of the Pauli exclusion principle, interaction potentials, fermions, bosons, and antimatter.
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1. INTRODUCTION

Recent experimental and theoretical work has demonstrated that many phenomena previously thought to be in the
exclusive realm of quantum mechanics can actually be realized via classical physics. Most notably, quantum statistics
such as single-particle diffraction and interference, wave-like probability distributions, tunneling, quantized orbits,
and orbital level splitting have been experimentally demonstrated using silicone oil droplets bouncing on a vibrating
tank of fluid. [1–7] These experiments are classical realizations of pilot-wave theory, or Bohmian mechanics, which
was an early attempt to reconcile the deterministic nature of quantum mechanical equations with the probabilistic
nature of measurements. [8–11]

The discovery of a classical interpretation of spin angular momentum evolving according to a Dirac-type equation
further lessens the distinction between classical and quantum physics. [12–14] The Dirac formalism has been used in a
variety of contexts to describe classical wave dynamics. [15–22] Despite the probabilistic nature of measurements, the
quantum mechanical Dirac equation is fundamentally a deterministic equation describing the evolution of physical
quantities such as spin density, momentum density, and energy density. These quantities are independent of any
interpretation of the wave function as representing a ”particle”.

While it is clear that the Dirac equation has application to classical physics, it is unclear to what extent classical
physics can describe elementary particles and their interactions. To make progress in this area requires a thorough
understanding of the equations describing spin angular momentum. Given that angular momentum is naturally
interpreted as rotational motion of a substance with inertia, a thorough analysis of the Dirac equation with this
interpretation of spin angular momentum is long overdue.

A fundamental principle of analysis is that one should strive to understand simple systems before attempting to
analyze more complex systems. Rather than attempting to derive results via mathematical proofs or fit mathematical
parameters to experimental data, we instead use simple examples of plane waves to demonstrate how terms in the
Dirac equation relate to a specific physical model.

We start by modeling an ideal elastic solid, and assume a simple vector wave equation for the evolution of spin
density. We then factor the vector wave equation to obtain a first-order Dirac equation for bispinor fields, and
construct plane wave solutions. Calculations of physical quantities utilize operators that are compared with those of
relativistic quantum mechanics. We construct an appropriate Lagrangian and Hamiltonian, including operators for
potential and kinetic energy. Finally, we discuss possibilities for applying these results to the study of elementary
particles and their interactions.

2. AN EQUATION FOR SPIN DENSITY

2.1. Ideal elastic solid

We consider the case of an isotropic, homogeneous solid with a linear relationship between infinitesimal stress and
strain. The usual expression for potential energy is (e.g. Ref. 23):∫

U d3r =

∫ (
1

2
λ(∇ · ξ)2 + µeijeij

)
d3r (1)

where ξ(r, t) represents displacement, eij = (∂iξj + ∂jξi)/2 is the symmetric strain tensor, and λ and µ are the Lamé
parameters. This expression has the drawback that it does not cleanly separate compressible and rotational motion.
We can remedy this as follows:

Expanding the square of the symmetrical strain tensor yields:

eijeij =
[
(∂xξx)2 + (∂yξy)2 + (∂zξz)

2
]

+
1

2

[
(∂xξy + ∂yξx)2 + (∂yξz + ∂zξy)2 + (∂zξx + ∂xξz)

2
]
. (2)

Add 2(∂xξx∂yξy + ∂yξy∂zξz + ∂zξz∂xξx) to the first term in square brackets and subtract it from the second term to
obtain:

eijeij = (∇ · ξ)2

+
1

2

[
(∂xξy + ∂yξx)2 + (∂yξz + ∂zξy)2 + (∂zξx + ∂xξz)

2
]

− 2(∂xξx∂yξy + ∂yξy∂zξz + ∂zξz∂xξx) . (3)
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Since this term occurs as an integrand for the potential energy, we can integrate the extra terms by parts on each of
the two derivatives (neglecting contributions from total derivatives, which are assumed to integrate to zero) to obtain:

eijeij → (∇ · ξ)2

+
1

2

(
(∂xξy + ∂yξx)2 + (∂yξz + ∂zξy)2 + (∂zξx + ∂xξz)

2
)

−2(∂xξy∂yξx + ∂yξz∂zξy + ∂zξx∂xξz). (4)

This is equivalent to:

eijeij → (∇ · ξ)2 +
1

2
(∇× ξ)2 . (5)

The potential energy density may therefore be expressed as:

U =
1

2
(λ+ 2µ)(∇ · ξ)2 +

1

2
µ(∇× ξ)2. (6)

This form of the potential energy density separates infinitesimal irrotational and incompressible motion. It is a
quadratic function of the first derivatives of displacement. The Lagrangian for infinitesimal incompressible motion is
the difference between kinetic and potential energies:

L =

∫ (
1

2
ρ(∂tξ)2 − 1

2
µ(∇× ξ)2

)
d3r. (7)

The Euler-Lagrange equation is the usual equation for infinitesimal shear waves:

∂2t ξ = −µ
ρ
∇×∇× ξ (8)

for which the wave speed is c =
√
µ/ρ. The incompressible potential energy in equation (7) was used by MacCullagh

in 1837 to derive equation (8) as a description of light waves. [24]
The wave momentum is:

Pi = − ∂L

∂tξj
∂iξj = −ρ∂tξj∂iξj . (9)

We are interested in incompressible plane wave solutions. Multiplying by the wave velocity component vi = cei (where
ei is the direction cosine), and applying the continuity equation ∂tξj = −vk∂kξj yields:

viPi = ρ(cei∂iξj)(cek∂kξj) = µ(∂wξj)(∂wξj) (10)

where ∂w is the spatial derivative in the direction of wave propagation. Since shear waves propagate perpendicular
to ξ, this is equivalent to:

viPi = µ(∇× ξ)2 (11)

which is twice the potential energy density. This result will later be compared with its Dirac equivalent.

2.2. Spin angular momentum

It is well known that elastic waves in solids have two types of momentum: that of the medium (ρ∂tξ) and that of
the wave: ρ(∇ξj)∂tξj (see e.g. Ref. 25). Clearly there must also be two types of angular momentum in an elastic
solid: ”spin” associated with rotation of the medium, and ”orbital” associated with rotation of the wave. However,
spin angular momentum has not been considered to be a classical physics concept until recently. A brief review is
presented here.

Considering only incompressible motion, the Helmholtz decomposition of momentum density p yields the curl of a
vector field, e.g. p = 1

2∇×s. The vector field s has been shown to represent angular momentum density corresponding
to spin in relativistic quantum mechanics. [12–14] Hence we refer to s as ”spin density”.
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This relationship between spin and intrinsic momentum densities is quite general. Belinfante and Rosenfeld showed
that it must be true quantum mechanically. [26, 27] More recently, Bliokh et. al. showed that this relationship holds
for water gravity waves. [28]

Assuming sufficiently rapid fall-off at large distances, the volume integral of spin density is equal to the volume
integral of the first moment of momentum r× p. The two representations of angular momentum density are related
by integration by parts: [14] ∫

r× 1

2
(∇× s)d3r =

1

2

∫
(∇(r · s)− r · ∇s− s · ∇r) d3r

=
1

2

∫
(∇(r · s)− ∂i(ris) + s(∇ · r)− s · ∇r) d3r

=

∫
s d3r . (12)

The total derivatives do not contribute to the last line because they can be converted into surface integrals that are
assumed to vanish.

