Is it really that difficult to prove the Goldbach conjecture?

Mary Anne Ji You \& Óscar E. Chamiro Sáncher:

Abstract

:

The Goldbach conjecture [1][2], that is to say, every even number greater than 4 can be represented by the sum of two primes, is a simple and intractable statement that has been torturing mathematicians for more than 250 years. We wondered if the divide et impera method, so useful in programming and algorithmics, could provide some service here. The goal is simplify and separate the whole problem into three independent and fairly manegeable subproblems. An approach that, as far as I know, has not been tested before.*

Definitions:

From now on, m and n are positive integer numbers, p and q are prime numbers. Note that all prime $\mathrm{p} \geq 5$ is of the form $6 \mathrm{~m} \pm 1$; primes of the form $6 \mathrm{~m}+1$ are called right primes; primes of the form $6 \mathrm{~m}-1$ are called left primes.

Goldbach conjecture states that for all n and all prime p such that $3 \leq \mathrm{p} \leq \mathrm{n}$, at least some $2 \mathrm{n}-\mathrm{p}$ is prime, i.e., not every $2 \mathrm{n}-\mathrm{p}$ is composite. Let's say: disprove, for all n and all $3 \leq \mathrm{p} \leq \mathrm{n}$, that $2 \mathrm{n}-\mathrm{p}$ is composite.

We shall divide the conjecture into 3 independent subproblems realizing that in three consecutive odd numbers, $2 n-3,2 n-5$ and $2 n-7$, one and only one of them must be multiple of 3 . So we face:

Case A: $3 \mid 2 n-7$ or $2 n \equiv 1 \bmod 3$.
Case B: $3 \mid 2 n-5$ or $2 n \equiv 2 \bmod 3$.
Case C: $3 \mid 2 \mathrm{n}-3$ or $2 \mathrm{n} \equiv 0 \bmod 3$
Case A: $3 \mid 2 n-7$:
$3|2 n-7 \Rightarrow 3| 2 n-13,3 \mid 2 n-19$ and so on. Hence $3 \mid 2 n-(6 m+1)$ for all m. If q is a right prime, $2 \mathrm{n}-\mathrm{q}$ is a multiple of 3 and if q is a left prime, $2 \mathrm{n}-\mathrm{q}$ is not a multiple of 3 . Our goal is to prove that there are not enough factors p_{i} $(i=1,2,3, \ldots, k)$ from $p_{1}=5$ to p_{k}, where p_{k} is the largest prime $p_{k} \leq \sqrt{2 n-3}$ to factorize every $2 \mathrm{n}-\mathrm{q}$ with $\sqrt{2 n-3}<\mathrm{q}<\mathrm{n}$. For example, to prove that $1000(1000 \equiv 1 \bmod 3)$ must satisfy the Goldbach conjecture we shall prove
that from 1000-41, (41 is the least left prime greater than or equal $\sqrt{1000-5}$), to $1000-491$ necessarily there are numbers $1000-\mathrm{q}$ that can not be factorized, i.e., prime numbers.

Sufficient and necessary conditions for all these q to be primes is:

$$
6 \mathrm{~m}-1 \not \equiv 0 \bmod \mathrm{p}_{i}
$$

Now, given the correlative sequence of odd numbers $2 \mathrm{n}-3,2 \mathrm{n}-5,2 \mathrm{n}-7$, $2 \mathrm{n}-9,2 \mathrm{n}-11,2 \mathrm{n}-13,2 \mathrm{n}-15,2 \mathrm{n}-\mathrm{a} . .$. , let be $2 \mathrm{n}-\mathrm{a}_{\mathrm{i}}$ the odd number containing the first occurrence of prime factor p_{i} in that sequence.
Note that:
For each p_{i}, a_{i} is unique.
$3 \leq a_{i} \leq 2 p_{i}+1$.
For some $i, a_{i}=3$; for some $i, a_{i}=5$; for some $i, a_{i}=11$ MOD p_{i}; for some $i, a_{i}=17$ MOD p_{i}; for some $i, a_{i}=23$ MOD p_{i} and so on.
$2 \mathrm{n}-\mathrm{q}$, i.e., $2 \mathrm{n}-(6 \mathrm{~m}-1)$, is composite if and only if exists i such that $6 \mathrm{~m}-1 \equiv \mathrm{a}_{1} \bmod \mathrm{p}_{\mathrm{i}}$. Indeed. Given the succession $2 \mathrm{n}-(6 \mathrm{~m}-1)$, the answer to how often occurs the factor p_{i} in it is $6 p_{i}$.

