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Abstract

Based on Newton’s gravitational law as applied to a uniform continuous mass we posit a non-
homogeneous distribution of mass at cosmological scales that would give rise to a constant 
acceleration that largely agrees with MOND’s a0. When mass-density distributes as 1/R in a 
spherically symmetric universe, rotational velocities arise that increase as the square root of 
radial distance. These would generate a transverse Doppler redshift that scales linearly with 
distance at short ranges and would mimic cosmological redshift and expansion. In the more 
distant regions, relativistic-high rotational velocities result in a highly redshifted background 
radiation that might distort the estimation of distances based on Hubble’s Law. These 
phenomena might provide an alternative explanation for the observed redshifts and expansion. 
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Modified Newtonian Dymanics (MOND) is a Newtonian-derived hypothetical model of gravity 
proposed 40 years ago by Mordehai Milgrom to explain the multiple gravitational anomalies 
observed in galaxies and galaxy clusters [1-3]. They are summarized and conventionally 
explained through the existence Dark Matter, an elusive new form of matter that interacts only 
gravitationally and is not included in the Standard Model of Particle Physics. While no such 
particles have yet been found, the search goes on and MOND usually plays a secondary role in 
the list of candidate explanations for dark matter. One of the reasons is that a0, the distinctive 
feature of MOND, does not correspond to any physical entity, and –it is argued- was postulated 
solely as a means to obtain a gravitational law that fits the observations. It is sometimes called a
phenomenological explanation.

While a0 agrees to within one order of magnitude with the acceleration calculated at the border 
regions of the observable universe from the simple Newtonian gravitational formula and is also 
found to relate to Hubble’s constant and to the square root of the cosmological constant L, in 
both cases scaled by the speed of light c, no physical representation of such an acceleration 
has been devised, and most physicists would agree that it represents another constant of 
nature, whose role would be to relate fundamental gravitational phenomena in the low-
acceleration regime, implying probably some modification of the laws of gravity.

Part I. The Newtonian ball model of gravity

A generally accepted assumption of all current astrophysical models is the Cosmological 
Principle, the idea that the universe at large scales is both homogeneous and isotropic.  While it
may still be isotropic and strong constraints have been set on the range of variation in matter 
density, the homogeneity condition has little theoretical supporting evidence. Based on original 
ideas of Isaac Newton, we shall argue that the universe can be modelled as a continuous 
distribution of mass that obeys simple dynamics embodied in the Universal Law of Gravitation. 
As Newton found in the late 1600s [4], when a continuous distribution of mass with constant 
density is allowed to evolve according to such law, an acceleration appears that is null at the 
center and increases outwards in linear proportion to radial distance until it reaches, for a 
distance equal to the radius of the ball, the exact same value as predicted by conventional 
Newtonian gravity.

FB = G M m r / R3 

as opposed to a point-mass gravitational field:

FN = G M m / R2



where FB (the force in the Newtonian ball model) and FN (Newton’s conventional point-mass 
gravitational force) are the force on a test particle with mass m placed at a distance r from the 
center of the R-ball, or at a distance R from the central point-mass M, respectively.  The 
acceleration for the ball with mass M is then

AccB = G M r / R3 (1)

and solving for G

G = AccB R3 / M r (2)

We now define G’ as 4pG and substitute it for G above. The resulting expression is 
mathematically equivalent, though it may facilitate the visualization of upcoming considerations.

G’ = (AccB 4pR3) / (M r) [G’ :=  4pG] (3)

Multiplying both parts of the right-hand quotient by a factor of three,

G’ = 3 AccB 4/3 p R3 / M r (4)

and since 4/3 p R3 / M  is the inverse of the mass density for the spherical volume r,

G’ = 3 (AccB / r) · (1/r)

G’ = 3 AccB / (r · r) (5)

where r is now the average, not necessarily constant matter density at radial distance r. It is 
well known that the Newtonian model for gravity in solid spheres is valid not only for spheres 
with uniform density, but for any sphere in which density depends only on radial distance, i.e, for
any spherically symmetric distribution of matter. 

Looking at equation (5) we see that in such a ball model of the universe, if r is constant, then 
the quotient (AccB / r) must be constant, which agrees with the Newtonian view but does not 
help us understand the existence of a constant acceleration pervading the whole universe that 
at the same time agrees with the Newtonian acceleration at its border regions, as MOND 
postulates and available evidence suggests.

We therefore let r vary with radial distance and assume that it is the product in the denominator 
of equation (5), r·r  that is constant. In other words, we let density decay inversely with radial 
distance. We immediately see that since both G’ and the product (r·r) are constant, so must be 
AccB, and this acceleration agrees with MOND’s universal acceleration a0 and with the 
calculated Newtonian acceleration at the border regions of the visible universe to whithin one 
order of magnitude, as can be easily checked. Indeed, feeding in the accepted values for the 



mass of the observable universe (1053 Kg), radial distance (1026 m) and G, it turns out that the 
acceleration in the at the external regions of a hypothetical spherical universe is about 3.4 · 10-10

m·s-2, quite close to the reported value for a0 (1.2·10-10). According to the Newtonian ball model 
and assuming r· r constant, this same aceleration would be present as a background curvature 
in the whole universe, explainining its local influence in all galaxies, not just as a constant of 
nature, but as a real acceleration that would determine the observed accelerations through 
some kind of averaging with the local, Newtonian-derived acceleration. In MOND, a geometrical 
averaging seems to be required [1-3].