Unlike the ”moment of momentum” definition of angular momentum, spin density is an intrinsic property defined
at each point in space. Coordinate-independent descriptions of rotational dynamics can actually be traced back to
the nineteenth century.[29] In 1891 Oliver Heaviside recognized MacCullagh’s force density in equation (8) as being
the curl of a torque density that is proportional to an infinitesimal rotation angle. [30] However, this idea seems to
have been largely forgotten.

The rotational kinetic energy is: [13]

KR =
1

2ρ

∫
p̃2d3r =

1

2ρ

∫ [
1

2
∇× s

]2
d3r

=
1

8ρ

∫
[s · [∇× (∇× s)] +∇ · (s× (∇× s))] d3r

=
1

2

∫
w · s d3r, (13)

where w = ∇×u/2 is the instantaneous angular velocity (sometimes confusingly referred to as ”spin” in the literature).
In this case the divergence term does not to contribute to the volume integral because it can be converted into a
surface integral at infinity (and assumed to vanish).

For a Lagrangian density dependent on motion only through kinetic energy, the spin density (s) is the momentum
conjugate to angular velocity:

δ

δwi

∫
1

2
wjsj d

3r =
1

2

∫
(
δwj
δwi

sj + wj
δsj
δwi

) d3r =
1

2
si +

1

2
si = si , (14)

where integration by parts was used twice to evaluate the second term in the integral.
Spin density can be used to describe rigid rotations as well. See Ref. 14 for an example.
A popular introductory text on quantum mechanics states that ”these phenomena involve a quantum degree of

freedom called spin, which has no classical counterpart”. [31] This common claim that spin angular momentum has
no classical physics analogue is incorrect. Spin angular momentum is simply the coordinate-independent form of
classical angular momentum.

2.3. Equation of evolution

Assuming incompressible motion with velocity u = (1/(2ρ))∇× s = ∂tξ, equation (8) becomes:

1

2
∂t(∇× s) + µ∇× (∇× ξ) = 0. (15)

Assuming ∇ · s = 0, the Helmholtz decomposition yields:

∂ts + 2µ∇× ξ = 0. (16)

This equation states that the rate of change of spin density is equal to torque density, which is proportional to rotation
angle (1/2)∇× ξ for infinitesimal displacements.
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The next step is to relate the displacement ξ to the spin density s. Define a vector potential Q such that ∂tQ = s.
Since the curl of s is proportional to velocity, the curl of Q must be proportional to displacement:

1

2ρ
∇×Q = ξ . (17)

Therefore the linear equation for s is equivalent to:

∂2tQ + c2∇×∇×Q = 0 , (18)

where c2 = µ/ρ. The curl of this equation yields equation (8). The torque density is τ = −c2∇×∇×Q.
Thus far we have assumed infinitesimal motion. We could instead start from the nonlinear equation for momentum

density:

∂tp + u · ∇p = f , (19)

where f is the force density. This equation implies that changes to momentum density can only result from translation
or force. It is the consequence of translational symmetry of the physical system. Newton’s third law implies that the
force may be regarded as an equal and opposite change of momentum of its source. In an elastic solid, this means
that the change in canonical momentum is equal and opposite to the change in dynamical momentum. One drawback
of equation (19) is that it combines both incompressible and irrotational contributions to momentum density.

In addition to translational symmetry, the physical system also has rotational symmetry, implying conservation of
angular momentum. This constraint is expressed by the equation:

∂ts + u · ∇s−w × s = −c2∇×∇×Q. (20)

The logic of this equation is that changes of spin density can only result from translation, rotation, or torque. Since
total angular momentum is conserved, torque density is equivalent to minus the rate of change of orbital angular
momentum density.

Since spin density is a fundamental physical quantity, it is reasonable to assume that it satisfies a single equation
of evolution everywhere in space and time. Eq. 20 is a sensible candidate for such an “equation of everything.”

Eq. 20 can be put in Lorentz-covariant form using the four-position xα = (ct, x, y, z) and metric gµν = gµν =
diag(1,−1,−1,−1). We assume that Qα = (0, Qx, Qy, Qz) and ∇ ·Q = 0 in the “rest” or “lab” frame of reference.
Define the Lorentz four-velocity as Uα = (c, 0, 0, 0) in the “rest” frame. The four-displacement is ξα = εαβχδ∂βQχUδ.

This can be combined with the four-vector Qα to form an antisymmetric tensor Q̃µν = (1/c)(UµQν −QµUν). Then

the four-spin density is sα = ∂µQ̃
µα, the four-momentum density is pα = ρuα = (1/2)εαβχδ∂βsχUδ, and the four-

angular velocity is wα = (1/4ρ)εαβχδ∂βpχUδ. The rotation rate matrix is wαµ = εαβχδgβµUχwδ. The Lorentz-covariant
equation is then:

c2∂µ∂µQ
α + uµ∂µs

α − wαµsµ = 0 (21)

The velocity of the medium uα should not be confused with the Lorentz four-velocity (Uα), which only depends on
the relative motion of reference frames, or with wave velocity vα = (c, vx, vy, vz), which quantifies wave propagation
rather than motion of the medium.

The Lorentz transformations relate measurements in different reference frames, and are applicable whenever mea-
surements are made exclusively with waves having a single characteristic speed. [32] Since absolute motion cannot be
measured in this way, each inertial observer naturally treats their own reference frame as the“rest” frame. Although
the waves propagate in Galilean space-time, the measurements made with these waves form a Minkowski space.
Lorentz transformations are applicable to light and matter because both are described by Lorentz-covariant wave
equations with the same characteristic speed (c), even though matter waves have group velocities with magnitudes
less than c. MacCullagh [24] and Maxwell [33] similarly assumed a Galilean physical space-time in deriving relativistic
equations for light and electromagnetism, respectively.

Although equation (20) may be sensible, an alternative would be:

∂ts +
1

2
∇× (s× u) = −c2∇×∇×Q. (22)

This equation differs from equation (20) only by factors proportional to ∇ · u, ∇ · s, and ∇(u · s). Incompressibility
requires ∇ · u = 0. We can choose to make ∇ · s = 0 everywhere since only the curl of spin density has physical
significance. The equation of evolution (22) then guarantees that ∇ · s does not change over time.

For simple plane waves, there is no difference between equations (20) and (22). The rest of this paper only deals
with equation (20).
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2.4. Dirac equation

To understand the Dirac equation, consider equation (18), which is a second-order differential equation for the
vector field Q(r, t). There are often benefits in converting a second-order equation to a set of first-order equations.
We will do this by following Refs. [12] and [14], starting with one-dimensional waves and then generalizing to three
dimensions.