Now, let's state conditions in order to find some $2 \mathrm{n}-\mathrm{q}$ with $\mathrm{q}=6 \mathrm{~m}-1$ and q inside the interval $\sqrt{2 n-3}<\mathrm{q}<\mathrm{n}$ that can not be factorized:

1) q is a left prime, i.e., q is not multiple of any p_{i}, so $6 m-1 \not \equiv 0 \bmod p_{i}$ for all i.
2) There is no p_{i} factor available for $2 n-q$, so $6 m-1 \not \equiv a_{1} \bmod p_{i}$ for all i.

Prime condition for 6m-1
$6 \mathrm{~m} \not \equiv 1 \bmod 5$
$6 \mathrm{~m} \not \equiv 1 \mathrm{mod} 7$
$6 \mathrm{~m} \not \equiv 1 \bmod 11$
$6 \mathrm{~m} \not \equiv 1 \bmod 13$
$6 \mathrm{~m} \not \equiv 1 \bmod \mathrm{p}_{\mathrm{k}}$

No factor available condition
for $2 \mathrm{n}-(6 \mathrm{~m}-1)$ $6 \mathrm{~m} \not \equiv \equiv\left(\mathrm{a}_{1}+1\right) \bmod 5$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{2}+1\right) \bmod 7$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{3}+1\right) \bmod 11$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{4}+1\right) \bmod 13$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{\mathrm{k}}+1\right) \bmod \mathrm{p}_{\mathrm{k}}$

Hence for each p_{i} there are at least $\mathrm{p}_{\mathrm{i}}-2$ remainders moduli p_{i} that fullfill the conditions. That amounts up to a minimum of $\left(p_{1}-2\right)\left(p_{2}-2\right)\left(p_{3}-2\right) \ldots\left(p_{k}-2\right)$, id est, 3.5.9.11.... $\left(p_{k}-2\right)$ different systems of linear congruences with prime moduli. The chinese remainder theorem ensures that each one of them has a different and unique solution moduli 5.7.11.13... p_{k}.

It's necessary then to prove that exists at least a multiple of 6 that fullfills the preceding conditions inside the interval:

$$
\sqrt{2 n-3}<6 \mathrm{~m}<\mathrm{n}
$$

So let's prove that at least one in 3.5.9.11...($\mathrm{p}_{\mathrm{k}}-2$) solutions from 5.7.11.13 ... p_{k} possible systems lies inside the aformentioned interval.

Let be M the highest number of consecutive occurrences of 6 m that do not fullfill the conditions. ${ }^{1}$ Is not easy to figure out the value of M , given the unpredictable nature of prime number distribution. But we can prove that exists an upper bound S for M such that for sufficient large n :

$$
\begin{equation*}
S<\left[\frac{n-\sqrt{2 n-3}}{6}\right] \tag{1}
\end{equation*}
$$

Given p_{k}, an upper bound for the total number of occurrences of each one of the two remainders moduli p are $2\left\lceil\frac{p_{k}}{p}\right\rceil$. So

$$
S=2\left(\left\lceil\frac{p_{k}}{5}\right\rceil+\left\lceil\frac{p_{k}}{7}\right\rceil+\left\lceil\frac{p_{k}}{11}\right\rceil+\left\lceil\frac{p_{k}}{13}\right\rceil+\ldots+\left\lceil\frac{p_{k}}{p_{k-1}}\right\rceil+1\right)
$$

is an upper bound for M :

\mathbf{k}	$\mathbf{p}_{\mathbf{k}}$	\mathbf{M}	\mathbf{S}
1	5	2	2
2	7	4	6
3	11	8	11
4	13	13	16
5	17	19	24
6	19	22	28