The range of variation in mass density that would be expected depends on how far we are from 
the central regions, and can be approximately estimated.

From Eq (1), taking AccB = a0 = 1.2·10-10 ms-2;  RU = 4.4·1026 m; G’ = 8.38·10-10 m3·Kg-1·s-2,  we 
have

r·r = 0.4295 Kg·m-2

r = 0.4295 / r 

 

Assuming we are in a mid-radius region, R0 = 2.2·1026 m  and making dr = 1 Mpc = 3.1·1022 m, it
turns out that the expected decrease in density per Mpc at a radius half the universe’s radius 
would be:

dr = -0.4295 · R0
-2 · dr 

dr = 6.29 · 10-30 Kg/m3/Mpc

This is aproximately 1% of the accepted baryonic mass density of the universe (4.6% of the 
critical density 10-26 Kg/m3, or 4.6·10-28 Kg/m3). For regions closer to the center, the predicted 
relative variations are larger. In more external regions they would become much smaller and 
practically unmeasurable.

Observational evidence for the distribution of mass density in the universe is scant. The large-
scale average density, known as the cosmic density parameter (Ω) depends on its composition 
and, according to the LCDM model, is very close to the critical mass density Ωc, the one 
required to make the universe flat. The density of matter, including dark matter, would amount 
to about 28% of the global density (Ωm = 0.28), while the density of baryonic matter is thought to
comprise a bare 4.6% of the total density.  Distribution of average density as a function of 
distance is generally assumed to follow the general trend of decreasing as the radius increases,
reflecting the overall dilution of matter on larger scales, but observations are dominated by a 
complex hierarchical structure, the so-called cosmic web, that makes a precise estimation 
difficult. As a result, no reliable data are currently available.  

Several authors [5-9], notably Peebles, Karachentsev, Nuza and others have probed into the 
mass distribution in the vicinity of our Milky Way and found that, on average, its density is 
significantly lower than the average for the whole universe. We would thus be in a local region 
of low density, the Local Void, which makes the observations not representative of the whole 
universe. The interpretation of the results is also compounded by the influence of dark matter 
and structure formation, two processes of which we know little. 



In two important studies [5, 6] the authors examined the distribution of the mean density of mat-
ter in spheres of various radii in our Local Universe and found that mass density up to about 50 
Mpc decays with distance. The authors conclude that density is on average lower than the 
global density for the universe (Ωm,local = 0.08  vs  Ωm = 0.28) and tends to an asymptotic 
minimum value. However, looking at the data in the figures, we speculate that they might also 
be consistent with a 1/r decay in that range. However, as the authors point out, larger scale 
distances are needed to avoid local variations, probably 100 Mpc at least. In the papers, 
uncertainties in the range up to 90 Mpc seem too large to draw a conclusion. 
Also, as shown previously, a reliable measurement of the variations in mass density around the 
Milky Way could be used to gauge our proximity to the center of the universe. 

Another interesting observation is the striking ressemblance of equation (5) with the Friedmann 
equation. The Friedman equation can be expressed as [10] 

a’’/a = - 4/3·p·G ( r + 3p/c2) + Lc2/3 (6)

And making a customary simplification that consists of replacing  

r  —>  r – Lc2/8pG

p  —>  p + Lc4/8pG 

we have

H2 = (a’/a)2 = 8/3·pGr – kc2/a2 (7)

Assuming flat space (k=0) and substituting G’ for G (G’ = 4pG) results in

G’ = 4pG = (3/2) · H2 / r (8)

which reminds us of Eq 5:

G’ = 3 · AccB /  (r · r) 

In the last expression, since dimensions of Accel / r are [1/T]2, we have 

G’ = 3· (1 / t)2 · (1 / r) (9)

If we now interpret 1/t as the constant rate of expansion H, it turns out that Eq (1) can be viewed
as equivalent to 

G’ = 3 · H2 / r (10)

which differs from the Friedmann equation by a factor of 2. The reason for the discrepancy we 
ignore, but it has happened before in astrophysics that a classical, non-relativistic approach has
been later superseded by the appropriate relativistic version that differs from it by a factor of 



two, e.g., in the old pre-Einstein estimation of the lensing of light from Newtonian gravity by 
Johann Soldner in 1804. 

Thus, the hypothesis of a decreasing density of matter that scales inversely with distance 
seems a reasonable one and, from Newtonian mechanics, this would lead to a constant 
background cosmic acceleration that agrees with MOND’s a0 and would account for the rotation 
curves in galaxies. The observed accelerations around galaxies below MOND’s a0 have been 
shown from observations to be the geometric average of the Newtonian acceleration and a0. 