2.4.1. One-dimensional waves

Consider a one-component wave propagating in one-dimension with amplitude of Q(z, t). If the wave equation is

∂2tQ− c2∂2zQ = 0 , (23)

the derivative operators can be factored to yield:

(∂t + c∂z)(∂t − c∂z)Q = 0 . (24)

The general solution consists of backward (B) and forward (F ) propagating waves:

Q = QB(ct+ z) +QF (ct− z) . (25)

The two directions of wave propagation are clearly independent states, and they are separated in space by a 180◦

rotation. This property is the fundamental characteristic of spin one-half states. Generalization to three dimensional
space therefore involves spinor or bispinor wave functions.

The forward and backward waves satisfy the equations:

∂tQB = ∂zQB ,

∂tQF = −∂zQF . (26)

Defining Q̇ = ∂tQ, we can write the wave equation as a first-order matrix equation:

∂t

[
Q̇B
Q̇F

]
− c∂z

(
1 0
0 −1

)[
Q̇B
Q̇F

]
= 0 . (27)

The matrix simply transforms temporal derivatives to spatial derivatives as in equation (26). Applying this transfor-

mation and summing the equations for Q̇B and Q̇F then recovers the original wave equation.
We have thus achieved the goal of converting a one-dimensional second-order wave equation into a first-order matrix

equation. Although generalization to three dimensional vector waves involves some mathematical complexity, it does
not involve any fundamentally new concepts. A clue can be found in the fact that the matrix for spatial derivatives
is the Pauli matrix σz.

First, note that the procedure above specifies independent components with positive and negative wave velocity, and
uses a diagonal matrix to relate spatial and temporal derivatives. We can apply a similar technique to separate positive
and negative values of the wave time derivatives. Letting QB and QF represent the z-components of vectors, separate
each component of the wave into positive and negative contributions (Q̇B = Q̇B+ − Q̇B− and Q̇F = Q̇F+ − Q̇F−)

so that each of the four wave components (Q̇B+, Q̇B−, Q̇F+, Q̇F−) is positive-definite. With these definitions, we can

use a matrix expression for Q̇:

Q̇ = ∂tQ =
1

2


Q̇

1/2
B+

Q̇
1/2
F−

Q̇
1/2
F+

Q̇
1/2
B−


T  1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 −1



Q̇

1/2
B+

Q̇
1/2
F−

Q̇
1/2
F+

Q̇
1/2
B−

 =
1

2
ψTσzψ (28)

where σz is the 4 × 4 Dirac matrix for the z-component of spin density, and the four-component column vector is
called a (one-dimensional) Dirac bispinor. In one dimension, the significance of simultaneous positive and negative
components is unclear. We will see that in three dimensions, simultaneous positive and negative components for one
direction can (but doesn’t necessarily) describe polarization in a different direction.
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The spatial derivative is now given by:

c∂zQ =
1

2


Q̇

1/2
B+

Q̇
1/2
F−

Q̇
1/2
F+

Q̇
1/2
B−


T  1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1



Q̇

1/2
B+

Q̇
1/2
F−

Q̇
1/2
F+

Q̇
1/2
B−

 =
1

2
ψTβ3ψ . (29)

The matrix −β3 is the Dirac matrix for chirality (equal to the matrix γ5 in the standard chiral representation). If
the amplitude (Q) represents rotation angle, then positive and negative chirality (−∂za) are analogous to right- and
left-handed threads on a screw (denoted by R and L, respectively). The chirality projection operators are:

1

2
(I + β3)ψ ≡ ψL

1

2
(I − β3)ψ ≡ ψR (30)

2.4.2. Wave velocity and Lorentz boosts

Wave velocity (v) is obtained by combining the two matrices used above:

vψ = c

 −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Q̇

1/2
B+

Q̇
1/2
F−

Q̇
1/2
F+

Q̇
1/2
B−

 = −cβ3σzψ . (31)

We can define a “weighted wave velocity” from the difference between forward and backward amplitudes divided
by the sum of forward and backward amplitudes:

v = c
|Q̇F+|+ |Q̇F−| − |Q̇B+| − |Q̇B−|
|Q̇F+|+ |Q̇F−|+ |Q̇B+|+ |Q̇B−|

= −ψ
†cβ3σzψ

ψ†ψ
(32)

The magnitude |Q̇| and rapidity α can be suitable chosen to satisfy:

|Q̇F+|+ |Q̇F−| = |Q̇| exp(α)

|Q̇B+|+ |Q̇B−| = |Q̇| exp(−α), (33)

so that the weighted wave velocity becomes:

v = c
|Q̇| exp(α)− |Q̇| exp(−α)

|Q̇| exp(α) + |Q̇| exp(−α)
= c tanh(α) . (34)

A Lorentz boost ψ′ = exp (−β3σzα1)ψ changes the weighted wave velocity (v → v′) by altering the relative strength
of forward and backward waves:

v′ = c
(exp(−β3σzα1/2)ψ)†(−β3σz)(exp(−β3σzα1/2)ψ)

(exp(−β3σzα1/2)ψ)†(exp(−β3σzα1/2)ψ)

= c
|Q̇| exp(α+ α1)− |Q̇| exp(−α− α1)

|Q̇| exp(α+ α1) + |Q̇| exp(−α− α1)
= c tanh(α+ α1) . (35)

Thus, the concept of rapidity emerges naturally from the separation of forward and backward waves propagating
in Galilean space-time.
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2.4.3. Three-dimensional vector waves

Combining equations (28) and (29), the one-dimensional linear wave equation may be written in the form:

∂t[ψ
Tσzψ]− c∂z[ψTβ3ψ] = 2(∂2tQ− c2∂2zQ) = 0 . (36)

Expanding the derivatives yields:

ψTσz∂tψ − ψT cβ3∂zψ + adjoint = 0 . (37)

Factoring ψTσz then yields:

ψTσz(∂tψ − cβ3∂zσzψ) + adjoint = 0 . (38)

This one-dimensional Dirac equation is itself useful for teaching purposes. [34, 35] However, its equivalence with the
one-dimensional second-order wave equation has not been widely recognized. Next we will show how to generalize the
first-order equation to three spatial dimensions.

Generalization to three dimensions is based on geometric algebra. This algebra derives from the fact that there
are two independent ways to construct a product of 3-vectors: scalar product and cross product. These two products
measure the degree to which two vectors are parallel (scalar product) or perpendicular (cross product). The cross
product additionally defines the plane of the two vectors, and is therefore sometimes called the “directed area product”.
These two products can be combined into a single product by making the cross product imaginary: [36]

ab = a · b + i(a× b) . (39)

The unit imaginary defines an oriented volume:

x̂ŷẑ = (ix̂× ŷ) · ẑ = i , (40)

ẑŷx̂ = (iẑ× ŷ) · x̂ = −i .