In turn:

$$
\begin{gathered}
\left\lceil\frac{p_{k}}{5}\right\rceil+\left\lceil\frac{p_{k}}{7}\right\rceil+\left\lceil\frac{p_{k}}{11}\right\rceil+\left\lceil\frac{p_{k}}{13}\right\rceil+\ldots+\left\lceil\frac{p_{k}}{p_{k-1}}\right\rceil+1< \\
\frac{p_{k}}{2}+\frac{p_{k}}{3}+\frac{p_{k}}{5}+\frac{p_{k}}{7}+\frac{p_{k}}{11}+\ldots+\frac{p_{k}}{p_{k-1}}+1=
\end{gathered}
$$

[^0]$$
p_{k}\left\{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11} \ldots+\frac{1}{p_{k-1}}+\frac{1}{p_{k}}\right\}
$$

The series between brackets is the well known partial summation of the reciprocal of the primes whose divergence was proved by Euler in 1737 together with the relationship:

$$
\begin{equation*}
\sum_{p \leq x} \frac{1}{p} \approx \log \log (\mathrm{x}) \tag{2}
\end{equation*}
$$

Taking $x=p_{k}$ and given that an upper bound for all $x>e^{4}$ in (2) is $\operatorname{loglog} x+6$ [3] allows us to state:

$$
\mathrm{S}<2 \mathrm{p}_{\mathrm{k}}\left(\log \log \mathrm{p}_{\mathrm{k}}+6\right)
$$

Now it's inmediate to conclude, since $p_{\mathrm{k}} \leq \sqrt{2 n-3}$, that (1) holds for, let's say, every $2 \mathrm{n} \geq 10^{6}$.

For every $2 \mathrm{n}<10^{6}$ the verification of the conjecture have alredy been settled.

That completes the demonstration.
Hence, for all 2 n such that $3 \mid 2 \mathrm{n}-7$, i.e., for all $2 \mathrm{n} \equiv 1 \bmod 3$, exists some $2 \mathrm{n}-\mathrm{q}$ that can not be factorized, so $2 \mathrm{n}-\mathrm{q}$ is prime and the conjecture holds for all $2 \mathrm{n} \equiv 1 \bmod 3$.

Case B: $3 \mid 2 n-5$:
$3|2 n-5 \Rightarrow 3| 2 n-11,3 \mid 2 n-17$ and so on. Hence $3 \mid 2 n-(6 m-1)$ for all m. If q is a left prime, $2 \mathrm{n}-\mathrm{q}$ is a multiple of 3 and if q is a right prime, $2 \mathrm{n}-\mathrm{q}$ is not a multiple of 3 .

Following the same thought process than before, with q a right prime of the form $6 m+1$, it's straightforward to conclude that the conjecture holds for all 2 n such that $3 \mid 2 \mathrm{n}-5$, i.e., for all $2 \mathrm{n} \equiv 2 \bmod 3$.

Case C: $3 \mid 2 n-3$:
$3 \mid 2 n-3 \Rightarrow 3 \nmid 2 n-(6 m \pm 1)$ for all m. All elements of the sequence:
$2 \mathrm{n}-5,2 \mathrm{n}-7,2 \mathrm{n}-11,2 \mathrm{n}-13,2 \mathrm{n}-17,2 \mathrm{n}-19,2 \mathrm{n}-23,2 \mathrm{n}-29,2 \mathrm{n}-31,2 \mathrm{n}-$ 37, ... 2n-q
where $\mathrm{q} \geq 5$ is a prime, must be factorized. There are k consecutive primes p_{i} $(\mathrm{i}=1,2,3, \ldots, \mathrm{k})$ from $\mathrm{p}_{1}=5$ to p_{k}, where p_{k} is the largest prime $\mathrm{p}_{\mathrm{k}} \leq \sqrt{2 n-3}$,
available for that factorization.
Now, given the correlative sequence of odd numbers $2 n-3,2 n-5,2 n-7$, $2 \mathrm{n}-9,2 \mathrm{n}-11,2 \mathrm{n}-13,2 \mathrm{n}-15,2 \mathrm{n}-\mathrm{a} . .$. , let be $2 \mathrm{n}-\mathrm{a}_{\mathrm{i}}$ the number containing the first occurrence of prime factor p_{i} in that sequence.
Notice that:
For each p_{i}, a_{i} is unique.
$3 \leq a_{i} \leq 2 p_{i}+1$.
For some $i, a_{i}=3$; for some $i, a_{i}=5$; for some $i, a_{i}=11$ MOD p_{i}; for some $i, a_{i}=17$ MOD p_{i}; for some $i, a_{i}=23$ MOD p_{i} and so on.
$2 \mathrm{n}-\mathrm{q}$, i.e., $2 \mathrm{n}-(6 \mathrm{~m} \pm 1)$, is composite if and only if exists i such that $6 \mathrm{~m} \pm 1 \equiv \mathrm{a}_{1} \bmod \mathrm{p}_{\mathrm{i}}$.