This might be understood as a real physical phenomenon related to the interaction of two 
competing accelerations, not only a mathematical artifact. 

We cannot discuss here the other predictions of MOND related to dark matter. We would rather 
refer the reader to the works of the original author [1-3]. 

As for the CMB, it is our understanding that it has some problems that limit its ability to be used 
as the gold standard to adjudicate prospective fundamental theories. We’d like to draw attention
to one of those problems, namely the strong anisotropy observed in the CMB, the so-called 
CMB multipole (dipole, quadrupole, octopole), that is generally considered as originating from 
the movement of our galaxy with respect to the Hubble flow. But the velocities needed for the 
dipole are higher than 350 Km/s [11] and the quadrupole shows a coincidence in orientation 
with the solar system that is hard to explain. 

In summary,

1. In a modified Newtonian ball model of the universe, a continuously decreasing mass 
density that scales as 1/r, as opposed to the uniform distribution from the Cosmological 
Principle, would give rise to a constant universal physical acceleration that agrees with MOND’s 
a0.

2. This would provide a physical basis for MOND and support it as a viable interpretation of
the dark matter problem, even if it cannot fully explain the need for a modification of the 
gravitational laws.

3. The resulting mass-density distribution may be hard to verify experimentally since the 
densities involved, as well as the variations incurred are very low. A variation in mass density  
around 1% per Mpc is expected.



Part II. Acceleration and redshift in a static, rotating universe.

We now turn our attention to the mysterious empirical relation observed between a0 and the pa-
rameters that reflect the universe’s expansion, H0 and L.

Indeed, the numerical value of MOND’s a0 has been found to be approximately

a0   ~  (c / 2p) · H0  ~  (c2 / 2p) · SQRT(L/3)

Why is that? What is the intimate relation of a0 to the accelerated expansion of the universe?

Motivated by the previous ideas and some inconsistencies in the current cosmological models, 
namely the discrepancies in the measurements of the rate of expansion -the Hubble tension-, 
the existence of galaxies much older than allowed by our current ideas on galaxy formation [12],
and the failure to determine the magnitude and origin of the accelerated expansion, an 
alternative explanation is sought for the original observations that led to the idea of an 
expanding universe. According to the extensively confirmed Hubble Law (v = H0D), redshift from
stars and galaxies is linearly related to distance, suggesting increasing recessional velocities in 
the context of a global expansion. Despite its evident internal logic and agreement with multiple 
observations, we shall make here no assumptions on homogeneity, isotropy, nor expansion. 
Our arguments will be checked against the basic observational facts. Namely, the Hubble Law 
relating redshift to distance, and the existence of a pervasive background low-energy radiation 
in the form of the CMB. Ideally, the model should also provide an explanation for the 
accelerated expansion in recent epochs, as described by Riess, Perlmutter and Schmidt in 
1998, as well as for the anisotropy observed in the CMB, its dipole.

 

Modelling Transverse Doppler Redshift  (TDR) and gravitational blueshift (GB)

In the ball model of the universe, a 1/R mass-density distribution leads to a constant 
background acceleration a0, sometimes called cosmological acceleration aL, that has been 
measured at 1.2*10-10 ms-2 [1-3]. 

From Eq 5 we can calculate acceleration in a spherically symmetric gravitational field, which 
gives us an expression equivalent to the Poission equation in one dimension:

Accel(r) = 1/3 · 4 p G r(r) · r  (11)  

For fixed point masses in empty space, the density distribution that describes it is a 1/r3 mass 
density function. We see then that the acceleration scales as 1/r3 · r = 1/r2 as in Newton’s Law.  



If we take the 1-D integral of this expression along the radial distance r for a 1/r3 distribution of 
density, it returns a gravitational potential that scales as 1/r, as expected.

F(r) = Int(Accel, dr) = Int( 4 Pi G· r(r) · r , dr) ~  Int(r-2, dr) = -1/r (12)

But eq (11) is more general and includes other possible distributions of density. In particular, for 
a 1/r distribution, the acceleration according to (11) is constant and agrees with MOND’s a0 to 
within one order of magnitude ( 1/3·4pG  ~  a0 = 1.2 · 10-10 m·s-2 ). In what follows, we will use 
either expresson (11) for acceleration or its MOND value a0, when it is expedient to simplify the 
calculations.

Centripetal acceleration as a function or radial distance is then

v2/r = a0 = constant (13)

v = SQRT(a0 · r) (14)

and rotational velocities appear that increase as the square root of radial distance from the 
center. For the estimated radius of the observable universe (RU = 4.4 · 1026 m) we have that in a
non-relativistic approximation, rotational velocities in the external shells would be 

v = SQRT(1.2·10-10 · 4.4·1026) m/s  =  2.29 · 108 m/s  ~  c (15)

a striking coincidence.

Transverse Doppler Redshift

We consider the transverse Doppler redshift that would be observed from light emitted from 
distant galaxies on the same radial direction as the observer [13]: 

1 + z = 1 / SQRT(1 - (vT
2/c2)) (16)

where vT is the velocity of the emitting galaxy in the direction perpendicular to light trajectory, 
relative to the observer. Redshift goes to infinity as vT approaches c.

