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In quantum mechanics, students learn that angular momentum has two parts: intrinsic (or spin),
and wave (or orbital) contributions. This separation is analogous to the separation of momentum
into two parts when analyzing waves: intrinsic momentum associated with motion of the inertial
medium, and wave momentum associated with propagation of energy by the wave. However, spin
angular momentum can seem mysterious to students because, unlike the moment of momentum,
it is independent of any coordinate origin. This difficulty can be overcome by teaching students
the coordinate-independent definition of angular momentum density: the vector field whose curl
is equal to twice the intrinsic momentum density. This definition of intrinsic angular momentum
density, or spin density, is applicable in both classical and quantum physics. This paper gives specific
examples illustrating how spin density describes the angular momentum of rigidly rotating objects.
The relationships between spin density, velocity, and angular velocity are similar to the relationships
between vector potential, magnetic field, and electric current in magnetostatics. Appreciation of
the coordinate-independent description of angular momentum will remove one obstacle to students’
understanding of quantum mechanics.
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1. INTRODUCTION

Students are routinely taught that angular momentum (L) is calculated as the ”moment of momentum” L = r×P,
where r is a position vector in some coordinate system and P = Mu is the momentum of an object with mass M
and velocity u. For finite-sized objects, the total angular momentum is the integral of an angular momentum density
l = r × p, where p = ρu(r) is the momentum density at position r and ρ is the mass density. This construction
interprets angular momentum as a property of the coordinate system, making it unsuitable to be regarded as a
fundamental physical quantity.

In contrast, the intrinsic spin angular momentum of elementary particles as defined in relativistic quantum mechanics
is independent of coordinates. Belinfante [2] and Rosenfeld [9] independently demonstrated that the symmetric stress-
energy tensor of general relativity requires the existence of a quantum mechanical intrinsic momentum density:

p = (1/2)∇× s , (1)

where s is the density of spin angular momentum. This relationship between spin and momentum densities also has
applications in classical physics. [1, 3, 6–8] In particular, it was shown that using this relationship to define spin
density in an inertial medium such as an elastic solid, the total spin angular momentum is equal to the total moment
of momentum computed from r× p: [5]∫

r× 1

2
(∇× s)d3r =

1

2

∫
(∇(r · s)− r · ∇s− s · ∇r) d3r

=
1

2

∫
(∇(r · s)− ∂i(ris) + s(∇ · r)− s · ∇r) d3r

=

∫
s d3r . (2)

The magnitude of spin density is assumed to fall to zero sufficiently rapidly at large distances for the two total
derivatives above (∇(r · s) and ∂i(ris)) not to contribute to the integral. An exception to this assumption will be
discussed in Sec. 2.3.

Equation 2 demonstrates that spin angular momentum is just a coordinate-independent expression for ordinary
angular momentum.

The rotational kinetic energy density (k) is given by:

k =
1

2
w · s , (3)

where w = (1/2)∇× u is the angular velocity.
The total kinetic energy is:[5]

K =

∫
1

2
w · s d3r =

∫
1

2
ρu2d3r (4)

This follows from the vector identity:

∇ · (u× s) = s · (∇× u)− u · (∇× s) (5)

since the volume integral of the divergence term can be converted to a surface integral that is assumed to vanish.
According to Eq. 4, spin density (s) is the momentum conjugate to angular velocity for any Lagrangian whose

dependence on velocity is only in the kinetic energy term:

δ

δwi

∫
1

2
wjsj dV =

1

2

∫
(
δwj
δwi

sj + wj
δsj
δwi

) dV =
1

2
si +

1

2
si = si , (6)

where integration by parts was used twice to evaluate the second term in the integral.
It was also found that the intrinsic and wave contributions to angular momentum for shear waves in an elastic solid

are equivalent to those of relativistic quantum mechanics. [4] Therefore an understanding of classical spin angular
momentum is relevant for understanding quantum mechanics as well.

Since p = (1/2)∇× s, we can apply Stokes’ theorem to obtain:∮
s · d` = 2

{
p · n̂dS (7)
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This relationship can be helpful for determining spin density from a known momentum density profile.
Table I shows a clear correspondence between incompressible motion and magnetostatics with magnetic vector

potential A, magnetic field B, electric current J, and magnetostatic energy density ε.

TABLE I: Comparison of Magnetostatics and Incompressible Motion

Magnetostatics Incompressible Motion

∇×A = B ∇× s = 2ρu

∇×B = µ0J ∇× u = 2w

∇ ·B = 0 ∇ · u = 0

ε = B2

2µ0
k = 1

2
ρu2

Therefore an understanding of spin density could also help students understand magnetostatics. An interesting
distinction between the two physical phenomena is that while total angular momentum is an important physical
quantity, the volume integral of magnetic potential is not known to be a useful concept.