Generalization of the Dirac equation to three dimensions consists of finding spin and velocity matrices with the
same algebra as unit vectors:

x̂ix̂j = δij + iεijkx̂k (41)

The Pauli spin matrices σP = (σPx , σ
P
y , σ

P
z ) have this property. Arbitrary vector components ai can be computed

from a 2-component complex wave function η as follows:

ax = η†σPx η = η†
(

0 1
1 0

)
η ,

ay = η†σPy η = η†
(

0 −i
i 0

)
η ,

az = η†σPz η = η†
(

1 0
0 −1

)
η . (42)

The Pauli matrices may in general represent axial or polar vectors, but they are most commonly associated with
spin density, which is an axial vector. The fourth independent matrix in this algebra is the identity matrix (I). At
each point, the direction of the vector η†σP η can be rotated by an arbitrary angle ϕ about an axis êϕ using operations
of the form (with ϕ = ϕêϕ):

Rϕ(η†σP η) = η† exp (iσP ·ϕ/2)σP exp (−iσP ·ϕ/2) η. (43)

For example, exp (−iσPz π/4)σPx exp (iσPz π/4) = σPy . So to find η′ such that η′†σPy η
′ = η†σPx η, the rotated wave

function must be η′ = exp (−iσPz π/4)η. This transformation rotates the wave polarization direction from x̂ to ŷ.
Rotations of the field (as opposed to a single point) would also require r→ R−1ϕ r. Thus

Rϕ(η(r, t)) = exp (−iσP ·ϕ/2) η(R−1ϕ r, t) . (44)

The Dirac wave functions specify not a single vector, but spatial and temporal derivatives of a vector field. Forward
and backward waves along each axis are combined by replacing the Pauli matrices with the corresponding 4 × 4
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Dirac spin matrices and replacing the two-component spinor η with a 4-component bispinor ψ. In terms of the Pauli
matrices, the Dirac spin matrices σ = (σx, σy, σz) are:

σx =

(
σPx 0
0 σPx

)
, σy =

(
σPy 0
0 σPy

)
, σz =

(
σPz 0
0 σPz

)
, (45)

where 0 is the 2× 2 null matrix.
Just as there are three Pauli matrices indicating different directions of wave polarization, there are also three

orthogonal matrices associated with spatial derivatives (and also related to wave velocity). We will denote these as:

β1 =

(
0 I
I 0

)
, β2 =

(
0 −iI
iI 0

)
, β3 =

(
I 0
0 −I

)
, (46)

where I is the 2× 2 identity matrix. Compared with the chiral notation of relativistic quantum mechanics, β3 = −γ5
and β1 = γ0. Equation (31) implies that the matrix −β3σ tabulates wave velocity. Since β1β2 = iβ3, rotations in
β-space are performed similarly to rotations in σ-space. Although the β matrices are clearly associated with spatial
derivatives, they are not explicitly associated with the directional unit vectors that define the spin direction.

The one-dimensional wave equation (36) has the bispinor form:{
ψTσz∂tψ − cψTβ3∂zψ

}
+ Transpose = 0 . (47)

We can separate a common factor of ψTσz:

ψTσz
{
∂tψ − cβ3σz∂zψ

}
+ Transpose = 0 . (48)

For arbitrary vector components and derivatives, the matrices and spatial derivatives are generalized to arbitrary
directions by allowing for three indices (i = (x, y, z) and j = (x, y, z)), and the bispinor wave functions are allowed to
be complex:

ψ†σi
{
∂tψ − cβ3σj∂jψ

}
+ adjoint = 0 . (49)

This is the first-order wave equation for vector waves in three dimensions. The wave function of a free electron satisfies
the same equation. Start with the Dirac equation for a free electron:

∂tψ − cβ3σj∂jψ + iΩβ1ψ = 0 (50)

with Ω = mec
2/~. Multiplication by ψ†σi and addition of the adjoint yields equation (49).

Expanding the spatial derivative term in equation (49) yields the 3-D generalization of the wave equation (36):

∂t
[
ψ†σψ

]
− c∇

[
ψ†β3ψ

]
+ ic

{[
∇ψ†

]
× β3σψ + ψ†β3σ ×∇ψ

}
= 0 . (51)

The terms correspond, in order, to twice those in the vector wave equation:

∂2tQ− c2∇(∇ ·Q) + c2∇× (∇×Q) = 0 . (52)

Thus equation (51) is the result we have been seeking. We have rewritten the second-order vector wave equation
as a first order equation involving Dirac bispinors. The validity of this correspondence, which we will confirm with
examples, demonstrates that the Dirac equation of relativistic quantum mechanics may be regarded as a first-order
representation of an ordinary second-order vector wave equation.

Furthermore, the evolution of the spin density vector field of a free electron is identical to the linear evolution of
spin density in an elastic solid. This simple fact justifies the study of an elastic solid as a model of the vacuum.

Equation (52) yields the following physical correspondences: [12]

s = ∂tQ ≡
1

2

[
ψ†σψ

]
; (53a)

c∇ ·Q ≡ 1

2

[
ψ†β3ψ

]
; (53b)

c2 {∇ ×∇×Q} ≡ ic

2

{[
∇ψ†

]
× β3σψ + ψ†β3σ ×∇ψ

}
; (53c)

0 =
ic

2
∇ ·
{[
∇ψ†

]
× β3σψ + ψ†β3σ ×∇ψ

}
. (53d)
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These identifications provide seven independent constraints on the eight free parameters of the complex Dirac
bispinor: three for the first, one for the second, two for the third (since a curl has only two independent components),
and one for the fourth. There is also an arbitrary overall phase factor. The last equation simply states that the
divergence of a curl is zero. This condition is necessary for consistency. Velocity and angular velocity are:

u = 1
2ρ∇× s = 1

2ρ∇× ∂tQ = 1
4ρ∇×

[
ψ†σψ

]
; (54a)

w = 1
2∇× u = 1

4ρ∇×∇× ∂tQ = 1
8ρ∇×∇×

[
ψ†σψ

]
. (54b)

The classical and quantum mechanical expressions for spin angular momentum differ by a factor of ~. This is of
course a mere convention. There is no question that the quantum mechanical single-particle Dirac equation describes
the deterministic evolution of spin density.

According to the above analysis, the first-order Dirac equation is a kind of factorization (or square root) of a
second-order vector wave equation. Others have made different factorizations of wave equations using multivariate
4-vectors, quaternions, or octonions. [37–40]

The first-order wave equation (49) can be reduced to:

∂tψ − cβ3σ · ∇ψ + iχψ = 0 , (55)

where χ is any operator with the property

Re
{
ψ†σj iχψ

}
= 0 . (56)

The equation for a free electron is obtained by the choosing χ = Ωβ1 = Ωγ0 with Ω = mec
2/~. This term represents

rotation of wave velocity,[18] and has also been interpreted as describing circular particle motion. [41]
Multiplying equation (55) by ψ† and adding the adjoint yields a conservation law with density ψ†ψ and current

−ψ†cβ3σψ:

∂t(ψ
†ψ)−∇ · (ψ†cβ3σψ) = 0 . (57)

In quantum mechanics this equation is regarded as a conservation law for probability density, but in both classical
and quantum mechanics it is part of the description of the evolution of spin density.

The four-vector for spin density is (−ψ†β3ψ,ψ†σiψ). Since the time component represents a divergence in equation
(53b), its volume integral can be converted to a surface integral at infinity. Assuming that the wave amplitude falls
to zero sufficiently rapidly, this surface integral is zero. Thus, the time component of the total spin of elementary
particles can be taken as zero in the rest frame. The stronger assumption that ∇·Q = 0 everywhere in the rest frame
may also be valid (as assumed earlier when constructing a Lorentz-covariant equation).