For shorter distances and lower velocities (v << c), the approximate formula is



z ~ 1/2 (vT/c)2 (17)

and we see that, since rotational velocities increases as the square root of distance (14) and 
redshift scales as the square of relative velocity (17), there must be some reference frame in 
which redshift increases linearly with distance. We claim that an observer located near the 
center of the universe is one such frame.

Transverse Doppler redshift (TDR) is thus a function of relative (transverse) velocity between 
the emitter and the observer. To calculate relative velocity we must comply with the relativity 
requirement that the universe looks the same for all observers. This means that even if there is 
a preferred place in the universe, its coordinates should not be necessary for an observer to 
describe the physical phenomena at his location. Hence we define relative velocity as the 
velocity calculated from centripetal acceleration, taking as distance the relative radial distance 
between emitter and observer. 

Vrel
2
 / |r – ro| = Accel (18)

Vrel(r) = SQRT( Accel · |r – ro| ) (19)

Where r is the position of the emitter, ro the position of the observer, and Accel is the (constant) 
acceleration between them. This is the value for relative transverse velocity that goes into 
equation (16). Since acceleration remains constant, Eq 19 does not need to be integrated over 
distance.

Gravitational Blueshift (GB).

Light coming from distant galaxies, whether at the edge of the universe or closer to us, must 
then overcome the gravitational potential between its source point and us and, by so doing, it is 
subject to gravitational blueshift, which is given by:

zG = DU / c2 (20)

For a constant acceleration a0, the general definition of gravitational potential at radial distance r
from the center of the universe is: 

DU = a0 · r (21)

Redshift is then given by



zG = a0 · r / c2 (22)

This formula does not require correction from general relativity, since it is derived from the 
equivalence principle [14]. If we consider an observer located at a distance ro from the center, 
then the recorded gravitational redshift becomes:

zG = a0 · |r - ro| / c2 (23)

By comparing Eqs 16 (or 17) and 23, one can see that gravitational blueshift is in general 
smaller than TDR, from which it must be subtracted to obtain the total lightshift.  

Furthermore, there is a gravitational well from the emitting galaxy that light has to overcome 
(with redshift) before reaching the observer. In general, this redshift is compensated by a similar
blueshift from the gravitational sink that the photons fall into when arriving the observer’s 
galaxy. If both galaxies are about the same size, both effects are comparable and the net shift 
from gravity is just a blueshift caused by the acceleration along the path (in our case, constant 
a0) and the relative radial distance. Hence Eq 23 is adequate in most cases. However, when 
one or both galaxies are rotating at relativistic speeds, a higher gravitational well around the 
galaxy arises from its relativistic mass, which is larger for fast-rotating galaxies in the outer 
regions. For an observer near de center looking at light coming from a galaxy far in the outer 
regions, there is a larger redshift from the relativistic mass of the emitter which must then be 
subtracted from the blueshift. Therefore, gravitational blueshift will be in general overestimated 
by Eq 23, which must be rather viewed as an upper bound for gravitational blueshift.

In practice, since it is smaller than TDR, gravitational blueshift can be ignored when estimating 
the observed total redshift, but in some cases it can have significant impact and shoud be 
included (for instance, when studying the behavior of redshift in old epochs as compared to 
recent ones).

Results

The resulting transverse Doppler redshift (TDR) calculated from Eqs 16 and 19 increases 
linearly with distance and picks up exponentially for large distances (Z > 0,3-0,5), mimicking an 
expanding universe.  When gravitational blueshift (GB) calculated from Eq 23 is subtracted from
TDR, a slightly decreased total redshift is observed, since GB is small compared to TDR, 
between 1/10 and 1/15 at the mid- and border regions (from Eqs 11-16, 23, and Figs 2-3). 

In the figures, TDR, GB and the observed redshifts known from public sources [15] are 
represented for an observer at a distance from the center that is 1/32 and 1/1000 of the radius 



of the observable universe. Rotational velocities are also plotter, assuming a distribution of 
mass-density that decays as the inverse of radial distance. 

r = 1/ R (24)

With this density distribution, transverse Doppler redshift increases linearly at short distances 
but falls short of the observed redshifts (red dashed line vs red crosses, Fig 1). 

Fig 1. TDR (ZD, dashed red line) as viewed by an observer (Obs) placed at 1/32 of the radius of 
universe (RU) for a mass density that distributes as 1/r compared to observed redshifts (red 
crosses, ZEXP). Green lines are rotational velocities expresed as multiples of c. Rotational 
velocities approach c at a radial distance equal to the that of the observable universe (not 
shown).

However, we can consider a more general function for the distribution of mass-densitity:

r = k / Rn (25)

with k a free variable to be fitted, and n very close or exactly equal to one. We then find out the 
k that best fits TDR to the observed redshifts in its ‘linear region’ at short distances. An optimal 
value is k = 4 (Figs 3, 4). 