Conditions in order to find some $2 \mathrm{n}-\mathrm{q}$ with $\mathrm{q}=6 \mathrm{~m} \pm 1$ and q inside the interval $\sqrt{2 n-3}<\mathrm{q}<\mathrm{n}$ that can not be factorized:

Prime condition
for $6 m \pm 1$
$6 \mathrm{~m} \not \equiv \equiv \pm 1 \bmod 5$
$6 \mathrm{~m} \not \equiv \pm 1 \bmod 7$
$6 \mathrm{~m} \not \equiv \pm 1 \bmod 11$
$6 \mathrm{~m} \not \equiv \pm 1 \bmod 13$
$6 \mathrm{~m} \not \equiv \pm 1 \bmod \mathrm{p}_{\mathrm{k}}$

No factor available condition
for $2 \mathrm{n}-(6 \mathrm{~m} \pm 1)$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{1} \pm 1\right) \bmod 5$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{2} \pm 1\right) \bmod 7$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{3} \pm 1\right) \bmod 11$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{4} \pm 1\right) \bmod 13$
$6 \mathrm{~m} \not \equiv\left(\mathrm{a}_{\mathrm{k}} \pm 1\right) \bmod \mathrm{p}_{\mathrm{k}}$

Hence for each p_{i} there are at least $2\left(\mathrm{p}_{\mathrm{i}}-2\right)$ remainders moduli p_{i} that fullfill the conditions. That amounts up to a minimum of $2\left(\mathrm{p}_{1}-2\right)\left(\mathrm{p}_{2}-2\right)\left(\mathrm{p}_{3}-\right.$ 2)...($\mathrm{p}_{\mathrm{k}}-2$), id est, 2.3.5.9.11....($\mathrm{p}_{\mathrm{k}}-2$) different systems of linear congruences with prime moduli. The chinese remainder theorem ensures that each one of them has a different and unique solution moduli 5.7.11.13... p_{k}.

Interesting to note here that this result is fully consistent with the fact that there are now twice as many composite numbers to factorize with the same number of factors than before (Cases \mathbf{A} and \mathbf{B})

It's necessary then to prove that exists at least a multiple of 6 that fullfills the preceding conditions inside the interval:

$$
\sqrt{2 n-3}<6 \mathrm{~m}<\mathrm{n}
$$

The same considerations apply as in relation to the previous point, as to conclude that:

$$
\mathrm{S}<\mathrm{p}_{\mathrm{k}}\left(\log \log \mathrm{p}_{\mathrm{k}}+6\right)
$$

is an upper bound for the highest number of consecutive occurrences of 6 m that do not fullfill the previous conditions. Hence, as before, the conjecture also holds for every $2 \mathrm{n} \equiv 0 \bmod 3$.
*The foundations and conclusions of this paper are an adaptation in a more intuitive way of a previous paper available here [4].

July, 4, 2024.
roundkuniversity@gmail.com PA^{3}.

References:

[1] Christian Goldbach, Letter to L. Euler, June 7 (1742).
[2] Vaughan, Robert. Charles. Goldbach's Conjectures: A Historical Perspective. Open problems in mathematics. Springer, Cham, 2016. 479-520.
[3] Pollack, Paul. Euler and the partial sums of the prime harmonic series. University of Georgia. Athens. Georgia.
[4] https://vixra.org/pdf/2312.0021v1.pdf

[^0]: ${ }^{1}$ For all those who, like myself, enjoy practical questions that sometimes shed light on some more abstract matter of discussion, the problem to determine an accurate value for \mathbf{M} is the same as the following: Suppose you may not work on 2 predetermined days in five, 2 predetermined days in seven, 2 days in 11,2 in 13 and so on until 2 days in p_{k} days. What is the maximum number, as a function of p_{k}, of consecutive days off?