In this paper, we calculate spin angular momentum for three simple physical examples with azimuthal symmetry:
(1) a cylinder rotating about its axis, (2) a hollow cylinder rotating about its axis, and (3) a cylinder translating
along its axis. Symmetry with respect to rotation about the axis simplifies the mathematical descriptions so that
relationships between physical quantities can be easily understood.

2. EXAMPLES

2.1. Rotating Cylinder
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FIG. 1: A Rotating Cylinder.

We will use spin density to describe a cylinder aligned with the z-axis and rotating rigidly with angular velocity
w0 (Fig. 1). The momentum density and angular velocity are given by:

pφ =

{
ρrw0 for r ≤ R and 0 ≤ z ≤ H

0 for r > R or z < 0 or z > H

}
(8a)

wz =

{
w0 for r < R and 0 < z < H

0 for r > R or z < 0 or z > H

}
(8b)

For 0 ≤ z ≤ H and r < R, the differential equation for s(r) is:

1

4ρ
∇× (∇× s) = w0ẑ (9)
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Since the right-hand side is the in z-direction, we look for a solution with sr = sφ = 0. Azimuthal symmetry implies
that the spin density satisfies the equation:

− 1

4ρr
∂r(r∂rsz) = w0 . (10)

The general solution is:

sz = −ρw0r
2 + c1 ln r + c2 (11)

where c1 and c2 are arbitrary constants. Requiring a finite value at r = 0 implies that c1 = 0, and requiring sz → 0
for r → R requires c2 = ρw0R

2. Therefore the solution inside the cylinder is:

sz = ρw0(R2 − r2) . (12)

Outside the cylinder, the equation for sz is:

− 1

4ρr
∂r(r∂rsz) = 0 . (13)

The solution to this equation is sz = c1 ln r + c2. Requiring sz = 0 at r → ∞ requires c1 = c2 = 0. The complete
solution is therefore:

sz =

{
ρw0(R2 − r2) for r < R and 0 < z < H

0 for r > R or z < 0 or z > H

}
(14)

Define the step function χ(x):

χ(x) =

{
0 for x < 0

1 for x > 0

}
(15)

Then:

sz = ρw0(R2 − r2) (1− χ(r −R)) (χ(z)− χ(z −H)) (16)

The calculated velocity is:

uφ = − 1

2ρ
∂rsz = rw0 (1− χ(r −R)) (χ(z)− χ(z −H)) (17)

The calculated components of angular velocity are:

wz = 1
2r∂r(ruφ) = w0

(
1− 1

2Rδ(r −R)
)

(χ(z)− χ(z −H)) (18a)

wr = − 1
2∂z(uφ) = − 1

2rw0 (1− χ(r −R)) (δ(z)− δ(z −H)) (18b)

Note that this satisfies ∇ ·w = 0 everywhere.
Once we established that the spin density is entirely in the z-direction inside the cylinder, we could have applied

Stokes’ theorem to a rectangular loop with one side along the z-axis and the opposite side at radius r:

H((sz(0)− sz(r)) = H
(
ρr2w0

)
(19)

Solving for sz(r) yields:

sz(r) = sz(0)− ρr2w0 (20)

Since sz(R) = 0, the value on the axis is sz(0) = ρR2w0 and the value of sz inside the cylinder is therefore:

sz(r) = ρw0

(
R2 − r2

)
(21)

Applying step functions to delineate the boundaries yields Eq. 16.
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The total angular momentum is:

Sz =

∫
sz d

3r = ρw02πH

∫ R

0

(R2 − r2)r dr = ρw02πH

(
R4

4

)
(22)

Identifying the mass as M = ρπR2H, this is:

Sz =
MR2

2
w0 (23)

This is the usual expression for angular momentum of a cylinder with moment of inertia I = MR2/2.
Since the angular velocity is constant within the cylinder, the kinetic energy is easily calculated:

K =

∫
1

2
w · s d3r =

1

2
w0Sz =

1

2
Iw2

0 (24)

2.2. Rotating Hollow Cylinder
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FIG. 2: A Rotating Hollow Cylinder

A rotating hollow (or annular) cylinder, as shown in Fig. 2, can be regarded as the difference between a larger
cylinder with radius R2 and a smaller cylinder with radius R1 sharing the same rotation axis.

