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Is it really that difficult to prove the Goldbach 
conjecture? 

 
Mary Anne Ji You & Óscar E. Chamizo Sánchez. 

 
Abstract: 

 
 The Goldbach conjecture [1][2], that is to say, every even number 
greater than 4 can be represented by the sum of two primes, is a simple and 
intractable statement that has been torturing mathematicians for more than 
250 years. We wondered if the divide et impera method, so useful in 
programming  and algorithmics, could provide some service here. The goal is 
simplify and separate the whole problem into three independent and fairly 
manegeable subproblems. An approach that, as far as I know, has not been 
tested before.* 
 

Definitions: 
From now on, m and n are positive integer numbers, p and q are prime 

numbers. Note that all prime p ≥ 5 is of the form 6m±1; primes of the form 
6m+1 are called right primes; primes of the form 6m-1 are called left 
primes.  

 
Goldbach conjecture states that for all n and all prime p such that 

3≤p≤n, at least some 2n-p is prime, i.e., not every 2n-p is composite. Let´s 
say: disprove, for all n and all 3 ≤ p ≤ n, that 2n-p is composite. 

 
We shall divide the conjecture into 3 independent subproblems 

realizing that in three consecutive odd numbers, 2n-3, 2n-5 and 2n-7, one and 
only one of them must be multiple of 3. So we face: 

 
Case A: 3|2n-7 or 2n ≡ 1 mod 3. 
Case B: 3|2n-5 or 2n ≡ 2 mod 3. 
Case C: 3|2n-3 or 2n ≡ 0 mod 3 

 
 Case A: 3|2n-7: 
 
 3|2n-7  3|2n-13, 3|2n-19 and so on. Hence 3|2n-(6m+1) for all m. 
If q is a right prime, 2n-q is a multiple of 3 and if q is a left prime, 2n-q is not 
a multiple of 3. Our goal is to prove that there are not enough factors pi 

(i=1,2,3, …, k) from p1=5 to pk, where pk is the largest prime pk   ≤ 32 −n   

to factorize every 2n-q with  32 −n  < q < n. For example, to prove that 
1000 (1000 ≡ 1 mod 3) must satisfy the Goldbach conjecture we shall prove 
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that from 1000-41, (41 is the least left prime greater than or equal 51000−  ), 
to 1000-491 necessarily there are numbers 1000-q that can not be factorized, 
i.e., prime numbers.  

Sufficient and necessary conditions for all these q to be primes is: 
 

6m-1≢ 0 mod pi  

 
 Now, given the correlative sequence of odd numbers 2n-3, 2n-5, 2n-7, 
2n-9, 2n-11, 2n-13, 2n-15, 2n-a…, let be 2n-ai the odd number containing the 
first occurrence of prime factor pi in that sequence.  
Note that: 

For each pi, ai is unique.  
3≤ai≤2pi+1. 
For some i, ai = 3; for some i, ai=5; for some i, ai=11 MOD pi; for 

some i, ai=17 MOD pi; for some i, ai=23 MOD pi and so on. 
2n-q, i.e., 2n-(6m-1), is composite if and only if exists i such that      

6m-1≡a1mod pi. Indeed. Given the succession 2n-(6m-1), the answer to how 
often occurs the factor pi in it is 6pi. 

 
Now, let´s state conditions in order to find some 2n-q with q=6m-1 

and q inside the interval 32 −n  < q < n that can not be factorized:  

1) q is a left prime, i.e., q is not multiple of any pi, so 6m-1≢ 0 mod pi 

for all i. 

2) There is no pi factor available for 2n-q, so 6m-1 ≢ a1mod pi for all i.  
   
 
Prime condition   No factor available condition 
 for 6m-1    for 2n-(6m-1) 
 

 6m ≢ 1 mod 5   6m ≢ (a1+1) mod 5 

6m ≢ 1 mod 7   6m ≢ (a2+1) mod 7 

6m ≢ 1 mod 11   6m ≢ (a3+1) mod 11 

6m ≢ 1 mod 13   6m ≢ (a4+1) mod 13 
…………..    ……………….  

6m ≢ 1 mod pk   6m ≢ (ak+1) mod pk 

 

Hence for each pi there are at least pi-2 remainders moduli pi that fullfill 
the conditions. That amounts up to a minimum of (p1-2)(p2-2)(p3-2)…(pk-2),  
id est, 3.5.9.11.…(pk-2) different systems of linear congruences with prime 
moduli. The chinese remainder theorem ensures that each one of them has a 
different and unique solution moduli 5.7.11.13… pk. 

It´s necessary then to prove that exists at least a multiple of 6 that 
fullfills the preceding conditions inside the interval: 
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32 −n < 6m < n 
 
So let´s prove that at least one in 3.5.9.11…(pk-2) solutions from 

5.7.11.13…pk possible systems lies inside the aformentioned interval.  
Let be M the highest number of consecutive occurrences of 6m that do 

not fullfill the conditions.1 Is not easy to figure out the value of M, given the 
unpredictable nature of prime number distribution. But we can prove that 
exists an upper bound S for M such that for sufficient large n: 

 

S  < [
𝑛− √2𝑛−3

6
]      (1) 

  
Given pk, an upper bound for the total number of occurrences of each 

one of the two remainders moduli p are 2 ⌈
𝑝𝑘

𝑝
⌉. So   

S = 2(⌈
𝑝𝑘

5
⌉ + ⌈

𝑝𝑘

7
⌉ + ⌈

𝑝𝑘

11
⌉ + ⌈

𝑝𝑘

13
⌉ +  … + ⌈

𝑝𝑘

𝑝𝑘−1
⌉ +  1) 

is an upper bound for M: 
 