Figs 3 and 4. Calculated transverse Doppler redshift (ZD, dashed red line) gravitational blueshift
(ZG, dashed blue line) and total redshift (Z, red line), together with rotational velocities (V, green 
line) for a mass density distribution 1/r and k = 4 (Eq 25). Observer (ro) is placed at 1/32 and 
1/1000 of RU from the center, respectively. Red crosses are observed redshifts (ZEXP). Vertical 



grey lines indicate the center of universe, the position of the observer, and the distance at which
rotational velocities become larger than c. 

In Figs 2 and 3, redshift increases linearly at first, then relativistically starting from distances 
about the limit of our local universe, z ~ 0.3. Velocities increase as the square root of distance 
and reach values of c at a distance from the center slightly smaller than 1026 m, i.e., about one 
fourth to one fifth the currently accepted value of the visible universe’s radius. At that point, the 
idea that there is some physical limit is hard to dismiss, and that limit looks shorter than the 
visible universe of LCDM. Alternatively, velocities might stop increasing and flat out with a 
corresponding change in the distribution of mass-density, allowing for larger radii and involving 
new mechanisms that cannot as yet be forseen. 

Caveats and limitations

1. Equations 16 and 19 assume that both the observer and the emitting galaxies are located 
along a common radial direction. For different locations, the same reasoning would hold, 
provided that their relative distance is large compared to the distance from the observer to the 
center. Isotropy is then ensured and measured distances are then independent from the 
particular location of the observer along its orbital path. 

2. Slight adjustments are possible for both n and k in the distribution of mass-density (Eq 25). 
We haven’t seen a clear benefit in the predictive power as compared to setting n = 1 and 
adjusting k. In the graphics, we have adjusted k for the best fit of ZD to observed redshifts. In the
appendix there is an example of what happens when n is slightly modified. 

3. We have not atempted to model the velocities and redshifts that take place when the emitter 
is on the other side of the universe from the center (to the left in the graphics). Though 
essentially the same findings are expected, the calculation of gravitational accelerations and 
redshifts include some new phenomena that are hard to model with simple tools and might give 
rise some significant asymmetries. For simplicity, we assumed that all processes are symmetric 
on both sides, which is a reasonable hypothesis when the observer is located very close to the 
center. 

4. As we can see in the graphics, redshifts outside our local universe (approximately z > 0.3) 
increase relativistically as predicted (eq 16) and become much larger than the currently 
accepted ones. Also, velocities reach approach c for distances shorter than RU, the currently 
accepted radius of the observable universe. Since rotational velocities larger than c make no 
sense, we plot a vertical line in the graphics at the point where such velocities are achieved, 
with the implied suggestion that the universe might actually end there.

But how can distances outside the local universe be overestimated by our current LCDM 
models?



Discrepancies with the SN-Ia distance ladder for measuring distances.

We come thus to the disturbing conclusion that redshifts in a static, rotating universe are 
practically identical to those of an expanding universe for distances smaller than z ~ 0.3, but 
progressively disagree for larger distances. Since distances in standard LCDM are measured 
by means of a well-tested, sequential method that is ultimately anchored on optical parallax, the
natural question to ask is whether there could be a problem in the last ladders or our current 
distance method. Could Type Ia Supernovae (SNe Ia) erroneuously measure distances outside 
of our local universe? 

In the first place, we should consider that in this static rotating model of universe (SRMU), high 
rotational velocities are achieved that are real. For velocities > 0.3-0.5·c, relativistic masses 
must be used for all dynamical analyses. In LCDM in contrast, recessional velocities are 
‘apparent’ and caused by an expanding spacetime. In the reference frame of any particular 
galaxy, its velocities are sub-relativistic. This is why in LCDM galaxies do not violate Special 
Relativity despìte recessional velocities much higher than c. Despite recent reports that indicate 
that time dilation occurs for distant galaxies and quasars [16, 17] (which in itself is somewhat 
problematic) the whole LCDM is rooted on a mass that is relatively insensitive to recessional 
velocities. In SRMU instead, masses do increase relativistically in proportion to Z. This means 
that for all galaxies and stars beyond the local universe, their effective mas is relativistic mass 
(mR), which is higher than their rest mass (m0).  If the explosion of SNe-Ia takes places at a fixed
mass, this  we argue- must be its relativistic mass. This would mean that they explode at a 
smaller value of their rest mass, which is what is contemplated for nearer galaxies, those for 
which a distance confirmation is available from cepheids and parallax. The only thing that is 
needed then to explain the discrepancy between true distance and distance from type Ia 
Supernovae is that luminosity depend not on relativistic mass, but rather on rest mass. This 
might indeed be the case, since luminosity, the number of photons emitted per unit time, is 
subject to relativistic time dilation, which must be accounted for and would cause a downward 
correction. Even though radiant energy itself should depend on relativistic mass, when 
luminosity is down-corrected for relativistic time dilation, this would counter the increased 
luminosity by the same proportion (g) by which it increased when going from rest to relativistic 
mass and might result in a luminosity that is roughly proportional to rest mass (calculations not 
done). The end result might be an overestimation of intrinsic luminosities. In the graphics, for 
any galaxy at radial distance R from the observer, intrinsic luminosity at the time of its explosion 
might be smaller than calculated fom the usual M/L function and, to acount for that, one can 
either make the aforementioned relativistic corrections or assume a larger distance from the 
observer. In an expanding universe, only the second option is available. The increase in 
distance that corrects redshifts by the right amount to offset their relativistic increase in mass 
seems to be just the horizontal projection of the ‘true’ redshift, represented by the red lines, onto
the ‘experimental redshift’, represented by the red crosses. If to every redshift we attribute the 
distance represented by this projection, then both redshift and distance can be made consistent 
with the inverse-square law of propagaton of light and with the mas-to-light ration inferred from 
closer-by galaxies. The discrepancy would increase exponentially at higher redshifts, in parallel 
with the increase in rotational velocities and relativistic masses, and might likewise affect our 
estimation of the size of the universe. 