3. SPIN DENSITY PLANE WAVES

We present bispinor descriptions of plane wave solutions to the vector wave equation. These represent physical
plane waves with oscillating spin density, unlike quantum mechanical so-called “plane waves” that merely have an
oscillating phase factor. The nonlinear vector terms are zero for plane waves. However, we can use these solutions to
determine appropriate nonlinear terms in the bispinor wave equation.

3.1. Linear plane wave solutions

We start with a description of a longitudinal wave:

ψ′sz,vz =

√
ωQ0

2

 0
−1 + cos (ωt− kz)
1 + cos (ωt− kz)

0

 . (58)

for which the only nonzero spin density component is sz = (1/2)ψ†σzψ = ωQ0 cos (ωt− kz). The wave velocity
operator is −cβ3σz ẑ as in equation (32). The divergence is given by (1/2c)ψ†β3ψ = −kQ0 cos (ωt− kz), where
k = ω/c. This wave function cannot describe spin density because it has zero curl. Also, the Dirac representation is
not unique. This wave function has both positive and negative contributions to the scalar wave amplitude at each
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point, but it does not have discontinuities that would result from strict separation of positive and negative values.
This wave function also has all real-valued Dirac components, and these remain real-valued under velocity rotation
in the x-z plane.

We can rotate wave velocity by using the β matrices, with β1 initially aligned with x̂ and β2 initially aligned with
ŷ. Since, according to equation (29), the matrix β3 is aligned with the z-axis, the β matrices form a right-handed
coordinate system. Thus, spin-independent wave velocity rotation of −π/2 about the x-axis is accomplished by:

ψ′sz,vy = exp (iβ1π/4)ψ′sz,vz (z → y, t) =

√
ωQ0

2

 i(1 + cos (ωt− ky))
−1 + cos (ωt− ky)
1 + cos (ωt− ky)

i(−1 + cos (ωt− ky))

 . (59)

where the argument z → y indicates the effect of rotating the coordinates about the negative x-axis. The spin density
for this wave function is sz = ωQ0 cos (ωt− ky). Interestingly, the quantity −cψ†β3σyψ = −cωQ0 sin (ωt− ky)

2
is

not equal to c|ψ|2 as expected for a velocity operator (it even has the wrong sign). As we will see more clearly below,
this behavior arises from the fact that some of the terms in the wave function have zero gradient. An alternative
wave velocity (or wave flow) calculation, −cψ†β2σzψŷ, does have magnitude of c|ψ|2. This is expected since the −π/2
rotation about β1 moves β3 to β2. The spatial derivative of Qz is given by ∂yQz = (1/2c)ψ†β2ψ = −kQ0 cos (ωt− ky).
This is proportional to the displacement: ξ = (1/2ρ)∂yQzx̂.

Similarly, spin-independent rotation of wave velocity by π/2 about the y-axis is given by:

ψ′sz,vx = exp (−iβ2π/4)ψ′sz,vz (z → x, t) =

√
ωQ0

2

−1− cos (ωt− kx)
−1 + cos (ωt− kx)
1 + cos (ωt− kx)
−1 + cos (ωt− kx)

 , (60)

which yields spin density of sz = ωQ0 cos (ωt− kx). The wave velocity operator −cβ3σxx̂ again does not evaluate to
c|ψ|2, but the alternative wave velocity operator −cβ1σzx̂ does (the rotation about β2 moves β3 to β1). The spatial
derivative of Qz is given by ∂xQz = (1/2c)ψ†β1ψ = −kQ0 cos (ωt− kx). This is proportional to the displacement:
ξ = −(1/2ρ)∂xQzŷ.

Each of the above wave functions satisfies the linear Dirac equation:

∂tψ − cβ3σj∂jψ = 0 . (61)

To obtain a spin density aligned with the x-axis and propagating in the z-direction, we start with the longitudinal
wave ψ′sz,vz , rotate the velocity by −π/2 around the y-axis (from ẑ to −x̂) using β2, then rotate the entire wave
function by π/2 around the y-axis using σy:

ψ′sx,vz = exp (−iσyπ/4) exp (iβ2π/4)ψ′sz,vz (z, t) =

√
ωQ0

2

 1
cos (ωt− kz)
cos (ωt− kz)

1

 . (62)

which yields spin density of sx = ωQ0 cos (ωt− kz). With velocity aligned with the z-axis so that the wave velocity
matrix is diagonal, we now see why the wave velocity operator −cβ3σz does not evaluate to c|ψ|2: the first and fourth
wave function components contribute to −cψ†β3σzψ but not to the wave propagation term −ψ†β3σz∂zψ. Thus,
−cβ3σ is a valid velocity operator when operating on the gradient of the wave function, but not when operating
independent of the gradient operator. The alternative wave velocity operator cβ1σxẑ does evaluate to c|ψ|2ẑ. The σ
matrix associated with the alternative wave velocity operator is the matrix of the spin direction (in this case σx for
spin density polarization along the x-axis).

This wave function (ψ = ψ′sx,vz ) yields the following terms in the second-order wave equation:

s = ∂tQ =
1

2

[
ψ†σψ

]
= (ωQ0 cos (ωt− kz), 0, 0) ; (63a)

c∇ ·Q =
1

2

[
ψ†β3ψ

]
= 0 ; (63b)

(∇×∇×Q) =
i

2c

{[
∇ψ†

]
× β3σψ − ψ†β3σ ×∇ψ

}
= (k2Q0 sin (ωt− kz), 0, 0). (63c)
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Since the wave velocity was rotated about β2, the displacement ξ is now computed from the spatial derivative operator
using the matrix −β1 instead of β3:

ξy = (1/2ρ)∂zQx = −(1/4cρ)ψ†β1ψ = −(kQ0/2ρ) cos (ωt− kz) . (64)

Given the transverse wave function ψ′sx,vz , we can rotate the transverse wave velocity direction using the β1 matrix.
Keeping spin density along the x-axis, wave velocity in the y-direction is obtained by:

ψ′sx,vy (y, t) = exp (iβ1π/4)ψsx,vz (z → y, t) =

√
ωQ0

2

1 + i cos (ωt− ky)
i + cos (ωt− ky)
i + cos (ωt− ky)

1 + i cos (ωt− ky)

 , (65)

for which the spin density is sx = ωQ0 cos (ωt− ky). Thus, the β matrix associated with displacements is also
used for velocity rotations about the spin axis. Positive values of −(1/4cρ)ψ†β1ψ = −(kq0/2ρ) cos (ωt− ky) now
represents displacement along the −z-axis since the rotation z → y moved the β1 direction from ŷ to −ẑ. Thus
ξz = −(1/2ρ)∂yQx = (kq0/2ρ) cos (ωt− ky).

As shown in the sample wave functions above, we can always choose a representation in which β1 is the operator for
the transverse spatial derivative of Q · ŝ, and the same matrix is used for rotations of wave velocity about the spin axis.
Just as rotation about the spin axis preserves spin but rotates the perpendicular axes, rotation about β1 preserves
the value of ψ†β1ψ, while ψ†β2ψ and ψ†β3ψ both remain zero. Rotation of β3 about β1 changes the direction of wave
velocity, as represented by −cβ3σ.

