Pi's Irrationality Using Maclaurin Polynomials

Timothy Jones

July 4, 2024

Abstract

Using the Maclaurin series and polynomials for $sin(x)$, we give a simple proof that π is irrational.

Background

First, here are a few observations. The Maclaurin series for $sin(x)$ is

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{2k-1}}{(2k-1)!}.
$$

Consider the zeros for the first few Maclaurin polynomials for $sin(x)$ [\[2,](#page-3-0) [3\]](#page-3-1):

$$
T_3(x) = x - \frac{x^3}{3!},
$$

$$
T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},
$$

and

$$
T_7(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.
$$

Note that Maclaurin polynomials add one term to previous polynomials. This implies that the roots can't be the same. The roots of each $T_i(x)$ is different than all others; each is adjusted by a new term.

The roots of these $T_j(x)$ will have to be the same as

$$
3!T_3(x) = -x(x^2 - 3!),
$$

$$
5!T_5(x) = x(x^4 - 5 \cdot 4x^2 + 5!),
$$

and

$$
7!T_7(x) = -x(x^6 - 7 \cdot 6x^4 + 7 \cdot 6 \cdot 5 \cdot 4x^2 - 7!).
$$

Zero times even a large factorial number is still 0.

The non-zero zeros of these will have to be the same as those of

$$
\hat{T}_3(x) = x^2 - 3!,
$$

$$
\hat{T}_5(x) = x^4 - 5 \cdot 4x^2 + 5!,
$$

and

$$
\hat{T}_7(x) = x^6 - 7 \cdot 6x^4 + 7 \cdot 6 \cdot 5 \cdot 4x^2 - 7!
$$

			NORMAL FLOAT AUTO REAL RADIAN CL	
Plot1	Plot2 Plot3			
L\Y18H-X^3/3!				
INY28Y1+X^5/5!				
■ヽŸз目Ÿ2−X^7╱7!				
INY48Y3+X^9/9!				
$Ns =$ $N =$				
∎0 Y z =				
$N =$				

Figure 1: The first few Maclaurin polynomials for $sin(x)$.

A TI84-CE calculator can be used to graph these functions. The first few, T_3 through T_9 are given in Figure [1](#page-1-0) and graphed in Figure [2.](#page-2-0) Notice that the $sin(x)$ curve is slowly being formed. As the degree of the polynomial grows the number of turning points in the curve increases [\[1\]](#page-3-2) and, we can assume, the accuracy of the zero estimates of $sin(x)$ get better. In Figure [3](#page-2-1) we can see that $T_9(\pi) = 0.006$, almost zero. Per the periodicity of $sin(x)$, the roots of $sin(x)$ are of the form $n\pi$ for integer n. As any calculus book will attest the series converges to $sin(x)$ for all of the reals; an infinite circle of convergence.

Figure 2: A few Maclaurin polynomials.

Figure 3: The calc feature of this TI84 calculator gives the value of $T_4(\pi)$.

Proof

Define

$$
T_j(x) = \sum_{k=1}^j \frac{(-1)^{k-1} x^{2k-1}}{(2k-1)!}
$$

and

$$
\hat{T}_j(x) = \frac{j!T_j(x)}{x} \quad \text{where } x \neq 0 \,.
$$

Then $\hat{T}_j(x)$ is a integer polynomial. Also the non-zero roots of $\sin(x)$ are the same as

 $\lim_{j\to\infty}T_j(x)$

and

$$
\lim_{j \to \infty} \hat{T}_j(x).
$$

These roots are integer multiples of π .

Assume for a contradiction that $\pi = p/q$ then $q\pi = p$ and $\sin(p) = 0$. This means

$$
\lim_{j \to \infty} \hat{T}_j(p) = 0.
$$

But this implies that given an ϵ such that $0 < \epsilon < 1$, there exists N such that for all $j > N$,

$$
0<|\hat{T}_j(p)|<\epsilon,
$$

but all $\hat{T}_j(x)$ are integer polynomials and when evaluated at the integer p have to be an integer or 0. The latter is precluded: non-zero roots of $\hat{T}_j(x)$ can't be the same as $sin(x)$; they're always different approximations.

References

- [1] Blitzer, R. (2010). Algebra and Trignometry, 3rd ed., Pearson.
- [2] Larson, R. and Edwards, B.H. (2010). Calculus, 9th ed., Belmont, CA: Brooks/Cole.
- [3] Thomas, G.B. (1968). Calculus and Analytic Geometry, 4th ed., Reading, MA: Addison-Wesley.