Second, there’s another possible source of error in the calculation of distances: the headlight 
effect [18]. In an expanding universe, no significant headlight effect should take place for distant
galaxies, since velocities in their reference frame are sub-relativistic. But in a rotating static 
universe, there is a (most likely small) decrease in the light received by an observer that is 
facing the emitting galaxy sidewise. This effect might also contribute to an overestimation of 
distance, since -again- lower-than-predicted luminosities can only be explained by assuming 
larger distances from the observer.

Both potential sources of error -if they exist- would go unnoticed in the lower rungs of the 
distance ladder (cepheids and parallax), since no relativistic corrections are needed nor used in 
their ranges.

Conclusions

Subject to the previous limitations and the provisional, semi-quantitative character of the
present model, we conclude that: 

1. A mass density that scales as 1/r in a static rotating universe gives rise to 
a constant cosmological acceleration consistent with MOND's a0. This would 
generate rotational velocities that increase as the square root of radial distance 
from the center, reaching relativistic speeds at the outer regions.
2. Such velocities would generate a transverse Doppler redshift that scales 
with radial distance, mimicking recessional velocities and expansion. 
3. Assuming the observer is placed relatively close to the center, a total  
(transverse minus gravitational) redshift that mimics the isotropic cosmological 
redshift of an expanding universe would be observerd from all directions. 
4. In this model, there is no cosmological redshift. All light shifts are of 
gravitational or Doppler origin. Strongly redshifted light coming from the farthest 
external shells of the universe is expected to predominate, possibly giving rise to 
images similar to those observed in the CMB. 
5. Current methods based on the distance ladder and SNe-Ia might 
overestimate cosmological distances, and might overestimate the actual size of 
the universe as well. In contrast, the lifespan and stability of the universe might 
be grossly underestimated.

Discussion



Several authors, most notably Lombriser, Buchert, Roukema et al [19-21] have proposed that 
the expansion of the universe might be an apparent phenomenon caused by distortions in the 
gravitational fields at cosmic scales, but the models are incomplete, difficult to test and, in some 
cases they include radical unobserved features like a variation in the mass of particles.

Late American astronomer Halton Arp performed detailed observations on redshifts from 
quasars and galaxies around the turn of the last century, calling the attention on several 
inconsistencies and unexplained findings at large distances [22]. Redshift often distributes with 
regular patterns and periodicities that are hard to explain if expansion and the relation of redshift
with distance are both correct. Morever, sometimes wide differences in redshift from close-by 
galaxies was recorded. For these reasons, Arp opposed to the idea of recessional velocities as 
the major or unique origin of cosmological redshift. Unfortunately, the alternative he postulated, 
i.e., that redshift is quantized and caused by intrinsic properties of galaxies and quasars, like 
their plasma content, has little suppport and we lack any leads to either confirm or disprove it. 

On the other hand, the hypothesis that light’s energy and frequency might decay across large 
distances, the 'tired light' hypothesis, has not gained traction mainly due to the fact that it would 
imply a modifications of c, contradicting Special Relativity. There have recently been some 
remarkable attempts [23] to make the tired light hypothesis consistent with the observation of 
large galaxies at early times and with LCDM by way of a hybrid model. However, it also needs 
modifications in the basic physical constants G, c, and L.

The present semi-quantitative model is based on the assumption of a mass density that 
decreases inversely with distance, a reasonable hypothesis that is consistent with Newtonian 
gravity and supported by MOND and by a handful of preliminary observations on actual mass 
densities in the local universe. The assumption might soon be tested by the James Webb 
Space Telescope and other observatories. It offers a picture of a static, rotating universe that 
would generate the phenomena of redshift and background low-energy radiation that we 
observe today and constitute the backbone of modern cosmology. 

High rotational velocities are not excluded from the lack of detection of changes in the position 
of distant galaxies. For the same reason that the rotation of earth is not detected by us, as 
noted by Galileo, and rotation of the Milky Way has never been directly detected even if it 
amounts to hundreds of meters per second. 