3.2. Nonlinear plane wave solutions

The preceding analysis is incomplete because the wave functions described above do not include any effect of the
motion of the medium. To see what is missing, rewrite equation (20) in terms of the bispinor wave function:

0 = ψ†σi

(
∂tψ − cβ3σj∂jψ + uj∂jψ +

i

2
wjσjψ

)
+ c.c. (66)

where“c.c.” stands for “complex conjugate.” The third term in parentheses is zero, but the last term describes
the effect of rotation of the solid medium on the wave function. If we were to describe the wave function evolution
independent of the multiplier ψ†σj , we would set the expression in parentheses equal to zero. The simple wave function
in equation (62) would not satisfy that equation because it omits the rotation effect. Furthermore, the expression in
parentheses is also incomplete because the wave function does not completely rotate with the medium. Instead, as
the medium rotates, the wave velocity remains constant. In other words, as the medium rotates about the spin axis,
the wave velocity rotates back relative to the medium in order to remain unchanged. For plane waves, this rotation
is about the spin axis and utilizes the matrix β1:

0 = ∂tψ − cβ3σj∂jψ + uj∂jψ +
i

2
w̌1β

1ψ +
i

2
wjσjψ (67)

where w̌1 represents the rotation rate of wave velocity about the spin axis. The relative alignment of wave variables
is shown in figure 1.

Figure 1. Wave variables at their maximal positions for a plane wave propagating toward the right with speed v.
When displacement ξ is downward, the force density f is upward, the angular velocity w of the medium is into the

page, and the wave velocity rotation rate w̌ relative to the medium is opposite to w.
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Equation (67) attributes temporal changes in the wave function to propagation, convection, rotation of wave velocity,
and rotation of the medium. Additional terms may be necessary in some circumstances (e.g. interactions with other
waves), but equation (67) is sufficient for plane waves.

The conservation law of equation (57) is now modified to include convection in addition to wave propagation:

∂t(ψ
†ψ) + u · ∇(ψ†ψ)−∇ · (ψ†cβ3σψ) = 0 . (68)

For plane waves the additional convection term is zero.
Although the two rotation terms in equation (67) cancel for plane waves, we modify the wave function in equation

(62) so that each term is consistent with its interpretation in the vector wave equation:

ψsx,vz =

√
ωQ0

2


1

cos (ωt− kz)− ik
2Q0

4ρ sin (ωt− kz)
cos (ωt− kz)− ik

2Q0

4ρ sin (ωt− kz)
1

 . (69)

This wave function still yields sx = ωQ0 cos (ωt− kz) and satisfies the full nonlinear Dirac equation in equation (67).

3.2.1. Energy operators

Now consider the physical interpretation of the terms in equation (67). The nonlinear terms represent rotations of
wave velocity and of the medium as a whole. But they are also related to energy. Multiplying equation (67) by iψ†/2
and adding the complex conjugate yields, with some rearranging:

Re(ψ†i∂tψ) = Re(cψ†β3σj i∂jψ)− ujRe(ψ†i∂jψ) +
1

2
w̌1ψ

†β1ψ +
1

2
wjψ

†σjψ . (70)

The last term in this equation is wjsj , which is twice the rotational kinetic energy. The next to last term is
proportional to the displacement ξ1 = −(1/4cρ)ψ†β1ψ as in equation (64). Using ∇ · ξ = 0, the corresponding
component of force density is equal to:

f1 = µ∇2ξ1 = − c
4
∇2
[
ψ†β1ψ

]
. (71)

For plane waves, the force density is proportional to displacement, so that as displacement increases from zero, the
average force is half of the final force. Therefore, the conventional potential energy is

U = −
∫

f · d` = −1

2
f · ξ = − 1

32ρ
∇2(ψ†β1ψ) · ψ†β1ψ . (72)

Comparing with equation (70), it appears that w̌1 is proportional to force and the next-to-last term in equation
(70) is proportional to conventional potential energy density. To keep the wave velocity constant, its spin-independent
rotation rate must be the opposite of the medium rotation rate:

w̌1 = −wx = −ωk
2Q0

4ρ
cos (ωt− kz) =

1

8ρ
∇2(ψ†β1ψ) . (73)

This is similar to the expression for angular velocity in equation (54b), with −β1 replacing σ matrices. With this
value of w̌1, the next-to-last term in equation (70) is equal to minus two times the conventional potential energy
density, which cancels the the last term in equation (70) (since the rotational kinetic energy is in quadrature to the
conventional kinetic energy: i.e. sin2 ↔ cos2).

The terms in equation (70) correspond to different energies as follows:

Re(ψ†i∂tψ) = Re(cψ†β3σj i∂jψ)− ujRe(ψ†i∂jψ) +
1

2
w̌1ψ

†β1ψ +
1

2
wjψ

†σjψ , (74a)

E = cv̂ ·P + 0 + f · ξ + w · s , (74b)

where cv̂ · P is shorthand for ψ†vopPopψ with wave velocity operator vop = −cβ3σ and wave momentum operator
Pop = −i∇. The total energy density is E = ω2k2Q2

0/(8ρ), which is also the value of cv̂ ·P.
Rotational potential energy density can be defined as UR = P ·cv̂−U . The rotational potential energy density (UR)

and rotational kinetic energy density (KR) are in quadrature to their usual expressions. The term cv̂ ·P represents



14

the product of wave momentum density and wave velocity, which was shown in equation (11) to be twice the potential
energy for the vector representation. For the bispinor representation of plane waves, cv̂ ·P is equal to the total energy,
which has the same integrated value as twice the potential energy.

The different energy expressions are therefore:

KR =
1

2
w · s =

1

2
(

1

8ρ
∇×∇× ψ†σψ) · 1

2
ψ†σψ , (75a)

UR = cv̂ ·P +
1

2
f · ξ = Re(ψ†cβ3σj i∂jψ) +

1

2
∇2(

1

8ρ
ψ†β1ψ) · 1

2
ψ†β1ψ . (75b)

For plane waves we also have E = Re(ψ†i∂tψ), but that result is only valid due to cancelation of the medium rotation
and wave rotation terms.

In comparison, the equation of evolution for a free electron corresponding to equation (74) is:

~Re(ψ†i∂tψ) = ~Re(cψ†β3σj i∂jψ) +mec
2ψ†β1ψ , (76)

E = ~cv̂ ·P + mec
2 . (77)

An electron at rest is commonly presumed to have no internal wave structure, resulting in cv̂ ·P = 0. The mass term
corresponds in equation (74) to ±2U . With equipartition between potential and kinetic energy, the potential energy
density integrates to half of the total energy. Thus, the electron equation approximates the elastic solid equation by
ignoring kinetic energy and internal wave structure, and by substituting mass for twice the potential energy.

Even for an electron, the mass term clearly describes rotation of wave velocity. However, standard theories of the
electron offer no insight as to why such velocity rotation should be associated with energy. Hestenes interpreted the
wave velocity as particle velocity and proposed that the rest energy is kinetic in origin. [41] The analysis of spin
density plane waves instead provides a clear physical process by which quantum mechanical rest mass is associated
with potential energy. However, a correct description of particle-like waves in an elastic solid would require an internal
wave structure with both kinetic and potential energies.