From Eq. 16 this yields:

sz = ρw0 (χ(z)− χ(z −H))
{

(R2
2 − r2) (1− χ(r −R2))− (R2

1 − r2) (1− χ(r −R1))
}

(25)

Rearranging:

sz = ρw0 (χ(z)− χ(z −H))
{

(R2
2 −R2

1) + (R2
1 − r2)χ(r −R1)− (R2

2 − r2)χ(r −R2)
}

(26)

This means that spin density is constant at ρw0(R2
2 − R2

1) for r < R1, then becomes ρw0(R2
2 − r2) for R1 ≤ r ≤ R2,

then drops to zero for r > R2. Although it is somewhat counterintuitive to have nonzero spin density in the empty
space near the center of the annulus, this profile does yield the correct total angular momentum.∫

sz d
3r = ρw02πH

{∫ R1

0
(R2

2 −R2
1)r dr +

∫ R2

R1
(R2

2 − r2)r dr
}

= ρw02πH
{

(R2
2 −R2

1)
R2

1

2 +R2
2

(
R2

2−R
2
1

2

)
− R4

2−R
4
1

4

}
= ρw02πH

(
R4

2−R
4
1

4

)
(27)

Factoring out the mass M = ρπ(R2
2 −R2

1)H yields:

Sz =
M(R2

2 +R2
1)

2
w0 (28)
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This is the usual expression for angular momentum of a hollow cylinder with moment of inertia I = M(R2
2 +R2

1)/2.
Like the solid cylinder, the angular velocity is constant within the hollow cylinder, so the total kinetic energy is

again simply K = (1/2)Iw2
0.

2.3. Translating Cylinder
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H 
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FIG. 3: A Translating Cylinder.

Our final example is a cylinder translating along the direction of its axis as in Fig. 3. In this case ∇ · p 6= 0 at the
top and bottom of the cylinder, but we still assume that p = (1/2)∇× s. The momentum density profile is:

pz =

{
ρu0 for r ≤ R and 0 < z < H

0 for r > R or z < 0 or z > H

}
(29)

This has an angular velocity profile of:

wφ(r) = − 1

2ρ
∂rpz(r, z) =

1

2
u0δ(r −R) (χ(z)− χ(z −H)) . (30)

We can use Stokes’ Theorem to find the z-component of spin density. For r < R we have:∮ 2π

0

sφr dφ =
{

pzrdφdr (31)

which yields:

sφ = ρu0r (χ(z)− χ(z −H)) . (32)

For r > R the area integral is constant but the line integral increases with radius, so:

sφ =
ρu0R

2

r
(χ(z)− χ(z −H)) . (33)

Combining the different regions:

sφ = ρu0

(
r(1− χ(r −R)) +

ρu0R
2

r
χ(r −R)

)
(χ(z)− χ(z −H)) . (34)

In this case the spin density falls to zero at infinity only as 1/r, so the volume integral of spin density could depend
on where the integration boundary is chosen. If the boundary is chosen to have azimuthal symmetry around the axis
of the cylinder, then the spin density integrates to zero:

S =

∫
V

sφ(r, z)φ̂ rdφ dr dz = 0 . (35)
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In this case there are always equal and opposite contributions from points separated by 180-degree rotation.
However, if the integration boundary is not symmetrical with respect to the cylinder’s axis, then the cancellation

is incomplete and a net integrated angular momentum would result. Consider a boundary with radius RB + x0 cosφ
where RB >> R and x0 << RB . This approximates a displacement from the cylinder axis by x0x̂. The integral of
spin density is:

S =
∫H
z=0

∫ 2π

φ=0

∫ RB+x0 cosφ

r=R
ρu0R

2

r (ŷ cosφ− x̂ sinφ) dzrdφdr

= H
∫ 2π

φ=0
ρu0R

2 (ŷ cosφ− x̂ sinφ) (RB + x0 cosφ−R) dφ

= Hπρu0R
2ŷx0 = Mu0x0ŷ (36)

This is the same result we would have gotten by integrating (r − x0x̂) × p. In this case, shifting the integrated
volume of spin density has the same effect as an opposite shift of the origin for calculating moment of momentum.

This example illustrates the effect of spin density contributions at large distances from the motion (or from integra-
tion boundaries). For a rigid solid object, there is no problem limiting integration to the solid region. More generally,
the total calculated spin angular momentum varies with the choice of integration boundary, but the density of spin
angular momentum is always well-defined and independent of coordinates.

The kinetic energy for the translating cylinder is calculated to be:

K =

∫
V

1

2
wφsφd

3r = 2πH

∫ R

r=0

1

4
u0δ(r −R)ρu0r

2 dr = 2πH

(
1

4
ρu20R

2

)
=

1

2
Mu20 (37)

3. CONCLUSIONS

These examples demonstrate the role of spin density in describing rotational motion. Unlike the moment of mo-
mentum density, spin density is independent of coordinates and can therefore be regarded as a fundamental physical
quantity. Since there is a close analogy between the variables of incompressible motion and the variables of magne-
tostatics, an understanding of spin density will help students to understand the relationships between magnetostatic
variables. And since the relationship between spin and momentum densities is the same for both classical and quantum
physics, an understanding of spin density will make quantum mechanics somewhat less mysterious for students.

DATA AVAILABILITY STATEMENT
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