Unfortunately, in this model the universe could essentially no longer be expanding, nor the Big 
Bang could take place 14 billion years ago. On the plus side, the mass-energy composition of 
the universe might be better understood, and the law of conservation of energy would no longer 
be violated at cosmic scales. The universe would be much older and stable than previously 
though and, though static, it would offer an ample range of exciting features to work with and 
speculate. 

And yet, caution is advised when contemplating these hypotheses. Our current models of the 
universe are self-consistent and offer a complete picture of the events up to the first 
nanoseconds from the origin. Even if countered by a few important discrepancies, our current 
cosmological models work. The present ideas are an alternative view motivated by reasonable 
arguments, many of them inspired by the work of other authors. They might be worth being 
looked into, scrunitinized and, if they end up being ruled out from disagreement with 
observations, the task ahead remains unchanged, which consists of seeking truth and bettering 
our understanding. For us, there is only the trying. The rest is not our business [24].



Appendix I

Mathematica ® v.12 code for the graphics

Global constants

ro=1/250*10^26 (* Observer position at ~1/1000 of RU *) ;

c=3*10^8 (* Speed of light *) ;

g=6.67*10^-11 (* Gravitational constant *);

k=4  (* Density constant *);

n=1   (* Parameter *);

a0=1.1*10^-10;   

(* Constant cosmologiical acceleration, agrees with MOND and approximately equal to 

1/3· 4p · G  *);

Functions

density[r_]:= k*Abs[r]^-n  (* Density *);

acceleration[r_]:=1/3*4*Pi*g*density[r]*Abs[r]   (* Acceleration from Eq 11 *);

(* When density decays as 1/r, acceleration is constant in r and agrees to within one order of 
magnitude with MOND’s a0 – we use it interchangeably with a0 *)



v[r_]:=Sqrt[acceleration[r]*Abs[r]]  (* Velocity of galaxies *);

vrel[r_]:= Sqrt[acceleration[r]*Abs[r-ro]] 

(* Relative velocity between galaxy at r and observer at ro *);

u[r_]:= acceleration[r]*Abs[r]  (* Grav potential general formula (not used) *);

zg[r_]:= a0*Abs[r-ro] /c^2 (*  Gravitational redshift  *);

(* An alternative roughly equivalent definition in terms of potential function would be: zg[r_]:= 
u[r-ro] /c²  *);

zd[r_]:=1/Sqrt[1-(vrel[r]/c)^2]-1  (* Transverse doppler redshift *) ;

vplot[r_]:= Abs[v[r]]/c (* Velocity of emitting galaxy in units of c *);

limu=r/.NSolve[vplot[r]==1&&r>0,{r}][[1]]  (* Distance at which v=c *);

table={{0,0},{42.8,0.01},{74.6,0.0175},{106.2,0.025},{158.2,0.0375},{209.4,0.05},{309.9,0.075},
{407.7,0.1},{686.4,0.175},{945.2,0.25},{1338.6,0.375},{1691.9,0.5},{2303.8,0.75},{2818.3,1},
{3644.3,1.5},{4285.9,2},{4804.1,2.5},{5234.6,3}};

(* Table of experimental data {Mpc, Redshift} from reference 15 *) ;

dists=Take[Transpose[table][[1]]*3.0857*10^22+ro,18] (* Conversion Mpc to meters *);

dists1=Rest[Take[2*ro-dists,5]] (* Distances to the left of the center *);

ereds=Take[Transpose[table][[2]],18] (* Redshifts to the right of the center *);

ereds1=Rest[Take[ereds,5]] (* Redshifts to the left *) ;



Plots

zo=ListPlot[Join[Transpose[{dists1,ereds1}],Transpose[{dists,ereds}]],PlotMarkers-> 
Style["x",Red]];

(* Experimental data Plot *);

rshift=Plot[{Style[zd[rad],Red,Dashed],Style[zd[rad]-
zg[rad],Red],Style[zg[rad],Blue,Dashed],Style[vplot[rad],Green]},{rad,-3*10^25,1*10^26}];

(* Traverse Doppler and Velocity plot *);  

graph=Show[zo,rshift,PlotRange-> {{-3*10^25,1*10^26 },{0,2}},AxesOrigin-> {0,0},GridLines-> 
{{ro,limu},{}},PlotLabel-> "Static rotating universe - Redshift and velocities (k=4, n=1, ro=ru/
32)",LabelStyle->Directive[Blue,7],Epilog-> {Text[Style["V",FontColor-> Black,FontSize-> 7],
{3*10^25,0.7}],Text[Style["Subscript[Z, D]",FontColor-> Black,FontSize-> 7],{6*10^25,1.2}],

Text[Style["Z",FontColor-> Black,FontSize-> 7],{7*10^25,1.2}],

Text[Style["Subscript[Z, EXP]",FontColor-> Black,FontSize-> 7],{7.4*10^25,0.65}],

Text[Style["Obs",FontColor-> Black,FontSize-> 7],{0.7*10^25,1.5}],

Text[Style["Lim Univ",FontColor-> Black,FontSize-> 7],{8.8*10^25,0.3}]},AxesLabel-> 
{"R(m)","Z"}] ;



Appendix II

Additional graphics assuming n < 1 in Eq 22.