3.2.2. Lagrangian and Hamiltonian

Having a first-order equation of evolution enables the use of variational methods. Interpreting equation (67) as an
Euler-Lagrange equation requires distinction between terms containing one factor each of ψ and ψ† or their derivatives,
and terms containing two such factors. Just as spin density had to be regarded as functionally dependent on angular
velocity in equation (14), angular velocity (w or w̌) should be regarded as functionally dependent on the wave function.

Treating ψ and ψ† as independent variables, we construct a Lagrangian density L = 0 so that terms linear in ψ
and its derivatives have coefficient of one as in equation (67), and the two rotation terms are cut in half:

L = Re(ψ†i∂tψ − cψ†β3σj i∂jψ + ψ†uj i∂jψ)− 1

4
w̌1ψ

†β1ψ − 1

4
wjψ

†σjψ . (78)

The Euler-Lagrange equation is:

∂t
∂L

∂(∂tψ†)
+ ∂i

∂L

∂(∂iψ†)
− ∂L

∂ψ†
= 0 (79)

Application to equation (78) yields equation (67). The rotation terms are evaluated using integration by parts. For
example:

−
∫
∇2(ψ†σjψ)(ψ†σjψ)d3r =

∫
∂i(ψ

†σjψ)∂i(ψ
†σjψ)d3r . (80)

The conjugate momentum to the field ψ is pψ:

pψ =
∂L

∂ [∂tψ]
=

i

2
ψ† , (81)

and similarly for pψ† . The real-valued Hamiltonian is

H =
1

2

{
cψ†β3σj i∂jψ − ci∂jψ†β3σjψ

}
+

1

4
w̌1ψ

†β1ψ +
1

4
wjψ

†σjψ . (82)

This is equal to the total energy as demonstrated in equation (75). With the nonlinear rotational terms in the
Hamiltonian, we must consider the possibility that i∂tψ 6= Hψ. However, the equality holds for plane waves due to
cancellation of rotational terms.
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3.2.3. Dynamical quantities

The Hamiltonian is a special case (T 0
0 ) of the stress-energy (or energy-momentum) tensor: [42]

Tµν = ∂νψ
† ∂L

∂ [∂µψ†]
+

∂L

∂ [∂µψ]
∂νψ − Lδµν . (83)

In the Lagrangian, the kinetic energy term is negative. Therefore, the conjugate momenta computed from the
Lagrangian should include a minus sign. The dynamical (or wave) momentum density Pi is

Pi = −T 0
i = − ∂L

∂ [∂tψ†]
∂iψ
† − ∂L

∂ [∂tψ]
∂iψ = −Re

{
ψ†i∂iψ

}
. (84)

The wave angular momentum density is likewise

L = −∂ϕψ†
∂L

∂ [∂tψ†]
− ∂L

∂ [∂tψ]
∂ϕψ = −Re(iψ†∂ϕψ) = −Re(

i

2
ψ†
∂ri
∂ϕ

∂iψ) = −Re
{
r× ψ†i∇ψ

}
. (85)

This expression assumes a particular origin for the axis of rotation of the angle ϕ, in contrast to the coordinate-
independent spin angular momentum. One could attempt to express orbital angular momentum density as the field
whose curl is twice the wave momentum density, but we will not pursue that here.

For densities of total momentum (PT ) and angular momentum (J), we must combine the wave and medium
contributions: [12]

PT = P + p = −Re
{
ψ†i∇ψ

}
+

1

2
∇× ψ†σ

2
ψ ; (86)

J = L + S = −Re
{
r× ψ†i∇ψ

}
+ ψ†

σ

2
ψ . (87)

The expression for total momentum density can also be derived from the symmetrized Belinfante-Rosenfeld stress-
energy tensor. [26, 27, 43] Rosenfeld commented that, ”Of course, this separation of the total moment of momentum
into two terms ... has a direct physical meaning only for physical agencies that are endowed with inertia so that one
could attach a system of reference that is at rest with respect to it.” [27]

3.2.4. Intrinsic momentum

The total angular momentum operator is well-understood as a generator of rotations, with L accounting for rotation
of the position argument and s accounting for rotation of the basis states defining the direction of spin density. Since
momentum is the generator of translations, the existence of intrinsic momentum implies that translations affect
not just the arguments of the wave function but also the bispinor basis states. Applying the intrinsic-momentum
transformation ψ → ψ + (i/4)εσx∂zψ to the wave function in equation (69) represents an infinitesimal displacement
in the y-direction and yields the wave function:

ψsx,vz =

√
ωQ0

2


1− (i/4)ε

(
k sin (ωt− kz) + ik

3Q0

8ρ cos (ωt− kz)
)

cos (ωt− kz)− ik
2Q0

4ρ sin (ωt− kz)
cos (ωt− kz)− ik

2Q0

4ρ sin (ωt− kz)
1− (i/4)ε

(
k sin (ωt− kz) + ik

3Q0

8ρ cos (ωt− kz)
)

 . (88)

This wave function yields the same spin density as the original wave function except for an additional constant term.
Thus, it still correctly describes the motion of the medium. However, the “translated” wave function does not have
the same calculated energies, and does not satisfy the same equation of evolution. The situation is similar to analysis
of a mass on a spring with the origin shifted away from the equilibrium position. The spurious displacement adds
a term to the Hamiltonian proportional to the offset times the force, and the same is true when adding a constant
translation along the displacement axis of a plane wave. The first-order change in the calculated Hamiltonian is:

∆H = −(1/2)εf = −(1/2)εµ∂2zξ = −εkω
2Q0

4
cos (ωt− kz) (89)
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Thus the displacement associated with the conjugate momentum represents a shift of coordinates away from equilib-
rium along the displacement axis.

Translation along the wave propagation direction simply shifts the coordinate (z), otherwise preserving the Hamil-
tonian.

Regarded as a function of complementary variables q and p, Hamilton’s equations are:

∂tq =
∂H

∂p
, ∂tp = −∂H

∂q
. (90)

The velocity associated with the wave momentum is thus:

v =
∂H

∂P
=

Re(−iψ†cβ3σ · ∇ψ)Re(ψ†(−i∇)ψ)

(Re(ψ†(−i∇)ψ))2
= (0, 0, c) (91)

The velocity associated with the intrinsic momentum is found by integrating the rotational kinetic energy term by
parts to convert (1/2)w · s to p2/2ρ:

u =
∂H

∂p
=

p

ρ
=

1

4ρ
∇× ψ†σψ = (0,

cQ0k
2

2ρ
sin (ωt− kz), 0) (92)

This is of course the velocity of the medium caused by the wave.
These two velocities can be used to compute the slope of the displacement from equilibrium as a function of z:

dξy
dz

= −uy
vz

= −Q0k
2

2ρ
sin (ωt− kz) (93)

Thus we have seen that analysis of classical spin density of elastic waves offers many insights into the physical
interpretation of the Dirac equation, including an understanding of the intrinsic momentum required by the Belinfante-
Rosenfeld stress-energy tensor.