 

k pk M S 

1 5 2 2 

2 7 4 6 

3 11 8 11 

4 13 13 16 

5 17 19 24 

6 19 22 28 

 
In turn:  
 

⌈
𝑝𝑘

5
⌉ + ⌈

𝑝𝑘

7
⌉ + ⌈

𝑝𝑘

11
⌉ + ⌈

𝑝𝑘

13
⌉ +  … + ⌈

𝑝𝑘

𝑝𝑘−1
⌉ +  1 < 

 
 

𝑝𝑘

2
+ 

𝑝𝑘

3
+ 

𝑝𝑘

5
+ 

𝑝𝑘

7
+

𝑝𝑘

11
+ … +

𝑝𝑘

𝑝𝑘−1
+ 1 = 

 

 
1 For all those who, like myself, enjoy practical questions that sometimes shed light on 
some more abstract matter of discussion, the problem to determine an accurate value for 
M is the same as the following: Suppose you may not work on 2 predetermined days in 
five, 2 predetermined days in seven, 2 days in 11, 2 in 13 and so on until 2 days in pk days. 
What is the maximum number, as a function of pk, of consecutive days off? 
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 𝑝𝑘 {
1

2
+

1

3
+  

1

5
+

1

7
+

1

11
 … +

1

𝑝𝑘−1
+

1

𝑝𝑘
} 

 
 
The series between brackets is the well known partial summation of the 

reciprocal of the primes whose divergence was proved by Euler in 1737 
together with the relationship:   

 

  ∑
1

𝑝𝑝≤𝑥  ≈ loglog(x)   (2) 

 
Taking x=pk and given that an upper bound for all x>e4 in (2) is 

loglogx+6 [3] allows us to state: 
 

S < 2pk(loglogpk+6)  
 

Now it`s inmediate to conclude, since pk ≤ 32 −n , that (1) holds for, 
let´s say, every 2n ≥ 106. 

For every 2n<106 the verification of the conjecture have alredy been 
settled.  

That completes the demonstration. 
Hence, for all 2n such that 3|2n-7, i.e., for all 2n ≡ 1 mod 3, exists 

some 2n-q that can not be factorized, so 2n-q is prime and the conjecture 
holds for all 2n ≡ 1 mod 3.  

 
Case B: 3|2n-5: 
 
3|2n-5  3|2n-11, 3|2n-17 and so on. Hence 3|2n-(6m-1) for all m. If 

q is a left prime, 2n-q is a multiple of 3 and if q is a right prime, 2n-q is not a 
multiple of 3.  

Following the same thought process than before, with q a right prime 
of the form 6m+1, it´s straightforward to conclude that the conjecture holds 
for all 2n such that 3|2n-5, i.e., for all 2n ≡ 2 mod 3. 

 
 
Case C: 3|2n-3: 
 

3|2n-3  3 ∤ 2n-(6m±1) for all m. All elements of the sequence: 
 

2n-5, 2n-7, 2n-11, 2n-13, 2n-17, 2n-19, 2n-23, 2n-29, 2n-31, 2n-
37, ... 2n-q 
 

where q ≥ 5 is a prime, must be factorized. There are k consecutive primes pi 

(i=1,2,3, …, k) from p1=5 to pk, where pk is the largest prime pk   ≤ 32 −n , 
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available for that factorization. 
Now, given the correlative sequence of odd numbers 2n-3, 2n-5, 2n-7, 

2n-9, 2n-11, 2n-13, 2n-15, 2n-a…, let be 2n-ai the number containing the first 
occurrence of prime factor pi in that sequence.  
Notice that: 

For each pi, ai is unique.  
3≤ai≤2pi+1. 
For some i, ai = 3; for some i, ai=5; for some i, ai=11 MOD pi; for 

some i, ai=17 MOD pi; for some i, ai=23 MOD pi and so on. 
2n-q, i.e., 2n-(6m±1), is composite if and only if exists i such that 

6m±1≡a1mod pi. 
Conditions in order to find some 2n-q with q=6m±1 and q inside the 

interval 32 −n  < q < n that can not be factorized: 
 

 
Prime condition   No factor available condition 
 for 6m±1    for 2n-(6m±1) 
 

 6m ≢ ±1 mod 5   6m ≢ (a1±1) mod 5 

6m ≢ ±1 mod 7   6m ≢ (a2±1) mod 7 

6m ≢ ±1 mod 11   6m ≢ (a3±1) mod 11 

6m ≢ ±1 mod 13   6m ≢ (a4±1) mod 13 
…………..    ……………….  

6m ≢ ±1 mod pk   6m ≢ (ak±1) mod pk 

 

Hence for each pi there are at least  2(pi-2) remainders moduli pi that 
fullfill the conditions. That amounts up to a minimum of 2(p1-2)(p2-2)(p3-
2)…(pk-2),  id est, 2.3.5.9.11.…(pk-2) different systems of linear congruences 
with prime moduli. The chinese remainder theorem ensures that each one of 
them has a different and unique solution moduli 5.7.11.13… pk. 

Interesting to note here that this result is fully consistent with the fact 
that there are now twice as many composite numbers to factorize with the 
same number of factors than before (Cases A and B) 

It´s necessary then to prove that exists at least a multiple of 6 that 
fullfills the preceding conditions inside the interval: 

 

32 −n < 6m < n 
 
The same considerations apply as in relation to the previous point, as to 

conclude that:  
S < pk(loglogpk+6) 
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is an upper bound for the highest number of consecutive occurrences 
of 6m that do not fullfill the previous conditions. Hence, as before, the 
conjecture also holds for every 2n ≡ 0 mod 3. 

 
*The foundations and conclusions of this paper are an adaptation in a 

more intuitive way of a previous paper available here [4]. 
________________________________________ 
 
July, 4, 2024. 
roundkuniversity@gmail.com 
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