Transverse Doppler redshift as a function of radial distance in formula for It is shown 
that a mass density decay that scales as k / Rn and n < 1 can also generate redshifts 
consistent with the observed ones. Observer at 1/32 and 1/1000 of the radius of 
universe. Nothing prevents in principle that mass-density deviates from an exact 1/R 



distribution, but we would rather eschew those models since their main feature is lost, 
i.e., a constant acceleration that pervades the whole universe. Rotational velocities also 
pick up quite steadily. Mixed models (with both k and n different from 1) are also 
possible. 



Appendix III

Cosmology that would result from a Static Rotating Universe

In the SRMU, size would be determined by rotational velocities that are limited by the speed of 
light. No physical object can move at speeds higher than c, and since there is no expansion of 
spacetime, no exceptions are acceptable. This entails that the size of the universe is 
determined internally by the fundamental laws of physics: relativity, QM and gravity. The 
universe shoud be much more stable than our current models predict. Not necessarily eternal 
though, since matter would be continually generated and simultaneously consumed into 
spacetime. In the mature and old phases of its lifetime, the universe might convert more matter 
into space than the reverse and it might eventually run out of mass. At that time, which might 
occur 1050 to 10100 years from its origin or more, the universe would lack the necessary mass to 
maintain its present properties, its rotational velocities and its size, and might collpase and 
‘disolve’ into spacetime, gas and dust, adding to the general pool in the outer ‘inter-universe’ 
medium. Other ‘young’ universes might exist that have not yet reached its full rotational 
velocities and size limit and are therefore capable of growing by accreting mass.  These young 
universes would grow from the recycling of mass (and spacetime?) from the inter-universe 
medium until they reached their full mature size, most likely the same size as our own. 

The question of what lies outside of our current universe has thus no proper answer that can be 
validated experimentally. However, the logic of the model -the fact that the limiting size is 
detemined internally- and common sense suggest that outside of our universe there might be 
just spacetime and mass governed by the same physical laws, and similar events might unfold, 
including other universes similar to our own. If other universes actually exist, we can infer at 
least two of their most likely properties: 1) They shoud have about the same size and life span 
as our own universe, and 2) The spatial and time scales involved would very large and 
proportional to the scales that we observe. Judging from the scales we see in our universe, 
where stars are separated an average of 1 pc, and galaxies are separated an average of 1 Mpc,
we should expect that other universes -if they exist- might be separated one million times that 
distance. They might be about 1 trillion parsecs (1028 m) away from each other on average, or 
more. Their life span would likely be immense and be measured by powers of 50s to 100s. But 
all this is highly speculative and not the point of the present work. 
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Abbreviations:

MOND: Modified Newtoniant Dynamics.

TDR: Transverse Doppler redshift

GB: Gravitational blueshift

SR(M)U: Static rotating (model of the) universe.

SNe-Ia:  Type Ia Supernovae.

a0:  MOND’s postulated acceleration that works as its scaling factor. It agrees with cosmological 
accelerations aL and with the constant acceleration in this model (1/3·4pG).

G’: Defined as 4pG



Changes from version 1 of the paper:

- An error in the calculation of gravitational redshift has been corrected.

- Gravitational redshift has been included in the graphics (vblus dashed line)

- Legibility of the Mathematica ® source code for the graphics has been improved, and  
corrections were made for typos and expression. 


	Abstract
	Modified Newtonian Dymanics (MOND) is a Newtonian-derived hypothetical model of gravity proposed 40 years ago by Mordehai Milgrom to explain the multiple gravitational anomalies observed in galaxies and galaxy clusters [1-3]. They are summarized and conventionally explained through the existence Dark Matter, an elusive new form of matter that interacts only gravitationally and is not included in the Standard Model of Particle Physics. While no such particles have yet been found, the search goes on and MOND usually plays a secondary role in the list of candidate explanations for dark matter. One of the reasons is that a0, the distinctive feature of MOND, does not correspond to any physical entity, and –it is argued- was postulated solely as a means to obtain a gravitational law that fits the observations. It is sometimes called a phenomenological explanation.
	Part I. The Newtonian ball model of gravity
	A generally accepted assumption of all current astrophysical models is the Cosmological Principle, the idea that the universe at large scales is both homogeneous and isotropic. While it may still be isotropic and strong constraints have been set on the range of variation in matter density, the homogeneity condition has little theoretical supporting evidence. Based on original ideas of Isaac Newton, we shall argue that the universe can be modelled as a continuous distribution of mass that obeys simple dynamics embodied in the Universal Law of Gravitation. As Newton found in the late 1600s [4], when a continuous distribution of mass with constant density is allowed to evolve according to such law, an acceleration appears that is null at the center and increases outwards in linear proportion to radial distance until it reaches, for a distance equal to the radius of the ball, the exact same value as predicted by conventional Newtonian gravity.
	Global constants
	Functions
	Plots