4. DISCUSSION

We have analyzed a nonlinear Dirac equation based on the simple model of an ideal elastic solid. With proper
normalization, momentum and angular momentum densities are computed from the same operators in both classical
and quantum physics. Others have also found similarities between quantum mechanics and waves in an elastic solid.
[12–14, 21, 44–48] Each of the variables in the Dirac equation has a clear physical interpretation. In particular, spin
angular momentum of elementary particles may be regarded as the angular momentum of the vacuum or, equivalently,
the ”aether”.

While it is unclear to what extent classical physics can describe quantum mechanics, it is sensible to suppose that spin
density should be described by a single equation valid throughout all space. According to this hypothesis, the Standard
Model is a decomposition of spin density waves into so-called ”particles”. While this hypothesis may be contested, it
is incorrect to say that the aether is undetectable. It has been detected according to this hypothesis, consistent with
Robert Laughlin’s statement that, ”Relativity actually says nothing about the existence or nonexistence of matter
pervading the universe, only that any such matter must have relativistic symmetry. It turns out that such matter
exists.” [49]

The equation of evolution of spin density is nonlinear. Nonlinearity is a possible reason for quantized amplitudes,
since multiplying a solution by a constant factor need not yield another solution. Many researchers have attempted to
quantize the Dirac equation by adding nonlinear terms. [50–59] Particle-like nonlinear wave solutions are sometimes
called “breathers” or “solitons”. The sine-Gordon equation illustrates particle-like behavior in one dimension, and
three-dimensional analogues have also been studied. [60–63]

It is possible that classical wave interactions might explain the Pauli exclusion principle and interaction potentials.
In short, adding wave functions of two “independent” particles results in addition of their magnitudes plus unwanted
interference terms:

(ψA + ψB)†(ψA + ψB) = ψ†AψA + ψ†BψB + ψ†AψB + ψ†BψA . (94)

The conservation law expressed by equation (57) implies that the combined magnitude of the two particles should be
conserved. Phase shifts can be introduced to cancel the interference terms without changing the magnitude of each
particle. The cancellation of interference terms is equivalent to anticommutation of the wave functions, which is a
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mathematical statement of the exclusion principle. Derivatives of the phase shifts may be interpreted as interaction
potentials.[12]

For a phase shift of the form δ = (mφ − ωt) with integer m, a magnetic vector potential A ≡ (~c/e)∇δ would
have quantized magnetic flux (

∮
(A · d`) = m(hc/e)) since the phase can only change by multiples of 2πm when

traversing a loop. For m = 1/2 this is equal to the magnetic flux quantum of superconductivity (although in that case
the electrons are in pairs with m = 1 and charge of 2e). Others have similarly identified the electromagnetic vector
potential A as the gradient of a multivalued field.[64, 65]

For interacting particle-like waves, the magnitude of phase shifts must decrease with distance between the particles.
Jehle showed that with a 1/r radial dependence of the phase shift (interpreted as a distribution of rotating magnetic
flux loops) scaled to yield the electron magnetic field |Bz| = (µ0/2πr

3)µB in the z = 0 plane with m = 1 and angular
frequency ω = 2mec

2/~, the rotating phase shift gives rise to the electron Coulomb potential.[64] Here µB = (e~/2me)
is the Bohr magneton in SI units. The same result could be obtained with m = 1/2 and ω = mec

2/~. Jehle also
extended the model of quantized flux ”loopforms” to other particles. [66]

The elastic solid model might also produce analogues of matter and antimatter. Suppose that elementary particles
have spin density vector components that behave like spherical harmonics with parity (−1)`. To illustrate the effect
of spatial reflection, consider a single vector component sx = R(r)(sin θ)` sin (`φ− ωt) for some radial function R(r).
Reflection along the x-axis changes φ to π − φ to yield s′x = R(r)(sin θ)` sin (`π − `φ− ωt). For odd integer `-values,
this yields s′x = R(r)(sin θ)` sin (`φ+ ωt), which has the same spin density at t = 0 but rotates in the opposite
direction. Rotation by π radians about the x-axis completes the parity operation by changing the sign of φ to yield
P (sx) = −R(r)(sin θ)` sin (`φ− ωt). This changes the sign of the spin for the same wave propagation direction,
resulting in a change in sign of electric charge according to Jehle’s model. [64]

For even integer values of `, reflection along the x-axis yields s′x = −R(r)(sin θ)` sin (`φ+ ωt), and the complete
parity operator yields the original function P (sx) = R(r)(sin θ)` sin (`φ− ωt).

Thus, it is plausible that particle-like vector waves with odd-integer orbital quantum numbers have distinct mirror
images, while particle-like waves with even-integer orbital quantum numbers are their own mirror images. These
mirror image wave functions could play the role of antiparticles. This correspondence assumes that electric charge is
reversed upon spatial reflection, contrary to the usual assumption but consistent with experiments such as beta decay
of Cobalt-60, in which the mirror image process can occur with antimatter but not with matter.

Since vector quantities are bilinear combinations of the bispinor wave functions, the bispinors should transform
under rotations with half the phase change of the vector wave functions. Under our assumptions, elementary particle
bispinor fields transforming with half-integer orbital quantum numbers would have physically distinct mirror images
(antiparticles), whereas elementary particle bispinor fields transforming with whole integer orbital quantum numbers
would not have distinct mirror images. These results are consistent with the fact that all elementary fermions have
distinct antiparticles, and nearly all elementary bosons are their own antiparticles (an exception is the pair W+ and
W−, so the connection with spherical harmonics cannot apply to these). This analysis classifies particles on the basis
of internal orbital angular momentum rather than spin angular momentum.

The model of the vacuum as an elastic solid also offers a good introduction to general relativity. Gravity, at least
when quasi-static, may be interpreted as ordinary refraction of waves toward regions whose wave speed is decreased by
the presence of energy. [67–69] Wave speed in an elastic solid may likewise be decreased by stress-induced compression
(increased inertial density and decreased shear modulus). Likewise, twisting a rubber band under constant tension
tends to shorten it. The increased density is associated with a decreased shear modulus according to the SCG model
of a solid under constant pressure. [70]

5. CONCLUSIONS

Classical spin density waves in an ideal elastic solid are modeled by a nonlinear vector wave equation in which
temporal changes of spin density are entirely attributable to convection, rotation, and torque. A compatible nonlinear
Dirac equation is also derived. Operators for momentum and angular momentum densities are equivalent to those of
relativistic quantum mechanics. Vector plane wave solutions are expressed using Dirac bispinors. The Hamiltonian
is equal to the total energy, which is a sum of rotational kinetic and potential energies. Rotational kinetic energy is
associated with rotation of the wave function with the medium, whereas rotational potential energy is associated with
wave propagation and rotation of wave velocity relative to the medium. Intrinsic momentum identical to that derived
from the Belinfante-Rosenfeld stress-energy tensor is the generator of translations corresponding to a change of origin
of displacements away from the equilibrium position. The usual expression for electron rest energy corresponds to
twice the conventional potential energy in the elastic solid model. In sum, waves in an ideal elastic solid provide
classical physics analogues for many physical properties of elementary particles.
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